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Abstract 

The focal point of this paper is the Probabilistically Con- 
strained Linear Program (PCLP) and how it can be applied 
to control system design under risk constraints. The PCLP 
is the counterpart of the classical linear program, where it is 
assumed that there is random uncertainty in the constraints 
and, therefore, the deterministic constraints are replaced by 
probabilistic ones. It is shown that for a wide class of dis- 
tributions, called log-concave symmetric distributions; the 
PCLP is a convex program. A deterministic equivalent of 
the PCLP is presented which provides insight on numerical 
implementation. Finally, this concept is applied to control 
system design. It is shown how the PCLP can be applied to 
the design of controllers for discrete-time systems to obtain 
a closed loop system with a well-defined risk of violating 
the so-called property of super stability. Furthermore, we 
address the problem of risk-adjusted pole placement. 

1 Introduction 

Recently $ere has been a growing interest in the develop- 
ment of control system design procedures which are able to 
handle risk constraints. The main motivation for consider- 
ing this problem is that "classical" robust controllers tend 
to be complex; i.e., often "classical" controller design al- 
gorithms produce high order controllers. The hope is that, 
if one is willing to tolerate a small well-defined risk of vi- 
olation of performance specifications, one would obtain a 
significantly less complex controller. Also, there are several 
problems which naturally lead to a formulation involving 
risk constraints. An example is emergency system opera- 
tion. Here one would like to be able to allow for a small 
well-defined risk of violation of stability in exchange for 
a better chance of handling the emergency situation. For 
example, in the control of an aircraft, one may want to 
have more power available to avoid a collision, although this 
might lead to a small risk of engine failure. For situations 
like this, a different kind of controller should be designed. 
It should be a controller that maximizes performance at the 
expense of a small well-defined risk of instability. 

+Funding for this research was provided by the National Science 
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The problem of designing risk-adjusted controllers has been 
considered in several papers; e.g., see 111, [21, 131 and [41. 
However, there is a fundamental difference between the 
work mentioned above and the results presented in this pa- 
per. In contrast to the work presented in the papers men- 
tioned above, where the search for the controller parame- 
ters is done using randomized algorithms, this paper is in- 
tegrated in a new line of research which aims at develop- 
ing fast deterministic algorithms for risk-adjusted controller 
design. The work presented in [SI, [6] and [7] indicates 
that there are several risk-adjusted controller design prob- 
lems which are convex and, hence, numerically solvable. In 
this paper, we extend the class of risk-adjusted design prob- 
lems which are known to be convex. More precisely, we 
extend the results in [7l and show how they can be used 
in a systems design context. The main paradigm underly- 
ing the results presented is the concept of Probabilistically 
Constrained Linear Program. 

1.1 Probabilistically Constrained Linear Program: The 
main result of this paper concerns the convexity of the 
so-called Probabilistically Constrained Linear Program 
(PCLP). We show that, for a large class of probability dis- 
tributions, the probabilistic version of the classical linear 
program is convex. Furthermore, we show how it can be 
applied in a controller design context. The class of dis- 
tributions that is considered in this paper is the class of 
log-concave symmetric distributions which include many of 
the "typical" distributions used to date in the area of proba- 
bilistic robustness such as uniform and normal distributions. 

. 

Indeed, consider the "classical" linear program described by 

mincTx 

subject to 

where c,x,a' E R' and bi € R, i = 1,2,.. . ,k. In the PCLP 
framework, the constraint vectors ai and b above are treated 
as random and the deterministic constraints are replaced by 
probabilistic constraints. There are a number of versions of 
the PCLP problem and the one that is used in this paper is 
the same that is used in [7]. 
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1.2 PCLP: Given acceptable risk levels 0 5 ~i 5 1, 
i =  1,2 ,..., k, find 

mincTx 

subject to 

Prob{xTai 5 bi} 2 1 - ~ i ;  i =  1,2, ..., k 

where c,  x E Re and ai , b are random vectors of appropriate 
dimensions. 

