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Abstract

In this paper we consider the problem of segmenting mul-
tiple rigid motions using multi–frame point correspondence
data. The main idea of the method is to group points ac-
cording to the complexity of the model required to explain
their relative motion. Intuitively, this formalizes the idea
that points on the same rigid share more modes of motion
(for instance a common translation or rotation) than points
on different objects, leading to less complex models. By
exploiting results from systems theory, the problem of esti-
mating the complexity of the underlying model is reduced
to simply computing the rank of a matrix constructed from
the correspondence data. This leads to a simple segmen-
tation algorithm, computationally no more expensive than
a sequence of SVDs. Since the proposed method exploits
both spatial and temporal constraints, is less sensitive to the
effect of noise or outliers than approaches that rely solely
on factorizations of the measurements matrix. In addition,
the method can also naturally handle “degenerate cases”,
e.g. cases where the objects partially share motion modes.
These results are illustrated using several examples involv-
ing both degenerate and non–degenerate cases.

1. Introduction

The problem of 2-D motion segmentation, that is deter-

mining the number of moving objects from a sequence of

2-D frames and assigning points to each object, has been ob-

ject of substantial research in the past decade. Approaches

to this problem include temporal differences [10], back-

ground substraction [18], and optical flow [1, 2, 3, 4, 7, 17,

25, 26]. Tomasi and Kanade [20] proposed the factorization

method to recover 3D motion and geometric structure of a

single moving object from 2D images under the assumption
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of orthographic projection. The method has been extended

to paraperspective [14, 15] and perspective [19] projection.

Several extensions of these methods have been proposed to

deal with non rigid objects [22, 30] and to segment multiple

moving objects [5, 6, 8, 11, 21, 24, 9, 27].

To illustrate the basic idea behind these methods, con-

sider Np points from a rigid structure, tracked over NF

frames. Define the measurements matrix W as:

W .=

⎡
⎢⎣

p11 . . . p1Np

...
...

pNF 1 . . . pNF Np

⎤
⎥⎦ (1)

where pi,t
.= (ui

t, v
i
t)

T containts the image coordinates of

the ith feature at frame t. Under the assumption of an affine

camera, it can be shown [5] that rank(W) ≤ 41. Thus,

in principle, motion segmentation can be accomplished by

factoring the column space of W into (approximately) four–

dimensional subspaces. While this idea leads to computa-

tionally very efficient solutions, is fragile to noise and the

presence of outliers, that can lead to incorrect subspace as-

signments. Robustness against these effects has been im-

proved in several recently proposed methods that build upon

the idea of factorizing suitable subspaces of W [29, 23, 28].

However, as we illustrate next, due to the underlying geo-

metrical arguments, approaches based solely on these fac-

torizations have difficulties in disambiguating objects that

partially share motion modes. An example of this situation

is the propellers of the airplane shown in Figure 1, where all

objects share the motion of the centroid, while propellers on

the same wing also share the relative rotation.

Denote by p(j)
i (k) = [u(j)

i (k) v
(j)
i (k)]T the position at

time k of the image of the point P
(j)
i on the jth propeller.

Using homogeneous coordinates, it can be easily shown that

1rank(W) ≤ 3 in the case of planar motion .
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Figure 1. Segmenting the propellers in an airplane.

W = MS, where:

W =
ˆ
W(1)T . . . W(NF )T

˜T
,

W(k) =
h
p

(1)
1 (k) . . .p

(1)
n1 (k) . . .p

(4)
1 (k) . . .p

(4)
n4 (k)

i

S =

»
S1

E

–
, E =

2
664

11×n1 0 0 0
0 11×n2 0 0
0 0 11×n3 0
0 0 0 11×n4

3
775

S1 =

"
p

(1)
1 (0) . . .p

(2)
n2 (0) 0 . . . 0

0 . . . 0 p
(3)
1 (0) . . .p

(4)
n4 (0)

#

M =

2
64

M(1)
...

