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Abstract— Recently, considerable attention has heen paid to
the use of probabilistic algorithms for analysis and design
of robust control systems. However, since these algorithms
require the generation of random samples of the uncertain
parameters, their application has been mostly limited to the case
of parametric uncertainty. Notable exceptions to this limitation
are the algorithm for generating FIR transfer functions in
Lagoa et al. and the algorithm for generating random fixed
order state space representations in Calafiore et al. In this
paper, we provide the means for further extending the use
of probabilistic algorithms for the case of dynamic causal
uncertain parameters. More precisely, we exploit both time
and frequency domain characterizations to develop efficient
algorithms for generation of random samples of causal, linear
time-invariant uncertain transfer functions. The usefulness of
these tools will be illustrated by developing an algorithm for
solving some multi-disk problems arising in the context of
synthesizing robust controllers for systems subject to structured
dynamic uncertainty.

1. INTRCDUCTION

A large number of contrel problems of importance can be
reduced to the robust perfermance analysis framework illus-
trated in Figure 1. The family of systems under consideration
consists of the interconnection of a known stable LTI plant
with a bounded uncertainty A C A. The goal is to compute
the worst—case, with respect to A, of the norm of the output
to some class of exogenous disturbances.

Depending on the choice of models for the input signals
and on the criteria used to assess performance, this prototype
problem leads to different mathematical formulations such
as He, €', Hy and £~ control. A common feature to all
these problems is that, with the notable exception of the H..
case, no tight performance bounds are available for systems
with uncertainty A being a causal bounded LTI operator!.
Moreover, even in the H,., case, the problem of computing
a tight performance bound is known to be NP-hard in the
case of structured uncertainty, with more than two uncertainty
blocks [4).

Given the difficulty of computing these bounds, over the
past few years, considerable attention has been devoted to
the use of probabilistic methods. This approach furnishes,
rather than worst case bounds, risk—adjusted bounds; i.e.,
bounds for which the probability of performance violation is
no larger than a prescribed risk level €, An appealing feature
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IRecently some tight bounds have been proposed for the H; case, but
these bounds do not take causality into account; see |12],
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Fig. 1. The Robust Performance Analysis Problem

of this approach is that, contrary to the worsi—ase approach
case, here, the computational burden grows moderately with
the size of the problem. Moreover, in many cases, worst—case
bounds can be too conservative; in the sense that performance
can be substantially improved by allowing for a small level
of performance violation. The application of Monte Carlo
methods to the analysis of control systems was recently in
the work by Stengel, Ray and Marrison in [11], [13], [17]
and was followed, among others, by [2], [6], [7], [8], [18],
[19], [20].

At the present time the domain of applicability of
Monte Carlo techniques is largely restricted to the finite—
dimensional parametric uncertainty case. The main reason for
this limitation resides in the fact that up to now, the problem
of sampling causal bounded operators (rather than vectors
or matrices) has not appeared in the systems literature.
Notable exceptions to this limitation are the algorithm for
generating FIR transfer functions in [10] and the algorithm
for generating random fixed order state space representations
in [5]. In this paper, we provide two algorithms aimed at
removing this limitation when the set A consists of balls
in He. We use results on Nevanlinna-Pick and boundary
Nevanlinna-Pick interpolation theory to develop two new
procedures for random transfer function generation. The
first one generates random transfer functions having the
property that, for a given frequency, the frequency response is
uniformly distributed over the interior of the unit circle. This
algorithm is yseful for problems such as model (in)validation,
where the uncertainty that validates the model description
is not necessarily on the boundary of the uncertainty set A.
The second algorithm provides samples uniformly distributed
over the unit circle, and is useful for cases such as some
robust performance analysis/synthesis problems where the
worst—case uncertainty is known to be on the boundary of A.

The usefulness of these tools is illustrated by developing
algorithms for solving some multi-disk problems arising in
the context of synthesizing robust controllers for systems
subject to structured dynamic uncertainty. More precisely,
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we provide a modification of the algorithm in [9] that
when used together with the sampling schemes mentioned
above, enables one to solve the problem of designing a
controller that robustly stabilizes the system for a “large”
set of uncertainties while guaranteeing a given performance
level on a “smaller” uncertainty subset.

II. PRELIMINARIES

Given a matrix M, let M7 and M* denote the transpose and
Hermitian conjugate respectively. As usual M > 0 (M > 0}
indicates that M is positive definite (positive semi-definite),
and M < 0 that M is negative definite. Furthermore, let Re(M)
denote the real part of M and Trace(M) its trace.

