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PROBABILISTICALLY CONSTRAINED LINEAR PROGRAMS AND
RISK-ADJUSTED CONTROLLER DESIGN∗
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Abstract. The focal point of this paper is the probabilistically constrained linear program
(PCLP) and how it can be applied to control system design under risk constraints. The PCLP is the
counterpart of the classical linear program, where it is assumed that there is random uncertainty in
the constraints and, therefore, the deterministic constraints are replaced by probabilistic ones. It is
shown that for a wide class of probability density functions, called log-concave symmetric densities,
the PCLP is a convex program. An equivalent formulation of the PCLP is also presented which
provides insight into numerical implementation. This concept is applied to control system design. It
is shown how the results in this paper can be applied to the design of controllers for discrete-time
systems to obtain a closed loop system with a well-defined risk of violating the so-called property of
superstability. Furthermore, we address the problem of risk-adjusted pole placement.
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1. Introduction. Recently there has been a growing interest in the development
of control systems design procedures which are able to handle risk constraints. The
main motivation for considering this problem is that “classical” robust controllers tend
to be complex; i.e., often “classical” controller design algorithms produce high order
controllers. The hope is that, if one is willing to tolerate a small, well-defined risk of
violation of performance specifications, one would obtain a significantly less complex
controller. Also, there are several problems which naturally lead to a formulation
involving risk constraints. An example is emergency system operation. Here one
would like to allow for a small, well-defined risk of violation of stability in exchange
for a better chance of handling the emergency situation. For example, in the control of
an aircraft, one may want to have more power available to avoid a collision, although
this might lead to a small risk of engine failure. For situations like this, a different kind
of controller should be designed. It should be a controller that maximizes performance
at the expense of a very small, well-defined risk of instability. In other words, we relax
the conditions on stability in exchange for an improvement in performance.

The problem of designing risk-adjusted controllers has been considered in sev-
eral papers, e.g., see [1], [2], [3], and [4]. However, there is a fundamental difference
between the work mentioned above and the results presented in this paper. In con-
trast to the work presented in the papers mentioned above, where the search for the
controller parameters is done using randomized algorithms, this paper integrates a
new line of research which aims at developing fast deterministic algorithms for risk-
adjusted controller design. The work presented in [5] and [6] indicates that there are
several risk-adjusted controller design problems which are convex and, hence, numer-
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ically solvable. In this paper, we extend the class of risk-adjusted design problems
which are known to be convex. The main paradigm underlying the results presented
is the concept of the probabilistically constrained linear program.

1.1. Probabilistically constrained linear program. The main result of this
paper concerns the convexity of the so-called probabilistically constrained linear pro-
gram (PCLP). We show that, for a large class of probability distributions, the prob-
abilistic version of the classical linear program is convex. Furthermore, we show how
it can be applied in a controller design context.

Indeed, consider the “classical” linear program described by

min cTx

subject to

xTai ≤ bi; i = 1, 2, . . . , k,

where c, x, ai ∈ R�, and bi ∈ R, i = 1, 2, . . . , k.
In the PCLP framework, the constraint vectors ai and b above are treated as ran-

dom and the deterministic constraints are replaced by probabilistic constraints. There
are a number of versions of the PCLP problem and the one that is used throughout
this paper is described below.

Definition 1.1. Given acceptable risk levels 0 ≤ εi ≤ 1, i = 1, 2, . . . , k, the
PCLP is defined as the following optimization problem:

min cTx

subject to

Prob{xTai ≤ bi} ≥ 1 − εi; i = 1, 2, . . . , k,

where c, x ∈ R�, and ai, b are random vectors of appropriate dimensions.

1.2. Convexity of the feasible set. A fundamental question about the PCLP
is the following: Is the PCLP a convex program? In other words, is the feasible set

Xε
.
= {x ∈ R� : Prob{xTai ≤ bi} ≥ 1 − εi for i = 1, 2, . . . , k}

convex? It turns out that, without additional conditions on the distribution of the
pair (ai, bi), one can easily generate examples in which the answer to this question is
“no.”

