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Abstract-Recently, considerable attention has been paid to 
the use of probabilistic algorithms for analysis and design 
of robust control systems. However, since these algorithms 
require the generation of random samples of the uncertain 
parameters, their application has been mostly limited to the case 
of parametric uncertainty. Notable exceptions to this limitation 
are the algorithm for generating FIR transfer functions in 
Lagoa et al. and the algorithm for generating random fixed 
order state space representations in Calafiore et al. In this 
paper, we provide the means for further extending the use 
of probabilistic algorithms for the case of dynamic causal 
uncertain parameters. More precisely, we exploit both time 
and frequency domain characterizations to develop efficient 
algorithm for generation of random samples of causal, linear 
time-invariant uncertain transfer functions. The usefulness of 
these tools will be illustrated by developing an algorithm for 
solring some multi-disk problems arising in the context of 
synthesizing robust controllers for systems subject to structured 
dynamic uncertainty. 

I. INTRODUCTION 

A large number of control problems of importance can be 
reduced to the robust performance analysis framework illus- 
trated in Figure 1. The family of systems under consideration 
consists of the interconnection of a known stable LTI plant 
with a bounded uncertainty A c A. The goal is to compute 
the worst-case, with respect to A, of the norm of the output 
to some class of exogenous disturbances. 

Depending on the choice of models for the input signals 
and on the criteria used to assess performance, this prototype 
problem leads to different mathematical formulations such 
as X-,  t i ,  K 2  and i? control. A common feature to all 
these problems is that, with the notable exception of the X ,  
case, no tight performance bounds are available for systems 
with uncertainty A being a causal bounded LTI operatori. 
Moreover, even in the YL case, the problem of computing 
a tight performance bound is known to be NP-hard in the 
case of structured uncertainty, with more than two uncertainty 
blocks [4]. 

Given the difficulty of computing these bounds, over the 
past few years, considerable attention has been devoted to 
the use of probabilistic methods. This approach furnishes, 
rather than worst case bounds, risk-adjusted bounds; i.e., 
bounds for which the probability of performance violation is 
no larger than a prescribed risk level E .  An appealing feature 
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Fig. 1 .  The Robust Performance Analysis Problem 

of this approach is that, contrary to the worst-case approach 
case, here, the computational burden grows moderately with 
the size of the problem. Moreover, in many cases, worst-case 
bounds can be too conservative, in the sense that performance 
can be substantially improved by allowing for a small level 
of performance violation. The application of Monte Carlo 
methods to the analysis of control systems was recently in 
the work by Stengel, Ray and Manison in [ I l l ,  [131, [171 
and was followed, among others. by [ZI, 161, [71, [SI, [IS]. 
r191, [201. 

At the present time the domain of applicability of 
Monte Carlo techniques is largely restricted to the finite- 
dimensional parametric uncertainty case. The main reason for 
this limitation resides in the fact that up to now, the problem 
of sampling causal bounded operators (rather than vectors 
or matrices) has not appeared in the systems literature. 
Notable exceptions to this limitation are the algorithm for 
generating FIR transfer functions in [lo] and the algorithm 
for generating random fixed order state space representations 
in [51. In this paper, we provide two algorithms aimed at 
removing this limitation when the set A consists of balls 
in X- .  We use results on Nevanlinna-Pick and boundary 
Nevanlinna-Pick interpolation theory to develop two new 
procedures for random transfer function generation. The 
first one generates random transfer functions having the 
property that, for a given frequency, the frequency response is 
uniformly distributed over the interior of the unit circle. This 
algorithm is useful for problems such as model (in)validation, 
where the uacertainty that validates the model description 
is not necessarily on the boundary of the uncertainty set A. 
The second algorithm provides samples uniformly distributed 
over the unit circle, and is useful for cases such as some 
robust performance analysiskynthesis problems where the 
worst-case uncertainty is known to be on the boundary of A. 