By L., we denote the Lebesgue space of complex-valued
matrix functions essentially bounded on the unit circle,
equipped with the norm [[G(z)|» = esssupy ;T (G(2)),
where @ represents the largest singular value. By H.., we
denote the subspace of functions in L.. with bounded analytic
continuation outside the unit disk, equipped with the norm
G(2)||- = esssupy;j»; T(G(z)) - Finally, we use B and R to
denote unit balls and subspaces composed of real rational

transfer matrices, respectively. The H.. ball of radius r is

denoted by BH..(r).

Also, let H, denote the Hilbert space of complex matrix
valued functions analytic in the set {z€ C:|z| > 1}, equipped
with the inner product

(t,7) = 5 [ Re{TracelH (&) 7(e)] 0.

Also, let RH denote the subspace of all rational functions in
H> analytic in {z € C: [z > 1}. Moreover, define the space
G as the space of rational functions G : C — C"™ that can
be represented as

G(z) = Gs(2) + Gul2)-

where G(z) € RH; and G, (z) is strictly proper and analytic
in the set {z€ C:|z| < 1}. Now, given two functions G,H € §
and 0 < y < 1 define the distance function J as

(G, H) = (||Gs(2) ~ Ho()3 + 1 Gu(¥/2) —Hu(Y/Z)H%))% -

The results later in the paper that make use of this distance
function are similar for any value of y. Finally, define the
projection 7, : § — H; as #,(G) = G;.

Now, consider a convex function g : Hz — R. Given any
Gp € Ha, there exists a dgg(Gy) € Ha such that

2(G) —g(Go) 2 (dg6(Go),G — Go). (N

for all G € Hy. The quantity d;g(Gg) is said to be a
subgradient of g at the point Gy.
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Fig. 2. Closed Loop System

A. Closed Loop Transfer Function Paramelrization

Central to the results presented in this paper is the
parametrization of all closed loop transfer functions. Con-
sider the closed loop plant in Figure 2 with uncertain param-
eters A € A. The uncertainty A can include static uncertainty,
uncertain transfer function matrices or a combination of both.
The Youla parametrization (e.g., see [16]) indicates that,
given A € A and a stabilizing controller C € G, the closed
loop transfer function can be represented as

Ter(z,A,C) = T (2) + T (2)Qac(D)TR (2), )

where T, T2, T} € RH, are determined by the plant G(z,A)
(and, hence, they also depend on the uncertainty A)

-and Qa ¢ € RH> depends on both the open loop plant G(z,A)

and the controller C(z). Also, given any Qa c(s) € RHa, there

“exists a controller C € G such that the equality above is

satisfied. This parametrization also holds for all closed loop
transfer functions, stable and unstable. Using a frequency
scaling reasoning, one can prove the following result: Given
A'€ A and a controller C € §, the closed loop transfer function
can be represented as (2) Note that the mapping from A to
TJ,TZ,T; is not unique. In what follows, we assume that a
unique mapping has been selected. Resuits to follow do not
depend on how this mapping is chosen.

TI1. SAMPLING BH..

We now present two algorithms for generating random
transfer functions in BH ...

A. Sampling the “Inner” B},

The first one, based on “ordinary” Nevanlinna-Pick in-
terpolation, provides transfer functions with H.. norm less
or equal than 1 and whose frequency response, at given
frequency gnd points, is uniformly distributed over the
complex plane unit circle.

Algorithm 1: 1) Given an integer N, pick N frequen-

cies A; such that |4 =1,i=1,2,...,N.

2) Generate N independent samples w; uniformly dis-

tributed over the set {we C:|w} < 1},
3) Find 0 < r < 1 such that the matrix A with entnies

A 1- W,'W'-’;f
Y 1-r Al

is positive definite.
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4) Find a rational function k. (A} analytic inside the unit
circle satisfying

(hlle <1 and R(rAi) =wii=12,...,N

by solving a “traditional” Nevanlinna-Pick interpola-
tion problem.
5) The random transfer function is given by

h(z) = hy(rz 7).

We refer the reader to the Appendix for a brief review
of results on Nevanlinna-Pick interpolation and state space
descriptions of the interpolating transfer function A(z).

Remark: Note that, there always exists an 0 < r <1
that will make the matrix A positive definite. This is a
consequence of the fact that the diagonal entries are positive
real numbers and that, as one increases r < 1, the matrix witl
eventually be diagonally dominant.

