
proeeedingr of the 40th IEEE 
C o d m n m  on Decision and Control 
Orlando, Florida USA, December 2001 FrPl3-5 

An Algorithm for Generating Transfer Functions Uniformly 
Distributed Over 'Ft, Balls 

Constantino M. Lagoa Mario Sznaier B. Ross Barmish 
Department of Electrical Engineering 

The Pennsylvania State University 
University Park, PA 16802 

EECS Department 
Case Westem Reserve University 

Cleveland, OH 44106 
e-mail: lagoa@engr.psu.edu. msznaier@frodo.ee.psu.edu e-mail: brbe@po.cwru.edu 

Abstract 

Probabilistic methods have recently been the subject 
of considerable attention in the context of robust per- 
formance assessment. However, in spite of their PO- 
tential, these methods have k e n  limited to the case of 
parametric uncertainty; the problem of sampling causal 
bounded operators is largely open. In this paper, we 
take steps towards removing this limitation by provid- 
ing a computationally efficient algorithm aimed at uni- 
form sampling over balls contained in suitably chosen 
proper subspaces of H-. As shown in the paper, sam- 
ples generated from these balls can be used, for instance 
by Monte Carlo methods, to assess robust performance 
for uncertainty models involving the H, norm. 

1 Introduction 

A large number of control problems of practical impor- 
tance can be reduced to the robust performance analysis 
framework illustrated in Figure 1. The family of sys- 
tems under consideration consists of the interconnec- 
tion of a known stable LTI plant with some bounded 
uncertainty A c D, and the goal is to compute the 
worst-case, with respect to 2). of the norm of the output 
to some class of exogenous disturbances. 

Depending on the choice of models for the input sig- 
nals and on the criteria used to assess performance, this 
prototype problem leads to different mathematical for- 
mulations such as H,, e', H 2  and em control. A com- 
mon feature to all these problems is that, with the no- 
table exception of the H, case, no tight performance 
bounds are available for systems with uncertainty A be- 
ing a causal bounded LTI operator'. Moreover, even in 
the H, case, the problem of computing a tight perfor- 

'Recently some tight bounds ham been proposed for the H 2  case. 
but these bounds do not take causality into account; see (191. 

W --I FY 
U 

Figure 1: The Robust Performance Analysis Problem 

mance bound is known to be NF-hard in the case of 
structured uncertainty, with more than two uncertainty 
blocks [7]. 

Given the difficulty of computing these bounds, over 
the past few years, considerable attention has been de- 
voted to the use of probabilistic methods. This ap- 
proach furnishes, rather than worst case bounds, risk- 
adjusted bounds; i.e., bounds for which the probability 
of performance violation is no larger than a prescribed 
risk level e. An appealing feature of this approach is 
that, contrary to the worst-case approach case, here, the 
computational burden grows moderately with the size 
of the problem. Moreover, in many cases, worst-case 
bounds can be tao conservative, in the sense that perfor- 
mance can be substantially improved by allowing for a 
small level of performance violation. The application of 
Monte Carlo methods to the analysis of control systems 
was recently in the work by Stengel, Ray and Mami- 
son in [18,21,231 and was followed, among others, by 
[3, 4, 8, 9, 15, 24, 26, 291. The design of controllers 
under risk specifications is also considered in some of 
the work above as well as in [5, 10, 17,25.27]. 

At the present time the domain of applicability of 
Monte Carlo techniques is largely restricted to the 
finite-dimensional parametric uncertainty case. The 
main reason for this limitation resides in the fact that up 
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to now, the problem of sampling causal bounded oper- 
ators (rather than vectors or matrices) has not appeared 
in the systems literature. In this paper, we provide an 
algorithm aimed at removing this limitation when the 
set 'D consists of balls in U,. The main idea of the 
paper is based on the fact that in this case, performance 
can be computed by considering sequences of balls con- 
tained in suitable subspaces of U,'. By relying on ma- 
trix dilation and Caratheodory-Fejtr interpolation, we 
replace the problem of generating operators uniformly 
distributed over the unit balls of interest to that of gener- 
ating finite-dimensional vectors uniformly distributed 
over a convex set. In principle, reduction to sampling 
over convex sets is still an hard problem and many of 
the solution methods available require designing a ran- 
dom walk whose stationary distribution is the required 
one [ I ] ,  121. In this paper, we provide an alternative 
approach that reduces the problem of uniform sample 
generation over a convex set to the generation of a se- 
quence of uniform samples over intervals. As shown in 
the sequel, for the classes of problems addressed in this 
paper, this leads to a computationally efficient sampling 
algorithm. 