The usefulness of these tools is illustrated by developing 
algorithms for solving some multi-disk problems arising in 
the context of synthesizing robust controllers for systems 
subject to structured dynamic uncertainty. More precisely, 
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we provide a modification of the algorithm in 191 that 
when used together with the sampling schemes mentioned 
above, enables one to solve the problem of designing a 
controller that robustly stabilizes the system for a “large” 
set of uncertainties while guaranteeing a given performance 
level on a “smaller” uncertainty subset. 

11. PRELIMINARIES 

Given a matrix M, let MT and M’ denote the transpose and 
Hermitian conjugate respectively. As usual M > 0 (M 2 0) 
indicates that M is positive definite (positive semi-definite), 
and M < 0 that M is negative definite. Furthermore, let Re(M) 
denote the real part of M and Trace(M) its trace. 

By C,, we denote the Lebesgue space of complex-valued 
matrix functions essentially bounded on the unit circle, 
equipped with the norm liC(z)II- = esssupl,l,lV(G(z)), 
where V represents the largest singular value. By X,, we 
denote the subspace of functions in C, with bounded analytic 
continuation outside the unit disk, equipped with the norm 
IlC(i)/l, esssuplLI>, o ( G ( i ) ) .  Finally, we use ’B and X to 
denote unit halls and subspaces composed of real rational 
transfer matrices, respectively. The X, ball of radius r is 
denoted by BX,(r). 

Also, let Xz denote the Hilbert.space of complex matrix 
valued functions analytic in the set { z  E C :  IzI 2 l}, equipped 
with the inner product 

- 

, .  . .  

I 2n 

2n 0 
( H , T )  = -/ Re{Trace[H(eje)*T(eje)]}dB. 

Also, let XKz denote the subspace of all rational functions in 
X2 analytic in { z  E C : / z /  2 l}. Moreover, define the space 
9 as the space of rational functions G : C - C”x”‘ that can 
he represented as 

G ( z )  = G J i )  + G,,(z) 

where G,(z) E 2 % ~  and G,,(z) is strictly proper and analytic 
in the set { z  E C : IzI < I } .  Now, given two functions G, H E 9 
and 0 < y < 1 define the distance function d as 

I 

d(G,H)  A ( ~ l ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ l l ~ + l l ~ ~ ~ ~ / ~ ~ - ~ ~ ~ ~ ~ / ~ ~ l l ~ ~ ) z ~  
The results later in the paper that make use of this distance 
function are similar for any value of y. Finally, define the 
projection zs : 9 - X z  as nJG) = 9. 

Now, consider a convex function g : H2 + R.  Given any 
Go E Hz, there exists a &g(Co) E Hz such that 

S(G) - g(Gfl) 2 (JSC (GO), G - GO). (1) 

for all G E H2. The quantity Jcg(G0) is said to be a 
subgradient of g at the point Go. 

’ !  

Fig. 2. Closed Loop System 

A. Closed Loop Transfer Funcfion Paramelrizalion 

Central to the results presented in this paper is the 
parametrization of all closed loop transfer functions. Con- 
sider the closed loop plant in Figure 2 with uncertain param- 
eters A E A. The uncertainty A can include static uncertainty, 
uncertain transfer function matrices or a combination of both. 
The Yonla parametrization (e.g., see [16]) indicates that, 
given A E A and a stabilizing controller C E 9, the closed 
loop transfer function c m  be represented as 

TcL(z ,A,C)  = T 6 ( z ) +  T,’(z)QA;cW&), (2)  

where Td,T:,T; E R H ~  are determined by the plant G ( z , A )  
(and, hence, they also depend on the uncertainty A) 
and QA.c E RHz depends on both the open loop plant G(z,A) 
and the controller C(z). Also, given any QA.~(s )  E RH?, there 
exists a controller C E 9 such that the equality above is 
satisfied. This parametrization also holds for all closed loop 
transfer functions, stable and unstable. Using a frequency 
scaling reasoning, one can prove the following result: Given 
A E A and a controller C E 9, the closed loop transfer function 
can be represented as (2) Note that the mapping from A to 
T i ,  T i ,  T i  is not unique. In what follows, we assume that a 
unique mapping has been selected. Results to follow do not 
depend on how this mapping is chosen. 