1.3 Convexity of the Feasible Set: A fundamental ques- 
tion about the PCLP is the following: Is the PCLP a convex 
program? In other words, is the feasible set 

& h {xe  Re : Prob{xTai 5 bi} 2 1 - & i , i =  1, ..., k }  

convex? It turns out that, without additional conditions on 
the distribution of the pair (ai, bi), one can easily generate 
examples where the answer is “no.” 

In this paper, we prove that the PCLP is a convex pro- 
gram when the distribution of the random parameters is 
log-concave and symmetric; see Section 2 for a precise 
definition of this class of distributions. Convexity results 
are available for other kinds of distributions: In [13], it is 
proven that & is convex when 0 5 ~i 5 1/2 and bi and 
the components of the ai are independent and normally dis- 
tributed. This result was later extended for the case when ui 
and bi have stable distributions; e.g., see [14]. Finally, the 
work in [7] shows that, for 0 5 ~i 5 1 /2, the PCLP is convex 
if the uncertain parameters are uniformly distributed over a 
convex symmetric set. In this paper we extend the results 
in [7]. We prove that for a large class of distributions (which 
includes uniform distributions over convex symmetric sets), 
the PCLP is a convex program. Also, we show how to apply 
it in a controller design context. 

1.4 The Sequel: Section 2 is dedicated to the definition of 
the class of admissible distributions for the uncertain param- 
eters: log-concave symmetric distributions. The main result 
of this paper is presented in Section 3 which states that the 
PCLP is a convex program. In Section 4, we provide some 
insights on a numerical implementation of the PCLP. Sec- 
tion 5 is dedicated to the application of the results in this 
paper in the context of control system design. Finally, in 
Section 6, some concluding remarks are presented and sev- 
eral directions for further research are outlined. 

2.1 Log-concave Functions and Probability Densities: A 
function f : Re + [0, -) is said to be log-concave if the fol- 
lowing condition holds: Given anyxo,x’ E R! and h E [0,1], 

In the sequel, let !F denote the class of log-concave symmet- 
ric probability density functions. Without loss of generality, 
one can assume that the center of symmetry is the origin; 
i.e., iff E F then for any x E Re, we have f ( x )  = f ( - x ) .  
Throughout this paper, we assume that the probability den- 
sity function f of the vector of uncertain parameters is 
log-concave and symmetric; i.e., f E F. It is important to 
note that the class 3- is quite rich. Most “common” prob- 
ability density functions (such as uniform or normal) are 
readily shown to be log-concave and symmetric. Hence, 
the main result to follow applies to typical density functions 
used in the probabilistic robustness literature to date. 

3 Convexity of the PCLP 

In this section, we present the main result of this paper. The- 
orem 3.1 to follow indicates that, if the distribution of the 
uncertain parameters is log-concave and symmetric and for 
risk levels satisfying 0 5 &i 5 1/2, the PCLP is a convex 
program. Although the result below only involves the con- 
vexity of a PCLP with one constraint, the extension to the 
case with an arbitrary number of constraints is immediate. 
This extension is a consequence of the fact that an intersec- 
tion of convex sets is still convex. Throughout this paper, 
we write ui = ab + Aai;i = 1,2,. . . , k and b = bo +Ab and 
assume that the pair (Ad, Abi) has a log-concave symmetric 
distribution function. For simplicity, it is assumed that the 
vector b is deterministic; i.e., b = bo. However, it is noted 
that the formulation and the results presented can be easily 
generalized for the case when b is random. 

3.1 Theorem: Let uo E Re, b E R and the risk level 
0 5 E 5 1/2 be given. Also, let the random vector Au have 
a log-concave symmetric distribution. Then, the set 

is convex. 

Proof: See Appendix. 

4 Deterministic Equivalent of the PCLP 
2 Preliminaries: Log-concavity 

In order to communicate the main result, we need to elab- 
orate on what probability density functions are admissible 
for the uncertain parameters. To this end, we require a defi- 
nition of log-concave functions; see [15]. 