In this paper, we prove that the PCLP is a convex program when the probability
density function of the random parameters is log-concave and symmetric; see section 2
for a precise definition of this class of distributions.

1.3. Why consider individual probability constraints? In the setup above,
one considers only individual probability constraints; i.e., one looks at the probability
of satisfaction of each of the constraints independently. In this paper, only this case is
considered since joint probability constraints result, in general, in a nonconvex feasible
set. As an example, consider the feasible set

X0.45
.
= {x ∈ R2 : Prob{xT [Δa1 Δa2] ≤ 0.15 and xT [0 Δa2] ≤ 0.15} ≥ 1 − 0.45},
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where Δa = [Δa1 Δa2]
T is uniformly distributed over the set

{Δa ∈ R2 : |Δa1| ≤ 1, |Δa2| ≤ 1}.

One can see that both x1 = [1 0]T and x2 = [0 1]T belong to the set X0.45. Now
consider

x3 =
1

2
x1 +

1

2
x2 = [0.5 0.5]T .

It can be proven that

Prob{(x3)T [Δa1 Δa2]
T ≤ 0.15 and (x3)T [0 Δa2] ≤ 0.15} = 0.525,

and hence x3 does not belong to X0.45. In other words, the set X0.45 is not convex.

1.4. Previous results. Convexity results are available for specific kinds of dis-
tributions. For example, in [15] it is proven that Xε is convex when 0 ≤ εi ≤ 1/2
and bi and the components of the ai are independent and normally distributed. This
result was later extended to the case when ai and bi have stable distributions, e.g.,
see [16]. The convexity of the PCLP has also been established for the case when ai

are deterministic and bi are random with a log-concave distribution; see [17]. Using
recent results from geometry, in this paper we extend these earlier results and prove
that, for a large class of joint distributions for ai and bi (which includes many of the
commonly used distributions), the PCLP is a convex program.

Several results are also available for PCLPs with joint probability constraints. It
has been shown that there are two instances in which the jointly constrained PCLP is
convex: (i) when the quantities ai are deterministic and the vector b has a log-concave
distribution (not necessarily symmetric) or a so-called α-concave distribution; and (ii)
when ai and the vector b have a joint Gaussian distribution with some restrictions
on the covariance matrix. Also, there are several results involving quasi-concave
constraint functions instead of the linear functions considered in this paper. For an
overview of such results see [17].

1.5. The sequel. Section 2 is dedicated to the definition of the class of admissi-
ble distributions for the uncertain parameters: log-concave symmetric distributions.
The main result of this paper is presented in section 3, which states that the PCLP
is a convex program. In section 4, we provide some insight into a numerical imple-
mentation of the PCLP. Section 5 is dedicated to the application of our results to
control system design. Finally, in section 6, some concluding remarks are presented
and several directions for further research are outlined.

2. Preliminaries: Log-concavity. In order to communicate the main result,
we need to elaborate on which probability density functions are admissible for the
vector of uncertain parameters. To this end, we require a definition of log-concave
functions, e.g., see [17]. In this section, we also introduce a concept that is central to
the results presented in this paper: floating body of a probability measure.

2.1. Log-concave functions and probability densities. A function f : R� →
[0,∞) is said to be log-concave if the following condition holds: Given any x0, x1 ∈ R�,
and λ ∈ [0, 1], it follows that

f((1 − λ)x0 + λx1) ≥ [f(x0)]1−λ[f(x1)]λ.
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In what follows, we let L denote the class of log-concave symmetric probability density
functions. Without loss of generality, one can assume that the center of symmetry is
the origin; i.e., if f ∈ L, then for any x ∈ R�, we have

f(x) = f(−x).

Throughout this paper we assume that the probability density function f of the vector
of uncertain parameters is log-concave and symmetric, i.e., f ∈ L.

2.2. Remarks. It is important to note that the class L of log-concave symmetric
density functions is quite rich. For example, most “common” probability density
functions used in the control field (such as uniform distribution over compact convex
symmetric sets or Gaussian) are readily shown to be log-concave and symmetric. In
other words, the main result to follow applies to typical density functions which have
appeared in the probabilistic robustness literature to date.

