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On the Design of Robust Controllers for Arbitrary
Uncertainty Structures

Constantino M. Lagoa, Xiang Li, and Mario Sznaier

Abstract—The focal point of this note is the design of robust controllers
for linear time-invariant uncertain systems. Given bounds on performance
(defined by a convex performance evaluator) the algorithm converges to
a controller that robustly satisfies the specifications. The procedure intro-
duced has its basis on stochastic gradient algorithms and it is proven that
the probability of performance violation tends to zero with probability one.
Moreover, this algorithm can be applied to any uncertain plant, indepen-
dently of the uncertainty structure. As an example of application of this
new approach, we demonstrate its usefulness in the design of robust
controllers.

Index Terms—Robust control, stochastic approximation.

I. INTRODUCTION

The design of robust controllers has long been considered one of the
more important problems in the control systems area. Well known ap-
proaches to address this problem include, among others,H1 theory
and the structured singular value, e.g., see [17]. However, results to
date are only applicable to specific uncertainty structures or/and can be
conservative. To overcome these difficulties, recently a new approach
has been developed to address the problem of robustness analysis and
robust controller design. This new approach relies on well known re-
sults in probability theory and it has shown that classical robustness
theory can be very conservative, i.e., one can greatly reduce the order
of the controller and/or enlarge the admissible set of uncertainties and
still have a very low risk of performance violation, e.g., see [1], [3],
[7], [16], and [22]. Moreover, these methods can be applied to arbi-
trary uncertainty structures, as long as random uncertainty samples can
be generated. Several stochastic approaches have also been developed
for robust controller design which exploit the advantages of random-
ization mentioned above. The work in [8], [18], and [21] uses random
sampling of the control parameters to look for the one with best per-
formance. In [6], [10], [12], and [15] a stochastic gradient approach is
applied to robust controller design. The problem of robust controller
design was also addressed in [13] and [19], where genetic algorithms
were used to determine the controller parameters. Also, in [14], simu-
lated annealing algorithms were used for controller design. The main
motivation for the work presented in this note is provided by the work
in [6] and [15], where the structure of linear matrix inequalities was
exploited to develop fast stochastic gradient algorithms. Building on
this work, we develop algorithms based on a nonstandard stochastic
approximation for the design of robust output feedback controllers.

In the sequel, the problem of robust output feedback controller
design for linear systems with arbitrary dependence on the uncertain
parameters is addressed. Consider an uncertain plantG(z;�), where
� 2 ��� represents uncertainty and��� is the compact uncertainty
support set. The uncertainty can be either static or dynamic and
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Fig. 1. Closed-loop system.

no assumptions are made on the wayG(z;�) depends on�.
The only assumption is that random samples�k 2 ��� can be
generated. Now, consider the closed-loop system in Fig. 1, whose
closed-loop transfer function is denoted byTCL(z;�; C). Given a
convex objective functiong(�) whose subgradient can be computed
and a performance level, the objective is to design a controller
C�(z) such that

g [TCL(z;�; C
�)] � 

for all � 2 ���. Note that the assumption on the availability of a
procedure for generating random uncertainty samples is a rather mild
one. Algorithms have been developed for generating both random
samples of static uncertain parameters (e.g., see [3], [5], and [9])
as well as dynamic uncertain parameters; see [4], [11]. Given the
probability measure underlying the random samples generation, the
algorithm provided produces a sequence of controllersCk having
the property that the risk of violating the performance specification

Pk
:
= Probfg [TCL(z;�; Ck)] > g

tends to zero ask !1. Moreover, it is proven that 1
k=0

Pk <1.
Hence,Pk tends to zero asymptotically faster than1=k. The general
nature of the algorithm provided, enables one to address many
problems in robust controller design. In particular, these procedure
can be used to solve the open problem of robustH2 controller design.
An example illustrating this particular instance of our algorithm is also
provided. This algorithm is a nonstandard stochastic approximation
algorithm in the sense that, in each step, it does not directly adapt
the controller coefficients. Instead, for each given admissible value
of the uncertain parameters, it uses the Youla parametrization of
the closed-loop transfer function to indirectly adapt the controller
coefficients. This new approach requires the use of a new “distance
measure” of controllers to establish the convergence of the algorithm,
i.e., convergence is proven by using therobust controller gap(see
Section IV-A).

The note is organized as follows. In Section II, the notation used
in this note is introduced and some ancillary results are provided. The
problem formulation and the algorithm are presented in Section III. The
main result concerning the convergence of the algorithm is provided
and proven in Section IV. The algorithm is applied to robustH2 design
in Section V and concluding remarks are presented in Section VI.

II. NOTATION AND PRELIMINARIES

We now state the notation used throughout this note as well as some
standard results needed for the presentation of our results.