The result in the previous section indicates that the PCLP is 
a convex program. However, it does not provide any indica- 
tion on how to solve the resulting optimization problem. In 
this section, we present the concept of $oaring body which 
provides some insights on how one can solve the PCLP. 
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4.1 Floating Body: Central to the results presented in this 
paper is the concept of floating body of a probability mea- 
sure. Given 0 < & < 1/2, the floating body Ke of a probabil- 
ity distribution is a convex symmetric set for which each 
supporting hyper-plane "cuts-off" a set of probability E. 
More precisely, given 0 < E < 1/2 and U E R', llull2 = 1, 
let H(u,E)  be the supporting hyper-plane of & normal to U. 
Also, let H+(u,E) be the half-space defined by H(u,&)  
which does not contain the origin. Then, KE is a floating 
body of the given probability measure if 

Prob(@(u,&)) = E .  

for all Ilull;? = 1. Not every probability measure has a float- 
ing body. However, the results in [8] indicate that every 
probability distribution in the class f E does have a float- 
ing body Ke for any 0 < & < 112. 

4.2 Additional Notation: Let 11 . ( 1  be a norm in R'. We 
define the dual norm as 

Now, recalling that the probability distribution of Aa is 
log-concave and symmetric, define the norm associated 
with its floating body KE as 

IIAallE = inf { p E R+ : Aa E p&} 

and let 11 . l lE, .  denote its dual norm as defined above. 

4.3 Deterrninistic Equivalent of the PCLP Since 

{ A a E R ' : z ( a o + A a ) < b }  

is an half-space, the definition of the floating body presented 
in Section 4.1 indicates that requiring 

Prob{xT(ao +Au) 5 b}  2 1 - E 

for 0 < E < 1 /2 is equivalent to requiring 

X T ( a o + A a )  Ib 
for all Aa E &, where KE is the floating body of the prob- 
ability distribution of Aa as defined in Section 4.1. Now, 
given the definition of dual norm above, this is equivalent to 

Therefore, the probabilistic constraints of the PCLP can be 
replaced by deterministic ones of the form above. Hence, if 
the quantity IlnllE,+ can be easily determined, this leads to an 
immediate numerical implementation for solving the PCLP. 

4.4 Elliptical Log-concave Distributions: It turns out that 
there are cases where I]xllE,* is easily determined. An ex- 
ample is the case where the probability distribution of the 

uncertain parameters is an elliptical log-concave distribu- 
tion. An elliptical log-concave distribution is a distribution 
whose probability density function is of the form 

f ( Y )  = g(YTWy) 

where g : %+ + &+ is a log-concave non-increasing func- 
tion and W is a positive definite matrix. Examples of such 
distributions are multivariable normal distributions and uni- 
form distributions over hyper-spheres. For such probability 
distributions it is easy to prove that the convex floating body 
is an ellipsoid with the same aspect ratio as the ellipsoid 
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!E = { A ~ E  R' : AaTWAa 5 1). 

The actual "radius" of the ellipsoid KE can be determined 
analytically for some probability distributions. If one can- 
not determine this radius analytically, an easy one line 
search optimization problem can be setup to numerically 
obtain this value. Therefore, for such probability distribu- 
tions, the PCLP reduces to a convex quadratic optimization 
problem. More precisely, consider an elliptical log-concave 
probability density function of the form above. Then, for 
any 0 < E < 112, the floating body KE is of the form 

KE = {Aa E R' : AaTWAa 5 p(E)} 
for some r(&) > 0. It can be easily shown that requiring 

for all Aa E & is equivalent to requiring 

Ilr(~)W-*/~xl l2  5 b -xT@ 

which is a convex quadratic constraint on x. 

5 Application to Control Systems Design 

We now show how the PCLP can be used in the context of 
controller design. First, we apply the PCLP to the design of 
super stable systems. A second example shows how the the- 
ory in this paper can be applied to robust pole assignment. 