2.3. Floating body. Central to the results presented in this paper is the concept
of a floating body of a probability measure. This concept was first introduced by
Dupin [7] in the context of uniform distributions. Given a risk level 0 < ε < 1/2, the
floating body Kε of a probability distribution is a convex symmetric set for which
each supporting hyperplane “cuts off” a set of probability ε.

More precisely, let 0 < ε < 1/2 be given and consider a set Kε. For any direc-
tion u ∈ R�, ‖u‖2 = 1, let H(u) be the supporting hyperplane of Kε normal to u.
Also, let H+(u) be the half-space defined by H(u) which does not contain the origin.
Then, Kε is the floating body associated with ε of the given probability measure if,
given any direction ‖u‖2 = 1,

Prob(H+(u)) = ε.

Not every probability measure has a floating body. However, the results in [9] indicate
that every probability distribution with a probability density function belonging to the
class L does have a compact convex symmetric floating body Kε for any 0 < ε < 1/2.

2.4. Why consider only symmetric probability density functions? It
turns out that symmetry of the probability density function plays an important role
in the results to follow. In general, nonsymmetric probability density functions result
in a distribution that does not have a floating body. In other words, they result
in a PCLP which is not a convex program. As an example, consider uncertainty
Δa = [Δa1 Δa2]

T uniformly distributed over the set

{Δa ∈ R2 : Δa2
1 + Δa2

2 ≤ 1, Δa1 ≥ 0, Δa2 ≥ 0},

which has a nonsymmetric log-concave probability density function. Now, consider a
risk level ε = 0.45. One can easily see that for x1 = [1 0]T and x2 = [0 1]T , one has

Prob{(x1)TΔa ≤ 0.45} = Prob{(x2)TΔa ≤ 0.45} = 0.552 ≥ 1 − ε.

Moreover, if one takes

x3 =
1

2
x1 +

1

2
x2 = [0.5 0.5]T ,

we have

Prob{(x3)TΔa ≤ 0.45} = 0.5157.
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Now, let

Ai
.
= {Δa ∈ R2 : (xi)TΔa ≤ 0.45},

and, proceeding by contradiction, assume that the floating body K0.45 exists for this
probability distribution. From the results above, we have K0.45 ⊆ A1 and K0.45 ⊆ A2.
Hence,

K0.45 ⊆ A1 ∩ A2.

However, K0.45 � A3. This leads to a contradiction since A1 ∩ A2 ⊆ A3. Hence, the
floating body K0.45 does not exist for the distribution above.

2.5. Additional notation. Let ‖ · ‖ be a norm in R�. We define the dual norm
as

‖x‖∗
.
= max{xT y : ‖y‖ ≤ 1}.

Now, recalling that the probability density functions considered in this paper are log-
concave and symmetric, given a probability density function f ∈ L, let ‖ · ‖ε be the
Minkowski functional associated with its floating body Kε 
= ∅, i.e.,

‖x‖ε
.
= inf

{
ρ ∈ R+ :

1

ρ
x ∈ Kε

}
.

Note that the quantity above is a norm since the set Kε is compact, convex, and
symmetric. Furthermore, let ‖ · ‖ε,∗ denote its dual norm as defined above.

3. Convexity of the PCLP. In this section, we present the main result of
the paper. Theorem 3.1 to follow indicates that, if the distribution of the uncertain
parameters is log-concave and symmetric and if the risk levels satisfy 0 ≤ εi ≤ 1/2,
the PCLP is a convex program. Although the result below involves only the convexity
of a PCLP with one constraint, the extension to the case with an arbitrary number
of constraints is immediate. This extension is a consequence of the fact that an
intersection of convex sets is still convex. More precisely, for multiple constraints
defining Xε as an intersection of