M(NF )

3
75 , M(k) =

2
666666666664

cos θ(k) − sin θ(k)
sin θ(k) cos θ(k)
cos θ(k) sin θ(k)
− sin θ(k) cos θ(k)

t
(1)
x (k) t

(1)
y (k)

t
(2)
x (k) t

(2)
y (k)

t
(3)
x (k) t

(3)
y (k)

t
(4)
x (k) t

(4)
y (k)

3
777777777775

T

where t
(j)
x , t

(j)
y denote the position of the centroid of the jth

propeller and θ(k) is the angular displacement of the left

wing propellers2. It follows that, if at least 2 points in each

propeller are tracked and NF ≥ 6, then rank W = 6, since

M contains only 6 linearly independent columns. Thus,

any motion segmentation approach based solely on finding

linearly independent subspaces of the column space of W
will fail, since it cannot distinguish this case from the case

of two independently moving propellers.

Intuitively, the main difficulty in the example above is

that approaches based on properties of W that are invariant

under column permutations, take into account only geomet-
rical constraints, but not temporal ones. This is due to the

fact that any matrix Ŵ consisting of a permutation of the

columns of W satisfies the same geometric constraints, but

corresponds to different time trajectories. The core idea of

this paper is to resolve the ambiguities noted above by ex-

ploiting both sets of constraints. This is accomplished by

grouping points according to the complexity of the model

required to explain their spatio–temporal evolution, which,

under mild assumptions, can be estimated by computing the

ranks of a sequence of matrices obtained directly from the

2Propellers in different wings move with the same angular velocity but

in opposite directions.

matrix W . In addition, the use of spatio-temporal data al-

lows for improving robustness against measurement noise

and outliers. These results are illustrated with several exam-

ples involving both degenerate and non-degenerate motion.

2. Dynamics based motion segmentation.

Figure 2. Using models of relative motion to segment. Top:
two independently moving objects. Bottom: corresponding
dynamical model

To illustrate the main idea of this paper, consider N mov-

ing objects and associate to the jth object its centroid O(j)

and an affine basis b(j), centered at O(j), defined by three

no coplanar vectors V(j)
i (see Figure 2). Finally, denote by

o(j)(k), v(j)
i (k) the coordinates of the image of O(j)(k)

and the projections of V(j)
i (k) onto the image plane at time

k, respectively. Given a point P(j)
i belonging to the jth ob-

ject, the coordinates at time k of its image p(j)
i (k) are given

by:

p(j)
i (k) = o(j)(k)+α

(j)
i v(j)

1 (k)+β
(j)
i v(j)

2 k +γ
(j)
i v(j)

3 (k)
(2)

where α
(j)
i , β

(j)
i and γ

(j)
i are the affine invariant coordinates

of P(j)
i with respect to the basis b(j).

Next, assume that the position of each point at time k+1
is related to its past positions p(k−i) by an ARMAX model
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of the form:

p(k + 1) =
m−1∑
i=0

gip(k − i) + hie(k − i) (3)

where gi, hi are fixed coefficients and e(.) denotes a sto-

chastic input. Note that this can be always assumed with-

out loss of generality, since given NF measurements of

p(.), e(.), there always exists a linear operator such that (3)

is satisfied ([16], Chapter 10). Collecting all measurements

in a vector y and taking z-transforms leads to a model of

the form:

y = Me (4)

where M is a linear time invariant operator that has a state

space representation of the form:

ξ(k + 1) = Aξ(k) + Be(k), y(k) = Cξ(k) (5)

where y(k) =
[
p(1)

1 (k)T p(1)
2 (k)T . . . p(m)

n (k)T
]T

and (A,B,C) are suitable matrices. Moreover, by using
a similarity transformation if necessary, the states ξ of the
realization can be chosen so that they correspond to present

and past values of the position of the centroids O(j) and

the vectors defining the bases b(j). Finally, by absorbing
if necessary the spectral density of e in M, it can always
be assumed that e(.) is an impulse. For example, in the
simple case of constant angular velocity ω, the state–space
representation associated with the two left–wing propeller
tracks shown in Figure 1 is given by:

ξ(k) =
ˆ
v(1)(k) v(2)(k)

˜T

v(i)(k)
.
=

h
v
(i)
1 (k) v

(i)
2 (k) t

(i)
x (k)

i

A =

»
R 0
0 R

–
, R =

2
4 cos ω sin ω 0
− sin ω cos ω 0

0 0 1

3
5

B = ξ(0), e(k) =

j
1 if k = 0

0 otherwise

C =

2
66666666664

α
(1)
1 β

(1)
1 1 0 0 0

α
(1)
2 β

(1)
2 1 0 0 0

...
...