5.1 Super Stability: In contrast to the concept of stability, 
where only asymptotic behavior is considered, super sta- 
bility allows for computing the worst-case value of the L" 
norm of the output due to e" bounded disturbances and ini- 
tial conditions. It also provides an upper bound on the L" in- 
duced norm of the system (which is exact for FIR systems). 
We now briefly review some of the properties of super stable 
systems; see [9] and [lo] for proofs and additional proper- 
ties. Consider a discrete-time linear time invariant system 

Y(4) = G(q)w(q), G(q)  = b(q)/(l + a ( q ) )  

where w are exogenous disturbances, y is the output, q is the 
delay operator: qx[k] = x[k - 11 and where the polynomial 
a(q)  does not have a constant term, i.e. 

- a(q) = a 1 q + a 2 4 2 + - - - + a , f ; -  



Defining llalll= cy=1 lai(, a system is said to be super stable 
if 11a111 < 1. Moreover, in [9], it is shown that in this case 
the P' induced norm of the system is bounded by 

This property was exploited in [9] to synthesize low order e' 
controllers. Synthesizing a controller such that the e' norm 
of the closed-loop system is less or equal than a given p 
reduces to finding the parameters of the controller transfer 
function such that 

Pl l~ci l l l  + Ilncllll 5 P. 

where dcI and n,l are the coefficients of the denominator 
and numerator of the closed loop transfer function. This 
problem can be easily recast in an LP format. Moreover, as 
noted in [9], this approach can also address the problem of 
fragility exhibited by some optimal control design methods 
[ll]. Assume that the plant is subject to parametric uncer- 
tainty of the form 

where bo,i and ao,i are the nominal values of the coefficients 
and Abi and Aai represent the uncertainty. Also, consider a 
controller of the form' 

In this case robust performance is achieved if 

holds for all admissible values of the uncertainty, a prob- 
lem that can be easily recast as finding a feasible point of a 
set of linear inequalities on the coefficients of the controller. 
However, there is a major difference between the nominal 
and robust performance case: while it can be shown that 
the former always admits a solution if the controller order 
is chosen to be at least equal to the order of the plant, the 
later may not have a solution even for high order controllers. 
On the other hand, as we illustrate next with a simple ex- 
ample, it might be possible to find low order risk-adjusted 
controllers, even for very small values of E, the probability 
of violating the constraints. These controllers can be found 
by solving the risk-adjusted counterpart of the LP problem 
described in [9], which is easily seen to be a PCLP. 

. 5.2 Numerical Example: We now consider the example 
in [9]. The discrete time system presented has nominal 
transfer function 

n(q) q - 2.5q2 + 1.501q3 
P ( q )  = - = 

d(q) 1 - 2.7q + 23.5q2- 4.6q3 
'For notational simplicity, here we assume that the controller is not 

subject to uncertaiuty, but the proposed procedure can be easily modified 
to take controller uncertainty into account. 

and we assume that all coefficients are subject to uncer- 
tainty. Moreover, we assume that the uncertainty vector is 
uniformly distributed on a hyper-sphere with radius 0.05. 
We assume that the controller has the form 

We first tried to design a controller that will results in a ro- 
bustly super stable closed loop system. We tried controllers 
up until order m, = n, = 6 and were not able to find one. 
Then we allowed for a risk of E = 1.25 x We were 
then able to find the following risk-adjusted controller 

4.5819 - 17.7802q- 1.0245q2+0.8795q3 
c(q) = 1 - 1.8819q+0.6538q2+0.287q3 

which has order 3. Having this results, a Monte Carlo simu- 
lation was performed to compute the risk of violating super 
stability (recall that E is the risk of violating each inequal- 
ity). The number of samples used was lo7 and the estimated 
probability of violating super stability obtained is 0.78%, 
showing that one can obtain a low order controller even for 
small risk levels. 