B. Sampling the Boundary of BH..

We now present a second algorithm for random gener-
ation of rational functions. The algorithm below generates
random transfer functions whose frequency response, at
given frequency grid points, is uniformly distributed over
the boundary of the unit circle. Recall that the rational for
generating these samples is that in many problems it is known
that the worst case uncertainty is located in the boundary of
the uncertainty set , and thus there is no point in generating
and testing elements with ||Alle < L.

Algorithm 2: 1) Given an integer N, pick N frequen-

cies A; such that (A =1,7i=1,2,...,N.

2} Generate N independent samples w; uniformly dis-

tributed over the set {w € C: |w| = 1}.
3) Find the smallest possible p = 0 such that the matrix
A with entries

l—wiw; .

A= 1AL i#£]
LY ! . .
p o i=j

is positive definite.

4y Let
ou(d) 8i()
9"”—[92:(1) eli(m]

be a 2 x 2 transfer function matrix given by
B(A) =14 (A — A)Co(AT—Ap) A (AT =AYy

where
| S |
‘ 1 0
=l 4

and Ag is a complex number of magnitude 1 and not
equal to any of the numbers A;,As,...,Ay.

C0=[wl WN]; Ag = diag(A1,A2,...,4x);

5) The random transfer function is given by

B1a(z~!
hiz) = 12 A]).
. _ Onl(z!)
The algorithm above provides a solution of the boundary
Nevanlinna-Pick interpolation problem

”h”‘” = 1; h(}l,,) = Wi, h’(A’l) — P)L,'*Wf,

fori=1,2....,N. A proof of this result can be found in [1].
A more complete description of the results on boundary
Nevanlinna-Pick interpolation used here is given in the
Appendix.

Remark: The search for the lowest p that results in
a positive definite matrix A is equivalent to finding the
interpolant with the lowest derivative.

IV. MULTI-DISK DESIGN PROBLEM

In this section we use discuss an application of the sam-
pling algorithms developed in this paper. More precisely, we
introduce an stochastic gradient based algorithm to solve the
so—called multi-disk design problem. We aim at solving the
problem of design a robustly stabilizing controlier that results
in guaranteed performance in a subset of the uncertainty
support set. The algorithm presented is an extension of the
algorithms developed in [9]. Before providing the controller
design algorithm, we first provide a precise definition of the
problem to be solved and the assumptions that are made.

A, Problem Statement

Consider the closed-loop system in Figure 2 and a convex
objective function g; : Hz — R. Given a performance value y
and uncertainty radii r; > r; > 0, we aim at designing a con-
troller C*(s) such that the closed loop system Ter(z,A,C7)
is stable for all ||All. < r2 and satisfies

g [TCL(ZaAv C*)] S h
for all |A||.. < ri. Throughout this paper, we will assume that

the problem above is feasible. More precisely, the following
assumption is made:
Assumption 1: There exists a controller C* and an £ >0

such that
d(Qsc.0)<e=2 [T+ TREREEEE)] <

for all jjAll.. < r; and there exists a 3 (sufficiently large)
such that

d(@ac,0) < €= g1 [TH(D+TEDQRTEED] < 1

for all [JAl|e < r2, where
& [T+ TR (D] = |7 (@ + TE@eDTE @,

Remark: Even though it is a slightly stronger requirement
than robust stability, the existence of a large conmstant
satisfying the second condition above can be considered
to be, from a practical point of view, equivalent to robust
stability.

2431



B. Controller Design Algorithm

We now state the proposed robust controller design algo-
rithm. This algorithm has a free parameter n that has to be
specified. This parameter can be arbitrarily chosen from the
interval (0,2).

Algorithm 3: 1) Let k =0. Pick a controller Cp(z).

2) Generate sample # with equal probability or being 1

or 2.
3) Draw sample A* over BH..(rx). Given G{z,AX), com-
pute T4 (z), To(z), T (z) as described in [16].

4) Let Q;(z) be such that the closed loop transfer function

using controller Cr(s) is

Teu(z, 8, G) = To(2) + TR () (2) T (2)

5) Do the stabilizing projection @y (z} = m(Qk(2))-
6} Perform update

Ok +1(2) = Qrs(2) — 00 Q. o, AN)Ipgiu (Terlz, AY. Q)M g, ,

where

ak(QhA)
g lTor (8.0 ) - 1w+ | Fpga (For(2:4.0))lg, Iz
1 dg8 3 (Ter (2-8.0)) g, I3
if gu(Ter(z,4,0k) > ¥ - 3
0 otherwise .