0 0 0 α
(2)
1 β

(2)
1 1

0 0 0 α
(2)
2 β

(2)
2 1

...
...

3
77777777775

(6)

Note that in this coordinate system the operator M has

a block diagonal form (see Figure 2). This is due to the fact

that, for any two points p(j)
r ,p(j)

s belonging to the same ob-

ject, the time evolution of the relative difference δr,s(k) .=
p(j)

r (k)−p(j)
s (k) can be explained only in terms of the tra-

jectories of the basis b(j). On the other hand, modelling the

evolution of the difference between points belonging to two

different objects requires considering O(i),O(j),b(i),b(j).

Formally, all the states of A unrelated to b(j) are unobserv-
able from δr,s, and thus the subsystem Mr,s : e → δr,s is

rank deficient when compared to a subsystem mapping e
to the difference between points on different objects. For

instance, in the propeller example used above, the subsys-

tem mapping e to the difference between any two points

p(1)
i ,p(1)

j on the same propeller has a state–space realiza-

tion (A,B,Ci,j), where A,B are given in (6) and

Ci,j
.=

[
α

(1)
i − α

(1)
j β

(1)
i − β

(1)
j 0 0 0 0

]

Note that the last 4 elements of Ci,j are zero, which, cou-

pled with the block-diagonal structure of A implies that the

last four states in ξ are unobservable from δ = p(1)
i − p(1)

j .

Hence, a minimal realization of M : e → δ is given by

Mred
.= (Ared,Bred,Cred), where Ared = R, Cred

.=[
α

(1)
i − α

(1)
j β

(1)
i − β

(1)
j

]
and Bred ∈ R2×1 is a matrix

related to the initial conditions. This realization has rank 23,

compared to the case of points on different propellers that

has (generically) rank 6. Roughly speaking, the relative mo-

tion of points in a given object, carries no information about

the motion of other objects. It follows that points can be as-

signed to objects by searching for minimum rank clusters of

the operator Mi,j .

3. Segmentation Algorithm

In this section we show that the dynamic rank based seg-

mentation idea outlined above can be be accomplished in

an efficient, robust way by computing the singular values of

a sequence of matrices (Hankel matrices) constructed from

the measured correspondence data.

3.1. Estimating Model Order from Experimental
Data

Next we recall a result that allows for efficiently solving

the problem of finding minimum rank clusters of the opera-

tor M, based solely on the measured data.

Lemma 1. [13]. Consider a system with a minimal state
space realization of the form (5) with A ∈ Rn×n and B ∈

3Recall that the rank of M is given by the number of states of a minimal

(observable and controllable) realization ([16], Chapter 9).
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Rn×m. Form the infinite matrix H =
(
Hy

He

)
where

Hy =

⎡
⎢⎢⎢⎢⎢⎢⎣

y(1) y(2) . . . y(m) . . .
y(2) y(3) . . . y(m + 1) . . .

... . . .
...

...
y(n) y(n + 1) . . . y(m + n) . . .

... . . .
...

...

⎤
⎥⎥⎥⎥⎥⎥⎦

He =

⎡
⎢⎢⎢⎢⎢⎢⎣

e(1) e(2) . . . e(m) . . .
e(2) e(3) . . . e(m + 1) . . .

... . . .
...

...
e(n) e(n + 1) . . . e(m + n) . . .

... . . .
...

...

⎤
⎥⎥⎥⎥⎥⎥⎦

;

(7)

Then if E{ξ(k)e(k)T } = 0, where E denotes expectation,
rank(H) = n + m.

Remark 1. In the case under consideration here, e(1) =
1, e(k) = 0, k > 1 and thus rank(Hy) = n. It follows that
given NF frames, assuming that NF � n the rank of the
operator M can be estimated by computing the rank of the
finite Hankel matrix:

Hy =

⎡
⎢⎢⎢⎣

y(1) y(2) . . . y(NF

2 )
y(2) y(3) . . . y(NF

2 + 1)
... . . . . . .