5.3 Robust Pole Assignment: We now describe how one 
can apply the results in this paper to the problem of robust 
pole assignment. We start with a continuous uncertain open 
loop plant described by the following transfer function 

G(s) = 

where b0,i and ao,i are the nominal values of the coefficients 
of the numerator and denominator respectively and Abi 
and Aai represent the uncertainty. Now, since uncertainty 
is present, one cannot determine a controller that will as- 
sign the closed loop poles to a specific location. As in [12], 
one instead aims at designing a controller such that the the 
closed loop poles lead to the satisfaction of the desired spec- 
ifications. In other words, each of the coefficients of the 
closed loop characteristic polynomial should belong to a 
given interval. More precisely, given a controller of the form 

(bO,o+Abo) + (bo,] + A ~ ) s + * * * +  (bO,m+Ahn)p 
(W,O + Aw) + ( ~ O J  + b l ) ~  + . . . + (@,n + b n ) @  

bcp + hc,ls + . . . + bc,mp+ 
Gc(s) = a,$ + a,,1s + . . . + uc,ncSnc 

one aims at finding the coefficients of the controller such 
that the closed loop characteristic polynomial belongs to the 
family of polynomials 

for all admissible uncertainty values, where nc[ = n, + n 
is the degree of the closedLloop characteristic polynomial. 
Therefore, the search for the coefficients of the controller re- 
duces to finding a feasible solution to a set of h e a r  inequal- 
ities to be satisfied for all admissible values of Aao , . . . , Aan 
and Abo, . . . ,Ab,. For most common types of uncertainties, 
the problem above is easily proven to be convex. However, 
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5.4 Numerical Example: The example presented here is a 
modification of one of the examples in [12]. Consider an 
uncertain plant with transfer function 

where the uncertain parameter vector is uniformly dis- 
tributed over the hyper-sphere of radius 0.25. We now aim 
at designing a controller such that the closed loop polyno- 
mial belongs to the family 

AT(s) = S* + [ 1,3]~ + [l, 31. 

Therefore, the controller transfer function is constant 
. G,(s) = bo. We tried to find a robust controller for the sys- 

tem above. In this case, this was not possible. Then, a risk 
of E = 0.02 was allowed in the PCLP version of the problem 
above. In this case a risk-adjusted constant controller exists 
and has the form G&) = 1.555. The pole cluster distribu- 
tions of the desired system and the actual closed loop sys- 
tem are shown in Figure 1. A Monte Carlo simulation was 
performed to estimate the actual risk of violating the spec- 
ifications. The estimated value of the risk is approximately 
3.6%, showing that, even for low risk values, one can obtain 
risk-adjusted controllers in cases where a robust controller 
does not exist. Furthermore, in this case, we obtain robust 
stability as an added benefit; see Figure 1. 

6 Conclusions and Further Research 

In this paper, we extend the results in [7] and show that the 
probabilistically constrained linear program is a convex op- 

Figure 1: Desired pole location "0" and actual one "+". 

the designing of a robust controller can result in controllers 
which are complex. Therefore, we take a risk-adjusted point 
of view; i.e., insted of requiring that each inequality is sat- 
isfid for all admissible values of the uncertain parameters, 
we require that the risk of violating each of the inequalities 
is less than or equal to a prescribed risk level E. In other 
words, we solve a PCLP version of the problem above. 
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timization problem for any log-concave symmetric distribu- 
tion. Also, a deterministic equivalent was provided which 
can be easily implemented in the case of elliptical distri- 
butions, such as normal or uniform over an hyper-sphere. 
Finally, this result was applied in the systems design con- 
text, showing that, even for very low levels of risk, one can 
obtain controllers that are substantially less complex than 
their robust counterparts. 

The results in this paper suggest several directions for fur- 
ther research. First, the authors believe that effort should 
be put in the development of numerical tools for solving the 
PCLP when the distribution is other than elliptical. Also, 
it seems that the "ratio" between the complexity of a ro- 
bust controller and the complexity of the risk-adjusted con- 
troller increases with the dimension of the uncertainty vec- 
tor. Therefore, it would be of interest to quantify how does 
complexity depend on the uncertainty dimension. Finally, 
we note that results to date only deal with risk constraints. It 
would be of great interest to develop design procedures that 
would take into account both risk and robust constrets. 