111. SAMPLING ’BX, 
We now present two algorithms for generating random 

transfer functions in ’BX,, 

A. Sampling the ‘‘Inner” ’BX, 
The first one, based on “ordinw’’ Nevanlinna-Pick in- 

terpolation, provides transfer functions with X, norm less 
or equal than 1 and whose frequency response, at given 
frequency grid points, is uniformly distributed over the 
complex plane unit circle. 

Algorithni I :  1) Given an integer N, pick N frequen- 
cies & such that \&I = 1, i = 1,2,. . . , N. 

2) Generate N independent samples wi uniformly dis- 
tributed over the set {w E C : Iw/ < 1). 

3) Find 0 < r < 1 such that the matrix A with entries 

1 - wiw; 
A . . -  z., - 

1 - r2AJ; 

is positive definite. 
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4) Find a rational function h,(h) analytic inside the unit 
circle satisfying 

11h&<1 and h,(r&)=wj; i=1,2 ,..., N 

by solving a "traditional" Nevanlinna-Pick interpola- 
tion problem. 

5 )  The random transfer function is given by 

h(z)  = h,(rz-'). 
We refer the reader to the Appendix for a brief review 

of results on Nevanlinna-Pick interpolation and state space 
descriptions of the interpolating transfer function h(z) .  

Remark Note that, there always exists an 0 < r < 1 
that will make the matrix A positive definite. This is a 
consequence of the fact that the diagonal entries are positive 
real numbers and that, as one increases r < 1, the matrix will 
eventually be diagonally dominant. 

B. Sampling the Boundary of 'BX, 
We now present a second algorithm for random gener- 

ation of rational functions. The algorithm below generates 
random transfer functions whose frequency response, at 
given frequency grid points, is uniformly distributed over 
the boundary of the unit circle. Recall that the rational for 
generating these samples is that in many problems it is known 
that the worst case uncertainty is located in the boundary of 
the uncertainty se t ,  and thus there is no point in generating 
and testing elements with 11A11- < 1. 

Algorithm 2: 1) Given an integer N ,  pick N frequen- 

2) Generate N independent samples wj uniformly dis- 

3) Find the smallest possible p 2 0 such that the matrix 

cies & such that IhjI = 1, i = 1,2,. . . , N .  

tributed over the set {w E C : IwI = 1). 

A with entries 
l+& i f j  

p i = j  
Ai.j = { 

is positive definite. 
4) Let 

he a 2 x 2 transfer function matrix given by 

e ( n )  = I +  (h  - & ) C o ( h I - A O ) ~ ' A ~ ' ( h I - A ~ ) - ' C ~ J  

where 

' J =  [: !l] 
and & is a complex number of magnitude 1 and not 
equal to any of the numbers A1 ,&,, . . . , h ~ .  

5) The random transfer function is given by 

el? (:-I ) 
/ I ( : )  = ~ 

&2(z-I).' 
The algorithm above provides a solution of the boundary - 

Nevanlinna-Pick interpolation problem 

llhll- = 1; h(&) = wj; h'(&) = PhTwj, 

f o r i = 1 , 2 :  ..., N.Aproofofthisresultcanbefoundin[l]. 
A more complete description of the results on boundary 
Nevanlinna-Pick interpolation used here is given in the 
Appendix. 

Remark The search for the lowest p that results in 
a positive definite matrix A is equivalent to finding the 
interpolant with the lowest derivative. 

IV. MULTI-DISK DESIGN PROBLEM 
In this section we use discuss an application of the sam- 

pling algorithms developed in this paper. More precisely, we 
introduce an stochastic gradient based algorithm to solve the 
s+called multi4isk design problem. We aim at solving the 
problem of design a robustly stabilizing controller that results 
in guaranteed performance in a subset of the uncertainty 
support set. The algorithm presented is an extension of the 
algorithms developed in [9] .  Before providing the controller 
design algorithm, we first provide a precise definition of the 
problem to be solved and the assumptions that are made. 