...
y(NF

2 ) . . . . . . y(NF )

⎤
⎥⎥⎥⎦

This observation allows for performing the dynamic mo-

tion segmentation proceeding as follows:

(i) Given a set of n points (possibly coming from more

than one object) labelled across NF frames, con-

sider the pairwise differences δr,s(k) = pr(k) −
ps(k) and compute the rank of the corresponding

Hankel matrix Hδr,s
.

(ii) Assign each point to the group corresponding to the

minimum value of rank[Hδ(i, j)].
Note that in principle, the algorithm above requires

noiseless data, since rank computations are very sensitive to

the presence of noise and outliers. As we show next, these

effects can be robustly handled by simply replacing “rank”

by the number of singular values below a certain thresh-

old related to the covariance of the measurement noise. To

show this, assume that the measurements are corrupted by

additive, zero mean, noise η(.), e.g., ŷ(k) = y(k)+η(k). In

this case, Hŷ = Hy + Hη, where Hη is the Hankel matrix

associated with the noise sequence η(.). Moreover, it can

be easily shown that, under ergodicity assumptions, HT
η Hη

is an estimate of the covariance matrix of the noise, Ση. It

follows that noisy measurements can be handled by simply

replacing rank(Hδ) by ni, the number of singular values

σi(Hδ) ≥ ση, where σ2
η is an upper bound of the variance

of the measurement noise. Finally, outliers are easily de-

tected by the proposed algorithms as points that are uncou-

pled (or weakly coupled) to every other point, that is points

where the rank of the relative Hankel matrix remains high

and relatively unchanged for every possible pair.

3.2. Hankel Matrix Based Motion Segmentation

Based on the considerations above, we propose the fol-

lowing motion-segmentation algorithm:

Algoritm: SEGMENTMOTION

Input. (i) W: the measurements matrix, where

wi
t =

[
ui

t

vi
t

]
is the ith point

position in the tth frame.

Np: number of features.

NF : number of frames.

(ii) σn: noise standard deviation.

Output. Γ: Sorted coupling matrix.

for all i �= j ∈ {1, · · · , Np} do

H ←

⎡
⎢⎢⎢⎢⎢⎣

d1 d2 · · · dNF
2

d2 d3 · · · ...
...

...
. . .

...

dNF
2

· · · · · · dNF

⎤
⎥⎥⎥⎥⎥⎦

where dt =
[

wi
t − wj

t

]
Compute H = UDVT using SVD.

Γij ← number of singular values ≥ σn .

end for
reorder Γ using the approach in [5]

If necessary, additional robustness can be achieved, at

the price of increased computational complexity, by consid-

ering triplets, rather than pairs, of points.

4. Experimental Results
In this section we illustrate the proposed method with

several examples involving both degenerate and non–

degenerate motion, and compare the results against those

obtained using currently existing methods. In all cases

except Example 1, the multi-frame point correspondences

where estimated by the Lucas-Kanade optical flow algo-

rithm [12], and the dynamic rank matrix obtained using our

algorithm was sorted using the approach suggested in [5].

Darker regions of the resulting matrix correspond to low

values of the rank of the corresponding Hankel matrix in-

dicating groups of points that can be jointly explained by a

simpler dynamic model. On the other hand, light regions

correspond to high complexity models, indicating features
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likely to belong to different objects.

Example 1: Simple Dependent Motions. Figure 3(a)

shows the results of applying the proposed segmentation

method to the airplane example discussed in section 1. As

shown in the figure, the proposed method achieves perfect

segmentation, even though the motion is degenerate. For

comparison, methods that rely solely on factorizations of

subspaces of W , fail to correctly segment the objects.

(a)

(b) (c)

(d) (e)
Figure 3. (a) All propellers move at the same speed. Right
wing propellers move counterclockwise, while left wing pro-
pellers move clockwise. (b) Dynamics based segmentation.
(c) Costeira-Kanade segmentation. (d) Zelnik-Manor-Irani
segmentation using six eigenvectors. (e) GPCA segmenta-
tion similarity matrix.