0018-9286/03$17.00 © 2003 IEEE
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A. Notation

Let Hn�m
2

denote the Hilbert space of functionsH:C ! C
n�m

analytic in the setfz 2 C: jzj � 1g, equipped with the inner product

hH; T i = 1

2�

2�

0

RefTrace[H(ej�)�T (ej�)]gd�

whereRe denotes the real part,Trace(A) is the trace of the matrix
A andA� denotes the conjugate transpose ofA. Hence, theH2 space
has normkTk2 =

phT; T i. Also, letRH2 denote the subspace of
all rational functions inH2 analytic infz 2 C: jzj � 1g. Moreover,
define the spaceG as the space of rational functionsG:C ! C

n�m

that can be represented as

G(z) = Gs(z) +Gu(z)

whereGs(z) analytic in the setfz 2 C: jzj � �g andGu(z) is strictly
proper, analytic in the setfz 2 C: jzj < �g and0 < � < � < 1.
Now, given two functionsG, H 2 G define the distance functiond as

d(G;H)
:
= kGs(z)�Hs(z)k22 + kGu

�

z

�Hu
�

z
k22)

1=2

:

The results later in the note that make use of this distance function are
similar for any value of�. However,� is usually taken to be very close
to one. Finally, define the projection�s:G ! H2

�s(G)
:
= Gs:

Now, consider a convex functiong:H2 ! R. Given anyG0 2 H2,
there exists a@Gg(G0) 2 H2 such that

g(G)� g(G0) � h@gG(G0); G�G0i (1)

for all G 2 H2. The quantity@Gg(G0) is said to be a subgradient of
g at the pointG0.

B. Closed-Loop Transfer Function Parametrization

Central to the results presented in this note is the parametrization
of all closed-loop transfer functions. Consider the closed-loop plant in
Fig. 1 with uncertain parameters� 2 ���. The uncertainty� can in-
clude static uncertainty, uncertain transfer function matrices or a com-
bination of both. The Youla parametrization (e.g., see [17]) indicates
that, given� 2��� and a stabilizing controllerC 2 G, the closed-loop
transfer function can be represented as

TCL(z;�; C) = T
1
�(z) + T

2
�(z)Q�;C(z)T

3
�(z) (2)

whereT 1�; T
2
�; T

3
� 2 RH2 are determined by the plantG(z;�) (and,

hence, they also depend on the uncertainty�) andQ�;C 2 RH2 de-
pends on both the open-loop plantG(z;�) and the controllerC(z).
Also, given anyQ�;C(s) 2 RH2, there exists a controllerC 2 G
such that the equality above is satisfied. This parametrization also holds
for all closed-loop transfer functions, stable and unstable. Using a fre-
quency scaling reasoning, one can prove the following result: Given
� 2 ��� and a controllerC 2 G, the closed-loop transfer function can
be represented as (2) whereT 1�; T

2
�; T

3
� 2 RH2 are the same as above

andQ�;C(s) 2 G. Furthermore, given anyQ�;C(s) 2 G there exists
a controllerC 2 G such that the equality above is satisfied. Note that
the mapping from� toT 1�; T

2
�; T

3
� is not unique. In what follows, we

assume that a unique mapping has been selected. Results to follow do
not depend on how this mapping is chosen.

III. CONTROLLER DESIGN ALGORITHM

Before providing the controller design algorithm, we first provide a
precise definition of the problem to be solved and the assumptions that
are made.

A. Problem Statement

Consider the closed-loop system in Fig. 1 and a convex objective
functiong:H2 ! R. As mentioned in Section I, given a performance
value , we aim at designing a controllerC�(z) such that the
closed-loop systemTCL(z;�; C�) is stable for all admissible values
of the uncertainty and satisfies

g [TCL(z;�; C
�)] � 

for all � 2���. Throughout this note, we will assume that the problem
above is feasible. More precisely, the following assumption is made.

Assumption 1:There exists a controllerC� and an" > 0 such that,
for all � 2 ���

d(Q�;C ; Q) < ") g T
1
�(z) + T

2
�(z)Q(z)T3�(z) � :

B. Controller Design Algorithm

We now state the proposed robust controller design algorithm.
This algorithm has a free parameter� that has to be specified. This
parameter can be arbitrarily chosen from the interval (0,2). Although
this algorithm uses the same step as the algorithms in [6] and [15], it
is different in the sense that the update at each step does not directly
involve the design variables (i.e., the controller) but rather it updates
the Youla parameter corresponding to the uncertainty sample.

Step 0 Let . Pick a controller .
Step 1 Draw sample . Given , com-
pute as described in
[17] .
Step 2 Let be such that the
closed-loop transfer function using
controller is

TCL(z;�
k
; Ck) = T

1

� (z) + T
2

� (z)Qk(z)T
3

� (z):

Step 3 Do the stabilizing projection 1

Qk;s(z) = �s(Qk(z)):

Step 4 Perform update

Qk!k+1(z) = Qk;s(z)

��k(Qk;s;�
k)(z)@Qg(TCL(z;�

k
; Q))jQ (3)

where (4) , as shown at the bottom of the
next page, holds.
Step 5 Determine the controller so
that

Q� ;C = Qk!k+1:

Step 6 Let . Go to Step 1.

