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Abstract

This paper addresses the problem of human gait recogni-
tion by applying model (in)validation techniques. The main
idea is to associate to each class of gaits a nominal model
and a class of bounded energy inputs. In this context, the
problem of recognizing a sequence can be formulated as the
problem of determining whether or not it could have been
generated by a given model and its associated class of in-
puts. By exploiting interpolation theory results this problem
can be recast into a Linear Matrix Inequality (LMI) opti-
mization form and efficiently solved.

1. Introduction

This paper addresses the problem of recognizing three
different types of human gaits, namely walking, running
and walking a staircase, by applying model (in)validation
techniques (see [3, 6] for a survey).

The experimental data consist of measurements of the
angles of the shoulder, elbow, hip and knee joints of a per-
son walking, running or walking a staircase. Following [1],
these sequences are assumed to be realizations of a second
order stationary stochastic process and hence can be associ-
ated to a causal, discrete-time, linear time-invariant system
driven by white noise. These models can be obtained for
instance by using subspace identification methods (see [7]).
In [1] it has been proposed that a given sequence can be rec-
ognized by finding its associated model and then finding its
closest neighbour, in the sense of the Martin distance (see
[1] and references therein), among the set of known gaits.

This paper takes a different approach towards gait recog-
nition. The idea is to associate to each class of gaits a nom-
inal model and a class of inputs of bounded energy. These
nominal models can be obtained from the training data by
finding, in each class, the model that is closest to each other
element in some sense. In this context, the problem of deter-
mining whether or not a given experimental sequence corre-

sponds to a particular gait type can be formulated as a model
(in)validation problem.

The paper is organized as follows. Section 2 introduces
the notation and required results. Section 3 states the prob-
lem of gait recognition as a model (in)validation one. Sec-
tion 4 shows that the problem above can indeed be recast as
a Linear Matrix Inequality optimization problem by invok-
ing Carathéodory-Fejér interpolation theory, and efficiently
solved. Section 5 illustrates the proposed technique with a
practical example. Finally, Section 6 presents the conclu-
sions and possible directions for future research.

2. Preliminaries

Let x ∈ Rm denote a column vector and ‖x‖2 its eu-
clidean norm. Let �n2 be the space of real, one sided, square
summable, finite vector sequences x

.= {xi}ni=0 equipped
with the norm:

‖x‖�n2

.=

(
n

∑
i=0

‖xi‖22
) 1

2

, (1)

and let �2 denote its extension to infinite length sequences.
For any sequence x ∈ �n2, define the following finite lower
Toeplitz matrix:

Tnx =




x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn−1 xn−2 . . . x0


 . (2)

Let H∞,ρ denote the space of complex-valued matrix
functions essentially bounded on |z| = ρ and with bounded
analytic continuation in |z| < ρ, equipped with the norm:

‖L‖∞,ρ
.= ess sup

|z|<ρ
σ(L(z)) (3)

where σ represents the largest singular value, and let
BH∞,ρ(δ) denote the closed δ-ball in H∞,ρ:

BH∞,ρ(δ) = {L ∈ H∞,ρ : ‖L‖∞,ρ ≤ δ}. (4)
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In the sequel, H∞ and ‖.‖∞ stand for the case ρ = 1, and
BH∞ for the closed unit ball in H∞.

This paper considers finite-dimensional, causal, discrete-
time, LTI systems bounded in �2, i.e.

‖S‖�2→�2
.= sup

‖u‖�2
	=0

‖S∗u‖�2

‖u‖�2

< ∞, (5)

where ∗ stands for convolution. Any such system will be
represented by an infinite lower Toeplitz matrix TS mapping
input to output sequences in �2:


y0
y1
y2
...


 =



S0 0 0
S1 S0 0 · · ·
S2 S1 S0

...
. . .






u0
u1
u2
...


 , (6)

where {S0,S1,S2, · · ·} is its convolution kernel, or by the
finite upper left submatrix of n× n, TnS, obtained from
the infinite matrix above, when dealing with finite input-
output sequences in �n2. Alternatively, any system of in-
terest will be represented by a minimal (not unique) state-
space realization, or by its Z-transform evaluated at 1/z, i.e.
S(z) = ∑∞

k=0Skz
k, S(z) ∈ H∞,ρ, for some ρ > 1. It is a well

known fact that in this case ‖S‖�2→�2 = sup|z|=1 σ(S(z)).
Finally, for a real matrixA∈Rm×n, AT denotes its trans-

pose, i.e. AT ∈ Rn×m; for a real square symmetric matrix
A = AT ∈ Rm×m, A > 0 means that A is positive definite,
i.e.

xTAx > 0 ∀x ∈ Rm,x 	= 0, (7)

A ≥ 0 that A is positive semidefinite and A < 0 that A is
negative definite.