=t

7) Determine the controller C; so that Q4 Conr

8 Letk=k+1. Go to Step 2.

It can be proven that the algorithm described above indeed
converges to a controller that robustly satisfies the perfor-
mance specifications. The exact statement is given below.
The proof is follows the same line of reasoning as in [9] and
it is omitted due to space constraints.

Theorem 1: Let g1 : Hs — R be a convex function with
subgradient dg; € RH; and let 3 > 0 be glvcn Also let
g2(H) = ||H||2. Define

Pey = Prob{g(Ter(2,A,C)) > n}

with A having the distribution over BH.. (rl) used in the
algorithm. Similarly take

P2 = Prob{g)(TcL(2,A,Gr)) > 1}

with A having the distribution over BH.(r;) used in the
algorithm. Given this, define P, = (P, +Fy)/2. Then, if As-
sumption 1 holds, the algorithm described above generates a
sequence of controllers C;. for which the risk of performance
violation satisfies limy_.. P, = 0.

V. NUMERICAL EXAMPLE
Consider the uncertain system P(z,A) = Fy(z)+ A(z), with

nominal plant

Pole) = 0.006135z% +0.01227z +0.006135

72 —1.497z +0.5706

and stable causal dynamic uncertainty A. The objective is to
find a controller C(z) such that, for all [[All.<r =1,

W (2)(1+C()P(z,4)) 2 < 11 =0.089
where
0.058222 + 0.06349z + 0.005291
22 40.2381z - 0.6032

and the closed loop system is stable for all |[All. < =2.
Since the plant P(z,A) is stable in spite of the uncertainty,
according to the Youla parametrization, all stabilizing con-
trollers are of the form

W)=

_ (z)
T 1-0(2)P(z,A)

where ((z) is a stable rational transfer function. To solve
this problem using the algorithm presented in the previous
section, we take y = 10° (which is in practice equivalent
to requiring robust stability for {|A|| < r;) and generate the
random uncertainty samples using Algorithm 2 by taking z; =
e2mifN {=1,2,...,10. We first consider a design using only

- the nominal plant. Using Mat 1ab’s function dh21gg{), we

obtain the nominal HHy optimal controller

138.22% —93.7872 ~ 90.4z + 64.5
2 +2.23823 1+ 0.872922 — 0.9682z — 0.6031

Cirom (Z) =

and a nominal performance ||7y(z){|z = 0.0583. However,

this controller does not robustly stabilize the closed loop
plant for ||Ajl. < 2. We next apply Algorithm 3 to design a
risk-adjusted controller and, after 1,500 iterations, we obtain

Ci(z)
—0.003808z'% — 0.01977z13
—0.1778213 40.6376212 +0.092697' 1 + (0.2469710
~0.0029397!2
+0.062912% + 0.08426z8 + 0.043377 + 0.0740375 + 0.000475
+0.0462711
—0.11077% —0.07454z* — 00815622 —0.05994z + 0.01213°

Monte Carlo simulations were performed to estimate Py
and Py for each controller Ci(z) and the estimate of (P +
Pi2)/2 is shown in Figure 3. One can see that both the
probability of performance violation for ||All~ <1 and the
probability of instability for ||A[l. < 2 quickly converge to
zero, being negligible after iteration 200.

VI CONCLUDING REMARKS

In this paper, we provide efficient algorithms for gen-
eration of random samples of causal, linear time-invariant
uncertain transfer functions. Results on Nevanlinna-Pick and
boundary Nevanlinna-Pick interpolation are exploited to de-
velop two algorithms. The first one generates samples inside
the unit . ball and the second one generates random
transfer function on the boundary of the vnit H. ball. The
usefulness of these tools is illustrated by developing an
algorithm for solving some multi—disk problems arising in
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Fig. 3. Estimated (P + F2)/2.

the context of synthesizing robust controllers for systems
subject to structured dynamic uncertainty.

The results presented suggest several directions for further
research. First, we believe that effort should be put in the
development of efficient numerical implementations of the
algorithms put forth in this paper. Another possible direction
for further research is the development of stochastic gradient
algorithms for controller design which would guarantee that
one would obtain a robustly stabilizing controller after a finite
number of steps.
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APPENDIX
A. Generalized Interpolation Framework

We start by focusing our attention in a more general
result in interpolation theory. Let T and BT denote the
space of complex valued rational functions continuous in
|[A] = 1 and analytic in |A| < 1, equipped with the |.||z..
norm, and the (open) unit ball in this space, respectively
(ie. f(A) € BY «— f(%) € BH..). We now present a
fundamental result whose proof can be found in [1], [14).
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_Theorem 2: There exists a transfer function f(A) € BY
(BT such that:

Y. Resj_; f(A)C_(AI-A)" =Cy )
AgED
if and only if the following discrete time Lyapunov equation
has a unique positive (semi) definite solution.