2 Preliminaries 

2.1 Notation: By C,, we denote the Lebesgue 
space of complex-valued matrix functions essentially 
bounded on the unit circle, equipped with the norm 
llG(z)Ilm = esssup,+,??(G(z)), where repre- 
sents the largest singular value. By H,, we denote 
the subspace of functions in C, with bounded ana- 
lytic continuation inside the unit disk, equipped with 
the norm IIG(z)llrn A esssupi,l,liJ(G(r)). Alsoof 
interest is the space Hm,p of transfer matrices in U ,  
which have analytic continuation inside the disk of ra- 
dius p > 1, equipped with the norm /~G ' (Z)~~, ,~  = 
s ~ p ~ ~ ~ < ~ i ? ( G ( r ) ) .  Finally, we use 23 and R to de- 
note unit balls and subspaces composed of real rational 
transfer matrices. respectively. 

Given a matrix M ,  the notation MT and M' is used 
for the transpose and Hermitian conjugate respectively. 
As usual M > 0 ( M  2 0) indicates that M is positive 
definite (positive semi-definite), and M < 0 that M is 
negative definite. Given two transfer function matrices 
M and A of compatible dimensions, we denote by M* 
A the upper LFT .Fu(A4, A); i.e., it denotes the closed 
loop transfer function matrix of the system depicted in 

~ 

'%ere balls are also interesting in their own right. since they al- 
low for incorporaung Smoothness constraints in the uncertainty de- 
scription. 

Figure 1; i.e., 

M * A  ~ M ~ 2 + M Z l A ( i - M l l A ) - 1 M 1 2  

where 

M =  [*I 
is the adequate partitioning of the transfer function ma- 
trix M. Finally, we let 1.1 denote the largest integer 
smaller or equal to x. 

2.2 Statement of the Problem: The use of Monte 
Carlo methods for risk assessment and volume estima- 
tion has been widely studied in the probability litera- 
ture; e.g., see [22, 131 and references therein. However, 
these methods rely on the ability to generate samples 
of a random variable with the appropriate distribution. 
Hence, if one wants to apply Monte Carlo methods for 
risk assessment in the presence of dynamic uncertainty, 
a problem of the form below is to be solved; 

Problem 1 Given some set 'D c 71,. generate uni- 
formly distributed transferfunctions F ( z )  E 'D. 

A fundamental difficulty with this formulation is that 
since OH, i s  infinite dimensional, it is unclear what 
is meant by "uniformly distributed." To circumvent 
this difficulty, in this paper we consider a slightly dif- 
ferent problem: generating uniformly distributed finite 
impulse response (FIR) filters F ( r )  that can be com- 
pleted to belong to OH-. Specifically, the problem un- 
der consideration is: 

Problem 2 Given n, generate uniformly distributed 
samples over some appropriate finite-dimensional rep- 
resentarion of the set: 

~ " = { H ( r ) = h , + h l z +  ... h,_it"-': 
H ( r )  + t"G(z)  E OH,, for some G ( t )  E H,} 

As shown in the sequel, solving Problem 2 indirectly 
addresses Problem I ,  in the sense that the solution to the 
latter can be used as a surrogate solution to the former. 

3 MainResults 

3.1 Reduction to Sampling Over Convex 
SetsFrom the Carathhdory-FejCr Theorem 
(for example, see [2]), it follows that given 
h = [hn, hl, hz, . . . , h,-l], the corresponding H ( z )  
belongs to .Fn if and only if ??[H(h)] 5 1, where 

H(h) = 



Thus, a natural representation for .En in Problem 2 is 
the set 

This leads to the problem below. 

Problem 3 Given n > 0, generate uniform samples 
overfheconvexsetCsn = {h:  F ( H ( h ) ]  5 l}. 

In the section below, an algorithm for generating uni- 
form samples over an arbitrary finite-jimensional com- 
pact convex set is given and we solve Problem 3 as a 
special case. 