The following result will be required to solve the gait
recognition problem as a model (in)validation one.

Lemma 1 (Carathéodory-Fejér) Given a matrix valued
sequence {Li}n−1

i=0 , there exists a causal, discrete-time, LTI
operator L(z) ∈ BH∞ such that

L(z) = L0 +L1z+L2z
2 + · · ·+Ln−1z

n−1 + · · · (8)

if and only if
(TnL)

TTnL ≤ I (9)

where I denotes the identity matrix of compatible dimen-
sion.

Proof: See for instance [4], Chapter 1. ✷

3. Problem Statement

Consider the gait recognition set-up depicted in Figure
1. Here, S is a causal, discrete-time, LTI model driven by
white zero-mean Gaussian noise (see [7] for details):

xk+1 = Axk +Kek, ŷSk = Cxk + ek (10)

S✲e ✲ŷS

✲ ∆

❄❥+ ✲
ŷ

Figure 1. The Gait Recognition Set-up

which is assumed to be representative of a particular gait
type. Also by assumption:

ŷSk
.= ySk −E(ySk), E(ySk) = µµµ ∀k, (11)

where E denotes expected value1 and ySk is a vector with
measurements of the angles of the shoulder, elbow, hip and
knee joints of a person walking, running or walking a stair-
case, at instant k, used to get nominal model S.

The goal is to decide if a given experimental sequence
ŷ –different from ŷS– belongs to the gait type represented
by model S. The mismatch between sequences ŷS and ŷ is
modelled by:

ŷ= [(I+∆)S]∗ e, (12)

with I the identity operator, ∆ a bounded operator in
BH∞(δ), δ < 1 2. and e a possible input sequence of
bounded energy over the finite horizon [0,n] in the set:

U = {e :
N

∑
k=1

eT e≤ ε2}. (13)

In this context, the gait recognition problem is equivalent
to determine whether model S could have generated the se-
quence ŷ. This is precisely a model (in)validation problem.

Problem 1 Given a nominal model for a given gait type S
as in (10), sets U and ∆∆∆ of possible inputs and uncertainty
blocks:

U = {e :
N

∑
k=1

eT e≤ ε2}, ∆∆∆ = {∆ : ∆ ∈ BH∞(δ),δ < 1}

and the experimental sequence ŷ, determine whether or not
there exists at least one feasible pair (e,∆) in the sets U, ∆∆∆
so that model S can reproduce the available experimental
evidence.

1For practical purposes, it will be additionaly required that process y is
mean-ergodic. Under this assumption it is possible to get an estimate of
µµµ from temporal averages over the finite horizon [0,n] with n sufficiently
large, which is guaranteed to converge as n→ ∞ to the true µµµ in the mean
square sense (see for instance [5], Chapter 13).

2This requirement is imposed for the problem to make sense, i.e.
‖ŷ−S∗ e‖�n2

≤ ‖S∗ e‖�n2
.
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If the answer to Problem 1 is negative the experimental se-
quence does not correspond to the assumed gait type. On
the other hand, if such a feasible pair exists it is clearly of
interest to quantify the minimum size (in the H∞ sense) of
the uncertainty block.

Therefore, by selecting representative models of each
gait type and finding the minimum size of the uncertainty
block that yiels an afirmative answer to Problem 1, it is pos-
sible to assign the unknown gait to one of the given classes.

4. Main Results

Next Theorem shows that Problem 1 can be recast as an
LMI feasibility problem, by invoking Carathéodory-Fejér
interpolation theory.

Theorem 1 Problem 1 has an affirmative answer if and
only if there exists a finite sequence e = {e0,e1, . . . ,en} so
that the following set of LMIs hold:

A1(e)
.=

[
X(e) (TnST

n
e)
T

TnST
n
e (δ2−1)−1I

]
≤ 0

A2(e)
.=

[
ε2 YT (e)

Y(e) I

]
≥ 0

(14)

with:

X(e) .= (Tnŷ)
TTnŷ− (Tnŷ)

TTnST
n
e− (TnST

n
e)
TTnŷ

Y(e) .=
[
eT0 eT1 · · · eTn

]T
,

I the identity matrix of compatible dimension, and Tnŷ , T
n
e

and TnS defined as in Section 2.