Xε,i
.
= {x ∈ R� : Prob{xTai ≤ bi} ≥ 1 − εi},

the convexity result is immediate because each Xε,i is readily shown to be convex.
Throughout this paper, we write

ai = ai0 + Δai; i = 1, 2, . . . , k,

and

b = b0 + Δb,

where a0 and b0 are the nominal values of the random parameters ai and bi, respec-
tively. We assume that the pair (Δai,Δbi) has a log-concave symmetric probability
density function. For simplicity of exposition, it is assumed that the vector b is de-
terministic, i.e., b = b0. The more general result can be easily obtained by noting
that

Xε,i = {x ∈ R� : Prob{xTai − Δbi ≤ b0,i} ≥ 1 − εi}
= {x̃ ∈ R�+1 : Prob{x̃T ãi ≤ b0,i} ≥ 1 − εi} ∩ {x̃ ∈ R�+1 : x̃�+1 = −1},
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where ãi = [ai
T
Δbi]

T .
Theorem 3.1. Let a0 ∈ R�, b ∈ R, and the risk level 0 ≤ ε ≤ 1/2 be given.

Also, let the random vector Δa have a log-concave symmetric distribution. Then, the
set

Xε
.
= {x ∈ R� : Prob{xT (a0 + Δa) ≤ b} ≥ 1 − ε}

is convex.
Proof. For the given 0 ≤ ε ≤ 1/2, we first note that proving the convexity of the

set

Xε
.
= {x ∈ R� : Prob{xT (a0 + Δa) ≤ b} ≥ 1 − ε}

is equivalent to proving the quasi concavity of the function

ϕ(x)
.
= Prob{xT (a0 + Δa) ≤ b}

on the set

D = {x ∈ R� : ϕ(x) ≥ 1/2}.
In other words, given x0, x1 ∈ D one must show that

ϕ((1 − λ)x0 + λx1) ≥ min{ϕ(x0), ϕ(x1)}
for all 0 ≤ λ ≤ 1. Now, define

Qgood(x)
.
= {Δa ∈ R� : xT (a0 + Δa) ≤ b}

leading to

ϕ(x) = Prob{Qgood(x)}
and extend the definition of the convex floating body to include risk levels ε = 1/2
and ε = 0 as

K1/2 = {0}; K0 = {Δa ∈ R� : f(Δa) 
= 0},
where f(·) denotes the probability density function. Note that both are convex sym-
metric sets and that, for any 0 ≤ ε ≤ 1/2,

ϕ(x) ≥ 1 − ε ⇔ Qgood(x) ⊇ Kε.

Now, take x0, x1 ∈ D and let 0 ≤ ε ≤ 1/2 be defined as

ε
.
= 1 − min{ϕ(x0), ϕ(x1)}.

Now, since

min{ϕ(x0), ϕ(x1)} = 1 − ε,

the definition of convex floating body implies the inclusions

Qgood(x
0) ⊇ Kε; Qgood(x

1) ⊇ Kε.

Hence, for any λ ∈ [0, 1],

Qgood((1 − λ)x0 + λx1) ⊇ Qgood(x
0) ∩Qgood(x

1) ⊇ Kε.

Therefore,

ϕ((1 − λ)x0 + λx1) ≥ 1 − ε = min{ϕ(x0), ϕ(x1)}
or, in other words, ϕ(x) is a quasi-concave function for all x ∈ D. This completes the
proof.
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4. On the numerical implementation of the PCLP. The result in the pre-
vious section indicates that the PCLP is a convex program. However, it does not
provide any indication of how to numerically solve the resulting optimization prob-
lem. In this section, we use the concept of floating body introduced in section 2.3 to
provide some insight into how one can numerically solve the PCLP.

4.1. A closed-form formulation of the PCLP. Since the set

{Δa ∈ R� : xT (a0 + Δa) ≤ b}

is a half-space, the definition of the floating body presented in section 2.3 indicates
that requiring

Prob{xT (a0 + Δa) ≤ b} ≥ 1 − ε

for 0 < ε < 1/2 is equivalent to requiring

xT (a0 + Δa) ≤ b

for all Δa ∈ Kε, where Kε is the floating body of the probability distribution of Δa
as defined in section 2.3. Now, given the definition of dual norm, this is equivalent to

‖x‖ε,∗ ≤ b− xTa0.