A. Problem Statement 
Consider the closed-loop system in Figure 2 and a convex 

objective function gl : 3c2 + R. Given a performance value n 
and uncertainty radii r2 > rl > 0, we aim at designing a con- 
troller c'( .s)  such that the closed loop system T,L(&A,C') 
is stable for all 11A11- 6 r2 and satisfies 

g[Tc~(&A,c*)l 6 71 

for all 11A11- 5 r l ,  Throughout this paper, we will assume that 
the problem above is feasible. More precisely, the following 
assumption is made: 

Assumption I :  There exists a controller C* and an E > 0 
such that 

d(QA:c.,Q) < E * g i  [ r d ( z ) + t ; ( ~ ) Q ( ~ ) T i ( ~ ) ]  6 71 

for all IlAIl- 6 rl and there exists a 'h (sufficiently large) 
such that 

d(QA.c*,Q) < E * g ?  [Td(Z)+T:(Z)Q(L)T~(z)] 5 'h 

for all IlAIl- 5 r2, where 

g2 [Td(z) +T;(z)Q(z)Ti(i)] = (2) +T:(z)Q(~)Ti(d\\2. 

Remark Even though it is a slightly stronger requirement 
than robust stability, the existence of a large constant 
satisfying the second condition above can be considered 
to be, from a practical point of view, equivalent to robust 
stability. 
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E. Controller Design Algorithm 
We now state the proposed robust controller design algo- 

rithm. This algorithm has a free parameter q that has to be 
specified. This parameter can be arbitrarily chosen from the 
interval (0,2). 

Algorithm 3: 
2) Generate sample i' with equal probability or being 1 

or 2. 
3) Draw sample Ak over 'BK,(rik). Given G ( z , A K ) ,  com- 

pute Tdk(z), T$(z), T2k(z) as described in [161. 
4) Let Q'(Z) be such that the closed loop transfer function 

using controller C,(s) is 

1) Let k = 0. Pick a controller C&). 

Tcr(i,Ak, G )  = T;~(Z) +T$(z)Qa(z)T:k(~) 

5 )  Do the stabilizing projection QK,(z) = ~ r , ( Q k ( i ) ) ,  
6) Perform update 

Q ~ + I ( z )  = Q k . s ( Z )  - aK(Q,:,A')(r)JQfiik(TCL(z,At:Q))lQk,~ 

where 

ader., A) 

( o otherwise 

7) Determine the controller Ck+] so that QAk,ck+l =et+]. 
8) L e t k = k + l , G o t o S t e p 2 .  
It can he proven that the algorithm described above indeed 

converges to a controller that robustly satisfies the perfor- 
mance specifications. The exact statement is given below. 
The proof is follows the same line of reasoning as in [9] and 
i t  is omitted due to space constraints. 

77ieoreni I :  Let g1 : 3(2 + R be a convex function with 
subgradient d g ~  E 2x2 and let 71 > 0 be given. Also let 
SZ(W = IIH112. Define ~ 

9.1 A Pmb{gl(TCr(Z,A,Ck))  > n} 
with A having the distribution over B X - ( r ] )  used in the 
algorithm. Similarly take 

4.2 Prob{gz(TcL(z,A,C')) > n} 
with A having the distribution over ' B K , ( r 2 )  used in the 
algorithm. Given this, define Pk = (9.1 +P~.2)/2. Then, if As- 
sumption 1 holds, the algorithm described above generates a 
sequence of controllers Ck for which the risk of performance 
violation satisfies limk+,P' = 0. 

V. NUMERICAL EXAMPLE 
Consider the uncertain system P ( z , A )  = P o ( z ) + A ( r ) ;  with 

nominal plant 

0 .006135~~  + 0.01227- +0.006135 
z2 - 1.497i+0.5706 

h ( Z )  = 

and stable causal dynamic uncertainty A. The objective is to 
find a controller C(z)  such that, for all IlAIl, 5 rl = 1, 