3.2 Uniform Samples Over Convex Sets: Let 
C c R" denote an arbitrary convex set and consider 
the following algorithm: 

Algorithm 1 1. Let k = 0. Generate N samples 
uniformly distributed over the interval [ml, M I ] ,  
where 

CF- {h : Ti[H(h)] 5 1). 

mo = 

MO = 

min{ho : (ho, h,, . . . , h,-l) E C 
forsome ( h ~ ,  . . . , hn-l) E R"-'} 
max{ho : (hO,h,,. . . ,hn-l) E C 
forsome ( h l , .  .. ,hn-1) ER"-'} 

2. Let k = k + 1. For every generated sam- 
ple (hb,h:, . . . ,hi-l), generate LN(ML -mL)J 
samples uniformly over the interval [m;, M;] 
where 

m: = 

Mk = 

min{hr : ( h i , .  . . , h:-l, hk, .  . . , h n - l )  E C 

max{hr, : (hb,.  . . , t ~ - ~ ,  hk,.  . . , hn- l )  E C 
forsome(hk+l, . . . ,  h,-l) ER"-'-' 1 

forsome(hr+l, ..., h,-l)  ER"-'-* 1 

3. If k < n go to step 2. Else stop. 

Theorem 1 as N + CO, the pmbability distribution of 
the samples generated by Algorithm I above converges 
with probability one to a uniform distribution. 

Proof: Due to constraints on the length of the paper, 
the proof is not provided. To obtain it, please contact 
the first author. His email address is given in the first 
page. 

3.3 Remarks: The main reason which prevents the 
algorithm above from producing truly uniformly dis- 
tributed samples is the fact that, at step s, 

where 

L ( Y l , ~ ~ ~ > Y s - l )  e 
m={z, : (YI, . . . , ~ ~ - 1 ,  I,, z.+I.. . . , zn) E C 

- min{z, : (YI,  . . . , y3-1,z,, z.+I,. . . , zn) E C 
for some (z.+~,. . . ,zn) E R"-"} 

for some (z.+l,. . . ,zn) E Rn-*} 

for s = 1,2,. . . , n. The difference between these val- 
ues can be made very small even for relatively small 
values of N .  Furthermore, it is noted that the main dif- 
ference between "traditional" Monte Carlo sample gen- 
eration and the algorithm provided in this paper is as 
follows: In Algorithm 1, several optimization problems 
have to be solved to compute the samples. However, as 
seen in the next section, this is facilitated by a closed 
form solution for these optimizations. Therefore. the 
computational burden required to compute reliable esti- 
mates of risk is similar to the one in "traditional" Monte 
Carlo simulations. For bounds on the number of sam- 
ples required for reliable estimation of risk, see [ 151 
and [24]. 

3.4 BH, as a Simpler Case: For the case of a 
general convex set C, Algorithm I requires solving 
on the order of 2" convex optimization problems. 
However, as shown in the sequel, for sets of the 
form C = {h: a[H(h] 5 l} these optimization prob- 
lems can be solved in closed form. Since these are pre- 
cisely the sets arising in the context of Problem 2. it fol- 
lows that this problem can be efficiently solved by ap- 
plying Algorithm 1. To obtain the desired closed form 
solution, we consider the problem 

min{hk : T[H(h: ,  h:, . . . , hi-l, h k ,  he+l , .  . . , h,)] 5 1 

for some (hk+l,. . . , h,) E R"-k}. 

where h i ,  hk, . . . , are given. Indeed, with 
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from Parrott's Theorem (e.g.. see [28]), it follows that 

This i s  a consequence of the fact that the ma- 
trix H(h l ,hz , .  . . , h,) is symmetric. Applying the 
same reasoning k - 2 times, we obtain 

Therefore, minimizing (maximizing) hk over the set 

{hk : F [ ~ (  h ~ , h ~ , . , , , h ~ -  i , h k , h k + i , . . . , h " ) ]  5 1 
for some ( h k + l , .  . . , h,) E Rn-k} 

is equivalent to minimizing (maximizing) hk over the 
set 

Note that characterizing all the hk that belong to the 
set above is precisely the matrix dilation problem ad- 
dressed in Parrott's Theorem. Hence, all feasible hk 
are of the form 

hk 1 -YHfYT + ( 1  - YYT)w;  /U11 5 1 

H i  
Y = [ h ~ l  . . . hz hi] ( I  - ( H ' ) * H L ) - $  

where 
H[(O, hi,. . . , h k - z ) ]  

Now, by computing the maximum and minimum hl; 
over the allowable values of /wI 5 1 ,  it follows that the 
values mk, h f k  required by Algorithm 1 are explicitly 
given by: 

mk = - Y H f Y T - I ( l - Y Y T ) l  
Mk = -YHiYT + l(l - YYT)( .  