Therefore, the probabilistic constraints of the PCLP can be replaced by convex ones
of the form above. Hence, if the quantity ‖x‖ε,∗ can be easily determined, this leads
to an immediate numerical implementation for solving the PCLP.

4.2. Elliptical log-concave distributions. It turns out that there are cases
where ‖x‖ε,∗ is easily determined. An example is the case where the probability
distribution of the uncertain parameters is an elliptical log-concave distribution. An
elliptical log-concave distribution is a distribution whose probability density function
is of the form

f(y) = g(yTWy),

where g : R+
0 → R+

0 is a log-concave nonincreasing function and W is a positive
definite matrix. Examples of such distributions are multivariable normal distribu-
tions and uniform distributions over balls. Note that the function above is indeed
log-concave. This can be proven by using the fact that the composition of a log-
concave nonincreasing function with a convex function is itself log-concave. For such
probability distributions one can determine the “shape” of the floating body. This
result is presented below.

Lemma 4.1. Consider an elliptical log-concave distribution. Then, for any 0 <
ε < 1/2, there exists a radius r(ε) leading to

Kε = {Δa ∈ R� : ΔaTWΔa ≤ r2(ε)}.

Sketch of proof. As mentioned in the definition of an elliptical log-concave distri-
bution, its probability density function is of the form

f(Δa) = g((Δa)TWΔa),
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where g(·) is log-concave. Now let

Δã =
1

det(W 1/2)
W 1/2Δa,

where the symmetric matrix W 1/2 is such that W = W 1/2W 1/2. Since the Jacobian
of the linear transformation above can be easily shown to be 1, it follows that the
probability density function of Δã is given by

fΔã(Δã) = g
[
det2(W 1/2)(Δã)TΔã

]
.

The contours of fΔã are hyperspheres and, hence, this probability distribution is
“direction independent”; i.e., given any constant b and any two vectors ‖u‖ = 1 and
‖v‖ = 1, we have

Prob{uTΔã ≤ b} = Prob{vTΔã ≤ b}.

Hence, given any 0 < ε < 1/2, the floating body of this distribution is of the form

K̃ε = {Δã ∈ R� : ΔãTΔã ≤ r̃2(ε)}

for some r̃(ε). Since there is a linear relationship between Δa and Δã, one can see
that the floating body of the probability distribution of Δa is given by

Kε = {Δa ∈ R� : ΔaTWΔa ≤ r̃2(ε)det2(W 1/2)}.

This completes the proof.
The actual “radius” of the ellipsoid Kε can be determined analytically for some

probability distributions. If one cannot determine this radius analytically, a one line
search optimization problem can be set up to numerically approximate this value by
performing several Monte Carlo simulations. Therefore, for such probability distribu-
tions, one can easily see that the PCLP reduces to a convex quadratic optimization
problem, i.e., minimization of a linear function subject to quadratic constraints. More
precisely, consider an elliptical log-concave probability density function of the form
described above. Then, for any 0 < ε < 1/2, the floating body Kε is of the form

Kε = {Δa ∈ R� : ΔaTWΔa ≤ r2(ε)},

where r(ε) > 0 is such that the half-space H = {Δa ∈ R� : Δa1 ≤ ζ} with

Prob(H) = 1 − ε

results in a hyperplane {Δa ∈ R� : Δa1 = ζ} tangent to the ellipsoid

{Δa ∈ R� : ΔaTWΔa ≤ r2(ε)}.

Now let

Δγ =
1

r(ε)
W 1/2Δa,

where W 1/2 is a positive define matrix satisfying W 1/2W 1/2 = W. Note that Δa ∈ Kε

if and only if ‖Δγ‖2 ≤ 1. Then, requiring

xT (a0 + Δa) ≤ b
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for all Δa ∈ Kε is equivalent to requiring

xT (a0 + r(ε)W−1/2Δγ) ≤ b

for all ‖Δγ‖2 ≤ 1. Hence, since the dual of the 2-norm is the 2-norm itself, the
expression above is equivalent to

‖r(ε)W−1/2x‖2 ≤ b− xTa0,

which is a convex quadratic constraint on x.