Example 2: Dependent Motion in Cluttered Scenes. In

this example we consider a more complex case: a person

walking in a cluttered environment. Note that the motion

is still degenerate, since different body parts share a com-

mon translation and some portion of the rotations. Figure

4(b) shows the results of applying the proposed algorithm.

The segmented block on the upper left corner of the ma-

trix corresponds to background features. These static fea-

tures share the simplest possible dynamic model, with rank

1. The slightly lighter area around the background labelled

region corresponds to features that almost share the back-

ground model for dynamics but need a slightly more com-

plex model. In this scene they correspond to features that

are improperly tracked due to interference from the fore-

ground object, and can be safely discarded. This illustrates

the ability of our method to exploit dynamical information

to identify outliers, by pointing out features that have some

association with some group but require higher complexity

models than the rest of the features there. Note that this pat-

tern also occurs within each of the labeled groups. Finally,

features that do not show strong coupling with any other

feature, i.e. columns of almost constant (high) order, can

also be considered outliers and discarded. This is the case

of some of the features between the first and second block

in figure 4(b).

Example 3: Dependent and Independent Motions in
Cluttered Scenes. In this case, the experimental data,

shown in Figure 5, consists of a video sequence of a box

with checkerboard pattern moving on a turntable, a ball

moving with a complex translational/rotational motion and

a cup moving with a translational motion on a cluttered en-

vironment. The features tracked in this sequence belong

only to the three different objects tracked and the back-

ground, there are no outliers. The tracking for most of the

features is accurate. Even though the distinct objects in this

sequence present widely different motion models, they all

share some component of their motion model. The box and

the background features do not present translational mo-

tion, the background and the cup do not present rotational

motion, and finally the ball presents a small translational

motion with respect to the rotational motion. As expected

the objects in this scene can not be segmented based on

the structure of the shape interaction matrix. GPCA cor-

rectly identifies some of the objects, but incorrectly groups

some background points together with the box and splits

the ball into two clusters. On the other hand, the proposed

dynamics–based approach yields the correct segmentation.

5. Conclusions
In this paper we propose a motion segmentation algo-

rithm based upon the idea of grouping points according to

the complexity of the model required to explain their rela-

tive motion. Intuitively, this formalizes the idea that points

on the same rigid share more modes of motion (for instance

a common translation or rotation) than points on different

objects, leading to less complex models. By exploiting re-

sults from systems theory, the problem of robustly estimat-

ing the complexity of the underlying model is reduced to

computing the rank of a Hankel matrix constructed from

the correspondence data. Contrary to the case when work-

ing directly with the measurements matrix W whose rank is

invariant under a column permutation, the rank of the Han-

kel matrix is a function of both geometric and temporal con-

straints. This ability to exploit both sets of constraints ren-

ders the proposed method less sensitive to the effect of noise

or outliers than approaches that rely solely on factorizations

of W . In addition, the method can also naturally handle “de-

generate cases”, e.g. cases where the objects partially share

motion modes. Note however that this additional robustness

comes at the price of increased computational complexity,

since the method requires computing N2
p SVDs (albeit of

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



(a) (b) (c)

(d) (e) (f)
Figure 4. (a) A person walking in a cluttered environment. (b) Dynamics based segmentation. (c) Costeira-Kanade segmen-
tation. (d) Zelnik-Manor-Irani segmentation using fifteen eigenvectors. (e) GPCA segmentation. (f) GPCA labelling.

(a) (b) (c)

(d) (e) (f)
Figure 5. (a) Several objects moving with differently in a cluttered environment. (b) Dynamics based segmentation. (c)
Costeira-Kanade segmentation. (d) Zelnik-Manor-Irani segmentation using fifteen eigenvectors. (e) GPCA segmentation
similarity matrix. (f) GPCA labelling.
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matrices considerably smaller than W). If necessary, this

computational complexity can be reduced by using a factor-

ization based approach to perform an initial segmentation

and then applying the proposed algorithm to each of the re-

sulting clusters.
Research is currently underway to extend the proposed

method to handle the case of missing correspondences.
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