In this 

4 Approximately Sampling of B'H, 

section, we indicate how a solution of Prob- , ,  

lem 2 serves for Problem 1. Begin by noting that the 
Carathtodory-Fejtr Theorem (for example. see [ 2 ] )  
only specifies the values of the function and its first 

n - 1 derivatives at z = 0. However, these condi- 
tions do not impose any constraints on the smoothness 
of the function over the unit disk and can lead to trans- 
fer functions which do not represent a physical uncer- 
tainty. For example, h = [o 0 . . . 0 e] has 
all the hi, i 5 n - 1 arbitrarily small and satisfies the 
requirements of Carathtodory-Fe@ Theorem. More- 
over, it can be easily shown that a suitable interpolant is 
given by 

E 
H ( z )  = 

l + E - z " '  
Clearly, H ( z )  E BH,. Since l/$H(z)lI = 2 + a?, 
these functions are arguably not a good abstraction 
of physical uncertainty. estimating worst-case perfor- 
mance bounds using samples from the set Fn can lead 
to conservative results. This effect can be avoided by 
working with the ball OH,,,, instead of Mi,, since 
restricting all the poles of the system to the exterior of 
the disk IzI 2 p induces a smoothness constraint. This 
leads to the following modified version of Problem 2: 

Problem 4 Given n > 0 and p > 1, (I - 1, gener- 
ate uniformly distributed samples over an appmpriare 
jinire-dimensional representation of rke ser 

Fn,p { H ( z )  1 h, + / L I Z + .  . . h,-lz"-': H ( z )  
+z"G(z) t OH,,,, for some G(z )  E 

As shown below, this problem readily reduces to Prob- 
lem 3 and thus can be solved using Algorithm 1. 
To this end, note that F ( z )  E BH,,p is equiva- 
lent to F ( $ )  E OH,. Combining this observation 
with Caratheodory-Fejtr Theorem, it follows that given 
h = [ho hl . . . h,_l], then there exists G ( z )  E 
OH,,, such that biz< + r"G(z) E O'H,,, if 
and only i fF[H(h)]  5 1 where 

Hence, Problem 4 reduces to Problem 3 simply with the 
change of variables hk -, 3. 
Next, we show that the norm of the tail Ilz"G(z)1/, 
tends to zero as n + W. Thus, sampling the set Fn,p 
approximates sampling the ball B'H,+,. To establish 
this result, note that if F E DH,,,, then its Markov 
parameters satisfy 

where D, denotes the disk centered at the origin with 
radius p. Thus 
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From this inequality it follows that 
IIF(z) - H(z)llm 5 t for n 2 some nJt) that 
can be precomputed a priori. 

Finally, we conclude this section by showing that the 
proposed algorithm can also be used to assess perfor- 
mance against uncertainty in m. Consider a se- 
quence pi 1 1 and let A, be the corresponding worst- 
case uncertainty. Recall (see for instance Corollary B.5 
in [ 191) that robust stability of the LFT interconnection 
shown in Figure I implies that (I - M,,A)-’  is uni- 
formly bounded over UH,. In turn, this implies that 
there exists some finite p such that IJM * All, 5 p for 
all A E U%,. Since UH,,, c 571,. it follows that 
both A, and M * A; are normal families. Thus, they 
contain a normally convergent subsequence A; A 
and M * Ai + M * A. It can be easily shown that 
A is indeed the worst case uncertainty over m. 
Thus, robust performance can be assessed by applying 
the proposed algorithm to a sequence of problems with 
decreasing values of p .  

5 Conclusions 

During the past two decades, considerable attention has 
been devoted to the problem of assessing robust per- 
formance of the interconnection shown in Figure 1. 
However, in spite of intense research, very few tight 
worst-case bounds are available. Moreover, even in 
cases where the problem has been solved (such as H-), 
computing these bounds leads to NP-hard problem, in 
all but the simplest cases. Probabilistic methods have 
the potential to address both the issue of the conser- 
vatism of worst-case bounds and the associated com- 
putational complexity problem. However, up to the 
present time, application of these methods has been 
limited to the case of finitedimensional parametric un- 
certainty, largely due to the unavailability of methods 
for generating samples from sets of bounded causal op- 
erators. 

In this paper, this limitation is addressed by proposing 
a compulationally efficient algorithm for approximately 
sampling balls of the form UH,+,. Samples generated 
with the proposed algorithm can be used to assess, up 
to an arbitrary precision c, robust performance against 
dynamic uncertainty A E UH,>,. Moreover, by con- 
sidering the sequence of problems obtained as p + 1, 
the method can be also applied to uncertainty in UH,, 
in cases where it is known that the problem can be re- 
stricted to RBH,. An example is assessing worst- 
case H, performance in the presence of structured un- 
certainty with an arbitrary number of blocks. 

- 
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