5. Application to control systems design. In this section, we exemplify how
the concept of a PCLP can be applied to controller design. We start by applying the
PCLP to the design of superstable systems. A second example shows how the theory
in this paper can be applied to robust pole assignment.

5.1. Superstability. In contrast to the concept of 	∞ stability, where only in-
put/output behavior is considered, superstability allows for computing the worst-case
value of the 	∞ norm of the output due to 	∞ bounded disturbances and initial condi-
tions. In addition, it provides an upper bound on the 	∞ induced norm of the system
(this bound is exact in the case of finite impulse response (FIR) systems). The reader
is referred to [10] and [11] for proofs and additional properties.

Consider a discrete-time linear time invariant system

y(z) = G(z)w(z), G(z) =
b(z)

1 + a(z)
,

where the w are exogenous disturbances, y is the output, z is the delay operator
zx[k] = x[k − 1], and where the polynomial a(z) does not have a constant term, i.e.,

a(z) = a1z + a2z
2 + · · · + anz

n.

Define

‖a‖1 =

n∑
i=1

|ai|.

A system is said to be superstable if

‖a‖1 < 1.

Moreover, it can be shown (see [10]) that in this case the 	∞ induced norm of the
system is bounded by

‖G(z)‖�∞→�∞ ≤ ‖b‖1

1 − ‖a‖1
.

This property was exploited in [10] to synthesize low order 	1 controllers as follows.
Consider a feedback controller of the form

Gc(z) =
bc(z)

1 + ac(z)
.
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Synthesizing a controller of the form described above such that the 	1 norm of the
closed loop system is less than or equal to a given μ reduces to finding controller
coefficients satisfying

μ‖dcl‖1 + ‖ncl‖1 ≤ μ,

where

dcl(z) = a(z) + ac(z) + a(z)ac(z) + b(z)bc(z); ncl(z) = b(z)bc(z).

Hence, in this case, controller design is equivalent to finding a feasible point of a set
of linear inequalities.

Now, assume that the plant is subject to parametric uncertainty of the form

G(z) =
b(z)

1 + a(z)
=

b0,0 + Δb0 + (b0,1 + Δb1)z + · · · + (b0,m + Δbm)zm

1 + (a0,1 + Δa1)z + · · · + (a0,n + Δan)zn
,

where b0,i and a0,i are the nominal values of the coefficients of the numerator and
denominator, respectively, and Δbi and Δai represent the uncertainty.1 In this case
robust performance is achieved if the inequality

μ‖dcl‖1 + ‖ncl‖1 ≤ μ

holds for all admissible values of the uncertainty, which is a linear program. More
precisely, given μ > 0, the problem above can be recast as

A(Δa0, . . . ,Δan,Δb0, . . . ,Δbm)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ac,0
...

ac,nc

bc,0
...

bc,mc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ μ

⎡
⎢⎣

1
...
1

⎤
⎥⎦
T

,

where ac,0, . . . , ac,nc
and bc,0, . . . , bc,mc

denote the coefficients of the denominator and
the numerator of the controller, respectively. However, there is a major difference
between the nominal and robust performance case: while it can be shown that the
former always admits a solution if the controller order is chosen to be at least equal
to the order of the plant, the latter may not have a solution even for high order
controllers. On the other hand, as we illustrate next with a simple example, it might
be possible to find low order risk-adjusted controllers, even for very small risk values
of violating the constraints; i.e., given a distribution for the uncertain parameters
and a small, well-defined risk ε, one may find a low order controller such that the
probability of violating each of the resulting linear constraints is less than ε. In other
words, in order to reduce controller complexity, one solves a PCLP for a given risk
level ε.