/IW(z)(l + C ( z ) P ( z , A ) ) - ' / I ?  5 y1 =0.089 

where 

0 . 0 5 8 2 ~ ~  +0.06349z+0.005291 
W(z) = 

z2+O.238Iz-0.6O32 ' 

and the closed loop system is stable for all IlAIl- 5 r2 = 2. 
Since the plant P ( z , A )  is stable in spite of the uncertainty, 
according to the Youla parametrization, all stabilizing con- 
trollers are of the form 

where e(;) is a stable rational transfer function. To solve 
this problem using the algorithm presented in the previous 
section, we take )? = lo9 (which is in practice equivalent 
to requiring robust stability for 11A11 5 r z )  and generate the 
random uncertainty samples using Algorithm 2 by taking zi = 
eJ2Ri111, i = I ,  2,. . . ,lo. We first consider a design using only 
the nominal plant. Using Matlab's function dhllqg ( ) ,  we 
obtain the nominal K2 optimal controller 

and a nominal performance IIz.(z)112 = 0.0583. However, 
this controller does not robustly stabilize the closed loop 
plant for IIAll- 5 2 .  We next apply Algorithm 3 to design a 
risk-adjusted controller and, after 1,500 iterations, we obtain 

CI (4 
- -0.003808~'~ - 0.01977~" - 

214 - 0 . 1 7 7 8 ~ ~ ~  + 0 . 6 3 7 6 ~ ~ ~  +0.09269r1' + 0.2469:'o 
-0.002939r12 

+0.06291z9 + 0.08426~8 + 0.04332' +0.0740326 +0.00041" 
+0.04627z1' 

-0.1 IO7t '  - 0.07454~~ - 0.08156~~ -0.05994i+0.0l213 ' 

Monte Carlo simulations were performed to estimate fi., 
and 4 2  for each controller C&) and the estimate of ( P ~ ; I +  
&)/2 is shown in Figure 3. One can see that both the 
probability of performance violation for IlAIl, 5 1 and the 
probability of instability for 11A11, 5 2 quickly converge to 
zero, being negligible after iteration 200. 

VI. CONCLUDING REMARKS 

In this paper, we provide efficient algorithms for gen- 
eration of random samples of causal, linear time-invan'ant 
uncertain transfer functions. Results on Nevanlinna-Pick and 
boundaly Nevanlinna-Pick interpolation are exploited to de- 
velop two algorithms. The first one generates samples inside 
the unit X, ball and the second one generates random 
transfer function on the boundary of the unit 3(, ball. The 
usefulness of these tools is illustrated by developing an 
algorithm for solving some multi-disk problems arising in 
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Fig. 3. Estimated (9.1 +4.2)/2.  

the context of synthesizing robust controllers for systems 
subject to structured dynamic uncertainty. 

The results presented suggest several directions for further 
research. First, we believe that effort should be put in the 
development of efficient numerical implementations of the 
algorithms put forth in this paper. Another possible direction 
for further research is the development of stochastic gradient 
algorithms for controller design which would guarantee that 
one would obtain a robustly stabilizing controller after a finite 
number of steps. 
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APPENDIX 

A. Generalized Interpoldon Framework 

We start by focusing our attention in a more general 
result in interpolation theory. Let T and ’BT denote the 
space of complex valued rational functions continuous in 
1x1 = 1 and analytic in 1x1 < 1, equipped with the [ l , l l ~ ~  
norm, and the (open) unit ball in this space, respectively 
(i.e. f(1) E ’BT e f ( $ )  E ’BX,). we now present a 
fundamental result whose proof can be found in 111, [141. 
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Theorem 2: There exists a transfer function . f ( A )  E BT (m such that: 

Resn,bf(X)C-(LZ-A)-' = C+ (4) 

if and only if the following discrete time Lyapunov equation 
has a unique positive (semi) definite solution. 

( 5 )  

where A,C- and C+ are constant complex matrices of 
appropriate dimensions and 'D denotes the open unit circle. 
If M > 0 then the solution f(k) is non-unique and the set of 
solutions can be parameterized in terms of q(.X), an arbitrary 
element of 7gi5, as follows: 

M = A*MA + C?C- - C;C+ 

where T ( A )  is the J-lossless' matrix: 

Br=M- l (A*- I ) - l [  -C; C ? ] : C r = [ z  ](A-,) 

. , = I + [  >]M-'(A*-I)- '[ -C; CY ] 
Note that the matnces and C- provide the structure of the 
interpolation problem while C+ provides the interpolation 
values. The following corollary shows that Nevanhnna-Pick 
problem is a special case of this theorem, corresponding to 
an appropriate choice of the matrices A and C- . 