7 Appendix: Proof of Theorem 3.1 

The proof is identical to @e one presented in [7] and it is 
presented here for the sake of completeness. For a given 
0 5 E 5 1 /2, note that proving the convexity of the set 

&= { x E  R' :Prob{xT(uo+Au) S b }  >_ 1 -E} . 

is equivalent to proving the quasi-concavity of the function 

q(x)  = F'rob{(nT(ao + Au) I b} 
on the set 

2) A {x  E R' : Prob{?(ao + Aa) 5 b}  2 1/2}. 

Hence given $,xl E D, we must prove that 

q((1 - h ) x o + h ' )  2 min{cp(xO),cp(x')} 

for all 0 5 h 5 1. Notice that the definition above only 
makes sense if the set D is convex. Proceeding by con- 
tradiction and assume that the set I, is not convex. Given 
the fact that cp(x) is continuous, non convexity of 2) im- 
plies the existence of p , ~ '  E R' and 0 < h < 1 such that 
q(xo)  = cp(x') = 1/2 and cp((1 -h)$+hl)  < 1/2. NOW, 
defining 

Qgood(X)={A~ER' : x T ( u o + h ) < b } ,  

the symmetry of the distribution of Au and the assumptions 
on xo, x' and h imply that 

0 E €!good(xo) n Qgoo&'); 0 f €!good( (1 - h)xo + h'). 
However, it can be easily shown that 

n Q g o d x ' )  C Qgood(1- A b o  + h'). 



This contradicts 0 4 ego&( ( 1 - h)xo + k’ ) . Therefore, the 
set I) is convex. We now proceed with the proof of quasi- 
concavity of p(x). Proceeding by contradiction, assume 
there exist 9 , x ’  E I) and 0 < h < 1 such that 

p((1 -h )xo+k’ )  < min{p(xo),p(x’)}. 

Without loss of generality, we assume that p(xo) 5 cp(x’) 
and recall that q(x)  is a continuous function ofx. Therefore, 
there exists a h < A* 5 1 such that 

p((l-h*)xO+h*x’)=cp(x’). 

Note that h* is strictly greater than h since we as- 
sumed that p(( 1 - h)~’  + k’) < p(~’). Letting yo = x’, 
y’ = (1  - h*)xo + hfx’ and C, = h/h*, we obtain 

( l -h)xO+k’=(l-~)y’+ry’  

Hence, we have 

Now, define yc = ( 1 - c)yo + b’ . Then 

Prob(Qgood(Yr)) < Pr0b@good(Yo)) = fiob(Qgood(Y’)). 

Let y = 1 - Prob(Qgo&(Y’)). Since yo E I), then 
0 5 y 5 1 /2. To establish quasi-concavity of q(x) for x E D 
we consider several cases. In the case of y = 0 or y = 1 /2, 
a contradiction is reached since the robust linear program 
(risk y = 0) is a convex program and the set I) is convex. 
For the intermediate case when 0 < y < 1 /2, since Aa has a 
log-concave symmetric distribution, Proposition 2 in [8] in- 
dicate that for this range of values of y, the floating body K, 
exists and is a convex symmetric set. Therefore, 

Kr Qgood (Yo) n Qgood (Y’ 1. 

Now, given that Qgood(Y’) n Qgood(Y’) 5 QgoodY‘). we 
have K, C Qgod (Y‘) . Recall that 

pr0b(Qgo&(Yc)) < 1 -’Y* fiob(Qiood(Yr)) > Y- 
However, given the definition of K,, we have 

Ky n Qiood 6”) f 0 

and we reach a contradiction. Since we reached a contra- 
diction in all of the cases above, we conclude that the func- 
tion p(x) is quasi-concave for all x E I). 
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