1For notational simplicity, here we assume that the controller is not subject to uncertainty;
however, the proposed procedure can be easily modified to take controller uncertainty into account.
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5.2. Numerical example. We now consider the example in [10]. The discrete-
time system presented has nominal transfer function

P (z) =
n(z)

d(z)
=

z − 2.5z2 + 1.501z3

1 − 2.7z + 23.5z2 − 4.6z3

and we assume that all coefficients are subject to uncertainty. Moreover, we assume
that the uncertainty vector is uniformly distributed on a ball with radius 0.05. In
searching for the controller, we assume that it has the form

Gc(z) =
bc(z)

1 + ac(z)
=

bc,0 + bc,1z + · · · + bc,mcz
mc

1 + ac,1z + · · · + ac,ncz
nc

.

It can be shown that there is no controller of order less than or equal to nc = 6
that renders the closed loop system robustly superstable. Next, we allowed for a
risk of ε = 1.25 × 10−4. Since, in this case, the distribution of the uncertainty is an
elliptical log-concave distribution, we can use the results in section 4 to determine
a risk-adjusted controller. As mentioned in section 4.2, the floating body for this
distribution is a ball and, hence, one can set up a quadratic program to solve the
problem at hand. Matlab was used to solve the resulting quadratic program, and the
third order risk-adjusted controller

C(z) =
4.5819 − 17.7802z − 1.0245z2 + 0.8795z3

1 − 1.8819z + 0.6538z2 + 0.287z3

was obtained. Next, a Monte Carlo simulation was performed to assess the risk of
violating superstability (recall that ε is the risk of violating each inequality, not the
actual risk of violating at least one of the inequalities). The number of samples used
was 107 and the estimated probability of violating superstability obtained is 0.78%,
showing that one can obtain a low order controller even for small risk levels.

5.3. Robust pole assignment. We now describe how one can apply the results
in this paper to the problem of robust pole assignment. We start with a continuous
uncertain open loop plant described by the transfer function

G(s) =
n(s)

d(s)
=

(b0,0 + Δb0) + (b0,1 + Δb1)s + · · · + (b0,m + Δbm)sm

(a0,0 + Δa0) + (a0,1 + Δa1)s + · · · + (a0,n + Δam)sn
,

where b0,i and a0,i are the nominal values of the coefficients of the numerator and
denominator, respectively, and Δbi and Δai represent the uncertainty. Now, since
uncertainty is present, one cannot determine a controller that will assign the closed
loop poles to a specific location. As in [13], one instead aims at designing a controller
such that the closed loop characteristic polynomial belongs to a set defined by the
performance specifications. More precisely, each of the coefficients of the closed loop
characteristic polynomial should belong to a given interval; i.e., given a controller of
the form

Gc(s) =
nc(s)

dc(s)
=

bc,0 + bc,1s + · · · + bc,mcs
mc

ac,0 + ac,1s + · · · + ac,nc
snc

,

one aims at determining the coefficients of the closed loop controller such that the
closed loop characteristic polynomial

nc(s)n(s) + dc(s)d(s)
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belongs to the family of polynomials

sncl + [δ−ncl−1, δ
+
ncl−1]s

ncl−1 + · · · + [δ−1 , δ+
1 ]s + [δ−0 , δ+

0 ]

for all admissible uncertainty values, where ncl = nc + n is the degree of the closed
loop characteristic polynomial. As can be easily seen, the search for the coefficients
of the controller reduces to finding a feasible solution to a set of linear inequalities of
the form

⎡
⎢⎣

δ−0
...

δ−ncl−1

⎤
⎥⎦ ≤ A(Δa0, . . . ,Δan,Δb0, . . . ,Δbm)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ac,0
...

ac,nc

bc,0
...

bc,mc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡
⎢⎣

δ+
0
...