M=A"MA+C.C_—-CiCy (5)

where A,C_ and C, are constant complex matrices of
appropriate dimensions and D denotes the open unit circle.
If M > 0 then the solution (1) is non—unique and the set of
solutions can be parameterized in terms of g(A ), an arbitrary

element of BT, as follows:
Adg(A A 2
B -3 161
(

© Ta(A)g(A)+T2(R)’

where T(1) is the J-lossless® matrix;

A B
T(L) = [ C; D;

BT:M*I(A*—I)'l[ -C, C ]icr= [ gi ](A—-I)

gij M7 A -0 -cr ]
Note that the matrices A and C_ provide the structure of the
interpolation problem while C; provides the interpolation
values. The following corollary shows that Nevanlinna-Pick
problem is a special case of this theorem, corresponding to
an appropriate choice of the matrices A and C_.

Corollary I (Nevanlinna-Pick): Let T’ = diag{};} € C™
and take

]; Ar=A

D=1+

A =T )
c. = [11 1]er ®
C+ = [ wp Wwa Wy ] (9)

then (4) is equivalent to f(A;) =w;, i =1,...,r and the
solution to {5) is the standard Pick matrix:

p= | Lomm;
1- /l,lj ij
B. Using this resnits for boundary interpolation

(10}

In the case of boundary interpolation |4;| =1, |w;| < 1,
these results can be used as follows:
1) Find a scalar r < 1 such that the equation:

M=rAMA+CIC. —CiCs (11)

has a positive definite solution M > 0.

2) Find the modified interpolant using the formulas (6)
with A = rT" = rdiag{4;}

3) The desired interpolant is given by G(L) = G, (rd).

2A transfer function H(A) is said to be J-lossless if HT(1/AJH(A) =7

when || =1, and HT (1/AH(A) <J when |A| < I. Here J = [ é ?‘,

C. Boundary Nevanlinna-Pick Interpolation

We now elaborate on the results on boundary Nevanlinna-
Pick interpolation used in this paper. For a extensive treat-
ment of this problem see {1]. Let D denote the unit circle
in the complex plane with boundary 9D and consider the
following interpolation problem:

Problem 1: Given N distinct points Ay, Az,...,Ay in 8D,
N complex numbers wy,ws,...,wy of unit magnitude and
N positive real numbers py,p2,.... o, find all rational func-
tions f(A} mapping D into D such that, forall i=1,2,...,N,

fy=wz fA)= ATwip;.

The following theorem provides a solution for the problem
above. The proof of this result can be found in [1].

Theorem 3: Let  A1,A2,...,Ax,  wi,w2,...,wy and
P1:P2,---,Pn be as in the statement of Problem 1 and define
the matrix A = [Ay],, .oy by

1—ntw . .
A‘ e 172_"2"- T # J
i.J i P
. Pi 1=
Then a necessary condition for Problem 1 to have a solution

is that A be positive semidefinite and a sufficient condition
is that A be positive definite. In the latter case, the set of all

solutions is given by
F) = 611 (A)g(A) + 612(4)
: 621 (A)g(A) + 622(4)
where g(A) is an arbitrary scalar rational function analytic
on D with sup{|g{A)|:z€ D} <1 such that &5 (A)g(A)+
622{A) has a simple pole at the points A;,Az,...,Ay. Here

01 (1) Oia(A
o= o) oal)

is given by _ _
B(A) = I+ (A —Ap)Co(Al—Ap) 'AT (AT=AR '
where
Ay
1 0
C":[“il wlN];A": : ;J:[o —1]
0 Ay

and Ay is a complex number of magnitude 1 and not equal
to any of the numbers 41,2,,...,Ax.

Note that if only the values wj,wz,...,wy of magni-
tude one are specified at the boundary points A;,43,..., Ay,
then the matrix A in the theorem above can always be
made positive definite by choosing the unspecified quantities
p1.P2,. .., pn sufficiently large. This leads to the following
corollary.

Corollary 2: Let 2N complex numbers of magnitude
one A,A3,...,Ay and wjy,wz,...,wy be given, where
A1, Aa,..-,An are distinct, Then, there always exist scalar
rational functions f(A) analytic in D with sup{|f(A}|: 4 €
D} <1 which satisfy the set of interpolation conditions

FA)=w; =12, N
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