= diag{k,} E C'" 
and t k e  

Corollary 1 (Nevonlinria-Pick): Let 

A = T  (7) 
c- = [ 1 1 ... l ] , T  (8) 
c+ = [ W ]  w2 ... w r  1 (9) 

then (4) is equivalent to f(&) = w,, i = I , .  . . , r  and the 
solution to (5) is the standard Pick matrix: 

1 - wiwj p =  - [ I - %.Aj] i i  

B. Using this results for boundary interpolation 

these results can be used as follows: 
In the case of boundary interpolation l&l = 1, /wil < 1, 

I )  Find a scalar r < 1 such that the equation: 

M = ~ A ' M A  + CIC- - c;c+ (11) 

2 )  Find the modified interpolant using the formulas (6) 

3) The desired interpolant is given by G ( k )  = Gr(rk) .  

has a positive definite solution M > 0. 

with A = rT = rdiag{&} 

'A uansfer function H ( A )  is said to be I-lossless if H r ( I / A ) 3 H ( I )  = 3 

when l i l =  l .andH'(I/AjJH(Ij<I when 111 < I .  HereJ= 

C. Boundary Nevanlinna-Pick Interpolation 
We now elaborate on the results on boundary Nevanlinna- 

Pick interpolation used in this paper. For a extensive treat- 
ment of this problem see [I] .  Let D denote the unit circle 
in the complex plane with boundary d'D and consider the 
following interpolation problem: 

Problem I: Given N distinct points A1 , &,. . . ,,IN in d'D, 
N complex numbers W I  ,wz,. . . ,WN of unit magnitude and 
N positive real numbers P I ,  p2,. . . : p ~ ,  find all rational func- 
tions f(2) mapping 'D into 'D such that, for all i = I ,  2 , .  . . , N ,  

The following theorem provides a solution for the problem 
above. The proof of this result can be found in [I]. 

Theorem 3: Let and 
p~,pz , .  .. , p ~  be as in the statement of Problem 1 and define 
the matrix A = [Ai,]l<i.jsN by 

f(a,) = wi; f'(4) = ~ ; ~ ~ p ~ .  

I , ,  A', . . . ,AN, W I  ~ w2,. . . , WN 

Then a necessary condition for Problem 1 to have a solution 
is that A be positive semidefinite and a sufficient condition 
is that A be positive definite. In the latter case, the set of all 
solutions is given by 

where g ( k )  is an arbitrary scalar rational function analytic 
on 'D with sup{lg(A)l : z E 'D} 5 1 such that 61 ( A ) g ( A ) +  
O,, (X)  has a simple pole at the points I l  , A?, . . . ;AN. Here 

is given by 

e (n )  = I +  (2  - ~ ) c ~ ( ~ I - A ~ ) - ~ A - ~ ( ~ I - A ~ ) - * c ~ J  

where 

and & is a complex number of magnitude 1 and not equal 
to any of the numbers XI,&, . . . ,AN. 

Note that if only the values W I , W ~ ,  ... ,WN of magni- 
tude one are specified at the boundary points I1 ,A', . . . , b, 
then the matrix A in the theorem above can always be 
made positive definite by choosing the unspecified quantities 
pl :p2,. . . , p ~  sufficiently large. This leads to the following 
corollruy. 

Comllary 2: Let 2N complex numbers of magnitude 
one 4,A, ,... ,AN and WI,~,,.. . , w ~  be given, where 
XI ,&, . . . are distinct. Then, there always exist scalar 
rational functions f(k) analytic in 'D with sup{lf(k)l : A E 
'D} 5 1 which satisfy the set of interpolation conditions 
f ( & ) = w i ;  i = 1 3 2 ,  ...> N .  
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