δ+
ncl−1

⎤
⎥⎦ ,

where A(Δa0, . . . ,Δan,Δb0, . . . ,Δbm) is an affine function of its arguments. To sat-
isfy the performance specifications, the inequalities above should be satisfied for all
admissible values of Δa0, . . . ,Δan and Δb0, . . . ,Δbm. If the uncertainty support set is
convex and symmetric, the problem above turns out to be convex. This is easily seen if
one rewrites the inequalities above as follows: Let q = [Δa0, . . . ,Δan,Δb0, . . . ,Δbm]T

and x = [ac,0, . . . , ac,nc , bc,0, . . . , bc,mc ]
T . Then, for the uncertainty vector q, whose

support is a convex symmetric set Q, the inequalities above can be written in the
form

gi(x)T q ≤ hi(x) + ki; i = 1, 2, . . . , nc + mc + 2,

for all ‖q‖ ≤ 1, where ‖ ·‖ is the norm whose unit ball is the set Q and gi(x) and fi(x)
are affine functions of x. Hence, we can rewrite the inequalities above as

‖gi(x)‖∗ ≤ hi(x) + ki; i = 1, 2, . . . , nc + mc + 2,

which is easily seen to be a convex constraint in x.
However, even though in many cases the problem above is convex, it can lead

to complex controllers. To avoid this, we take a risk-adjusted point of view of the
problem above; i.e., rather than requiring that each inequality be satisfied for all
admissible values of the uncertain parameters, we require that the risk of violating
each of the inequalities be less than or equal to a prescribed risk level ε. In other
words, we solve a PCLP version of the problem above.

5.4. Numerical example. The example presented here is a small modification
of one of the examples in [13]. Consider an uncertain plant with transfer function

G(s) =
(0.75 + Δb1)s + 1.25 + Δb0
s2 + (0.75 + Δa1)s + Δa0

,

where the uncertain parameter vector is uniformly distributed over an ellipsoid. More
precisely ⎡

⎢⎢⎣
Δa0

Δa1

Δb0
Δb1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦Δα,
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Fig. 5.1. Desired pole location “o” and actual pole location “+”.

where Δα ∈ R4 is uniformly distributed over the ball of radius 0.25. We now aim at
designing a controller such that the closed loop polynomial belongs to the family

ΔT (s) = s2 + [1, 3]s + [1, 3].

Therefore, the controller transfer function is the constant

Gc(s) = b0.

It can be proven that no constant controller can meet the specification for all admis-
sible values of the uncertain parameters. Next, we allowed for a risk of ε = 0.02.
As in the previous numerical example, the distribution of the uncertainty is elliptical
and log-concave and, hence, one can use the results in section 4 to determine a risk-
adjusted controller. Again, the floating body for this distribution is a ball, and one
can set up a quadratic program to solve the problem at hand. Matlab was used to
solve the resulting quadratic program and the risk-adjusted constant controller

Gs(s) = 1.555

was obtained. The pole cluster distributions of the desired system and the actual
closed loop system are shown in Figure 5.1. A Monte Carlo simulation was performed
to estimate the actual risk of violating the specifications. The estimated value of
the risk obtained was approximately 3.6%, illustrating another instance where, even
for low risk values, one can obtain risk-adjusted controllers in cases where a robust
controller does not exist. Furthermore, in this case, we were able to obtain robust
stability as an added benefit; see Figure 5.1.

6. Conclusions and further research. In this paper, we show that the PCLP
is a convex optimization problem for any log-concave symmetric distribution. Also, a
closed-form formulation of the PCLP was provided which can be easily implemented
in the case of elliptical distributions, such as normal or uniform over a ball. This
result was applied to systems design, showing that classical control theory can lead
to complex controllers. Namely, we have presented examples where, even for very low
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levels of risk, one can obtain controllers that are substantially less complex than their
robust counterparts.

The results in this paper suggest several directions for further research. First, we
believe that effort should be put into the development of numerical tools for solving
the PCLP when the distribution is other than elliptical. Also, it seems that the “ratio”
between the complexity of a robust controller and the complexity of the risk-adjusted
controller increases with the dimension of the uncertainty vector. Therefore, it would
be of interest to quantify how this difference in complexity depends on the uncertainty
dimension. Finally, we note that results to date deal only with risk constraints. It
would be of great interest to develop design procedures that would take into account
both risk and robust constraints. For example, one might want to design a control
system that would result in a robustly stable system having a risk of violating the
performance specification that is less than or equal to a given risk level.
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