Proof: According to Figure 1,

TnŷS = TnST
n
e , Tnz = Tn∆T

n
ŷS , Tnŷ = Tnz +TnŷS (15)

where z represents the output sequence from the uncertainty
block ∆. Clearly, model S could have generated the exper-
imental evidence ŷ if and only if there exists a pair (∆,e)
satisfying equations (15). As a consequence of Lemma 1,
there exists a ∆ ∈ ∆∆∆ mapping the input-output sequences
(ŷS,z) if and only if

(Tnz )
TTnz ≤ δ2(TnŷS)

TTnŷS . (16)

Combining equations (15) and reordering terms yields:

(Tnŷ)
TTnŷ− (Tnŷ)

TTnST
n
e− (TnST

n
e)
TTnŷ

− (δ2−1)(TnST
n
e)
TTnST

n
e ≤ 0. (17)

Noticing that by assumption δ < 1 and using Schur comple-
ments (see [2], Chapter 2, and references therein) gives the
first LMI in (14). The second LMI is a simple restatement
of (13), by invoking a Schur complement argument. ✷

Person Walking Running Staircase
A 1,2 16 to 18 25 to 27
B 3 to 8 11 to 15 21 to 24
C 9,10 none 28 to 30
D none 19 none
E none 20 none

Figure 2. Experimental Data

Note that since α(δ) .= (1− δ2)−1 for δ ∈ (0,1) is a con-
vex function of δ, it is possible to optimize over the size of
the uncertainty required to explain the data, by solving the
following problem:

minα, so that: Â1(e,α) ≤ 0, A2(e) ≥ 0, α > 1

where Â1(e,α) results from replacing block (2,2) in A1(e)
by −αI.

5. Example

This example begins by outlining a method to compute
suitable nominal models for each gait class, from a training
set of sequences. Then, using new experimental sequences
of different human beings, it illustrates the proposed method
for gait recognition.

The experimental data. The experimental data con-
sists of 30 vector sequences, taken from 5 different persons,
named A, B, C, D and E. Each sequence contains measure-
ments of the angles of the shoulder, elbow, hip and knee
joints of a person walking, running or walking a staircase.
For illustrative sake, these sequences are numbered from 1
to 30 so that the first 10 correspond to walking, the second
set of 10 to running and the third set of 10 to walking a
staircase, as shown in Table 2.

The nominal models. Let Si denote any candidate
model as in (10), of 4 states, 4 inputs and 4 outputs, associ-
ated to the experimental sequence yi, as introduced in Sec-
tion 3. Thus for recognition purposes, Si must be specified
together with mean vector µµµi = E(yik) and an upper bound
on the input energy εi. In this paper, the mean of a given
sequence will be estimated as ∑m

k=0 yik/(m+ 1) and εi will
be computed as the input energy required for model Si to
generate yi, i.e. εi

.= ‖e‖�n2
: e= S−1

i ∗ yi. Given a particular
gait type and a set of models S , computed from a training
set of sequences, define the nominal model S ∈ S as the one
that is closest to each other element in its class, in the sense
of minimizing the norm of the (multiplicative) uncertainty
required to map the two models under consideration, i.e

S= arg min
Ŝi,Ŝ j∈S

{
‖(Ŝi− Ŝ j)Ŝ−1

j ‖∞

}
, (18)
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in accordance to (12), where Ŝi
.= εiSi 3. Proceeding as de-

scribed above yields the following three nominal models,
denoted as Swalk for walking, Srun for running and Sstair for
walking a staircase:

Swalk
.= S10, Srun

.= S20, Sstair
.= S30. (19)

Thus, sequences {y10,y20,y30} are the training data for the
problem. Let’s apply the model (in)validation framework
presented in Sections 3 and 4 to the remaining experimental
sequences.

The results. Table 3 shows the results of applying The-
orem 1, using 20 sample points per sequence. In all cases,
the first column contains the experimental sequences to be
recognized; the second, third and fourth columns display
the minimum size of the uncertainty block ∆ measured in
the H∞ norm, so that nominal models Swalk, Srun and Sstair
can reproduce the given data. Notice that by assumption,
all norms are no greater than 1; ‖∆‖∞ = 1 means that the
assumed model is invalidated by the data, leading to the
conclusion that the given sequence cannot correspond to
that gait. Thus by examining each row and selecting the
smallest uncertainty norm (indicated by a †), all sequences
can be assigned to a particular gait type. As can be seen
from Tables 2 and 3, the proposed method can succesfully
recognize 25 from the 27 sequences under consideration; it
only confuses 2 sequences –y26 and y29, belonging to per-
sons A and C walking a staircase– as walking sequences.
The failure could be attributed to the length of the experi-
ment used for recognition purposes, or simply to faulty se-
quences, specially because the proposed method is able to
correctly recognize sequences {y25,y27} and y28 fromA and
C respectively.

6. Conclusions

This paper approaches the problem of human gait recog-
nition from a model (in)validation viewpoint. The proposed
method, which involves comparing any given experimen-
tal sequence against a fixed set of nominal models for each
gait type, is shown to be succesful by means of a practical
example. Issues such as model and uncertainty structure,
capable of extracting more information from the available
experimental evidence, remain open for future research.
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