1Note that, sinceC is not guaranteed to be a robustly stabilizing controller,
Q might not be stable.
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C. Remark

In the previous algorithm, we assume the knowledge of the quantity
". If the value of" is not available, one can instead use a decreasing
sequence"k > 0 whose limit is zero and

1

k=1

"
2
k =1:

The results presented in this note can be easily altered to allow for
this modification. However, if the value of" is available, one should
use it since the introduction of the sequence"k reduces the speed of
convergence.

D. Stopping Criterion

In a practical implementation of the aforementioned algorithm, a
possible stopping criterion is the following: Periodically perform a
Monte Carlo simulation to estimate the risk of performance violation
and stop if the risk is below a given threshold.

IV. M AIN RESULT

We now present the main result of this note, i.e., the algorithm de-
scribed in Section III converges to a controller that robustly satisfies the
performance specifications. The exact statement is given as follows.

Theorem 1: Let g:H2 ! R be a convex function with subgradient
@g 2 RH2 and let > 0 be given. Define the risk of performance
violation as

Pk
:
= Probfg(TCL(z;�; Ck)) > g:

Then, if Assumption 1 holds, the algorithm described in Section III-B
generates a sequence of controllersCk for which the risk of perfor-
mance violation satisfies the equality

1

k=0

pk <1:

Hence, risk tends to zero ask ! 1.
Before the proof of Theorem 1 is presented, we introduce the concept

of robust controller gap. robust controller gap.

A. Robust Controller Gap

In order to prove the previous result, one needs a measure of how
far is a controller from the optimal. Hence, the concept ofrobust con-
troller gap is introduced. This “distance” measure uses the difference
between closed-loop transfer functions as an indication of how far are
the controllers. Letf be the probability density function used to gen-
erate the samples in the controller design algorithm. Then, given two
controllersC1 andC2, the robust gap is

rgap(C1; C2) = d
2(Q�;C ; Q�;C )f(�)d�:

Hence, given three controllersC1, C2 andC�, we have

d
2(Q�;C ; Q�;C )� d

2(Q�;C ; Q�;C ) = rgap(C1; C�)

� rgap(C2; C�)

+ V

with E[V jC1; C2; C
�] = 0 whereE[XjY ] denotes the conditional

expectation ofX givenY .
We are now ready to present the proof.

B. Proof of Theorem 1

The first part of the proof is similar to the one in [6] and [15], and
is, therefore, omitted. LetC� be a controller which achieves the robust
performance specification and letT� ;Q

:
= T 1

� + T 2
�QT

3
�. Using

Assumption 1 and using the same reasoning as in [6], one can prove
that if g(T� ;Q ) > , one gets

d(Qk!k+1; Q� ;C )2 � kQk;s �Q� ;C k22 � "
2
�(2� �):

Now, define the indicator function

Ifg(T )>g
:
=

1; if g(T� ;Q ) > 

0; otherwise

and obtain the following inequality:

d(Qk!k+1; Q� ;C )2 � kQk;s �Q� ;C k22

�"2�(2� �)Ifg(T )>g:

Now, letQk;u = Qk � Qk;s. Since

kQk;s �Q� ;C k22 + Qk;u

1

z

2

2

= d(Qk;Q� ;C )2

we have

d(Qk!k+1; Q� ;C )2 � d(Qk;Q� ;C )2

�"2�(2� �)Ifg(T )>g � Qk;u

1

z

2

2

:

Given the definition of robust gap, provided in Section III, the previous
equation can be rewritten in the following form:

rgap(Ck+1; C
�) � rgap(Ck; C

�)

�"2�(2� �)Ifg(T )>g � Qk;u

1

z

2

2

+ Vk

where E[VkjCk+1; Ck; C
�] = 0: now let

Fk = �(rgap(C1;C
�); . . . ; rgap(Ck; C

�)) be the
�-algebra generated by rgap(C1; C

�), rgap(C2; C
�), . . .,

rgap(Ck; C
�), e.g., see [20] for a precise definition of a�-algebra.

Now, take expectation conditioned onFk.Then

E[rgap(Ck+1; C
�)jFk] �rgap(Ck; C

�)� "
2
�(2� �)

� Probfg(T�;Q ) > jFkg

�E Q�;C ;u

1

z

2

2

jFk

(5)

where0 < � < 2. Now, note thatrgap(Ck; C
�) � 0. Furthermore,

one can easily prove thatE[rgap(C0; C
�)] < 1. Hence, the process

frgap(Ck;C
�); k � 1g is a supermartingaleand it is bounded

in L1, e.g., see [20] for a precise definition of a supermartingale.
Therefore,rgap(Ck; C

�) converges to a finite value with proba-
bility one, e.g., see [20]. Hence, its expectation also converges to
a finite value. Now, compute the expected value of both sides of
(5). Let Pk = Probfg(T�;Q ) > g, and, using the fact that
E[E[XjY ]] = E[X], get

E[rgap(Ck+1; C
�)] � E[rgap(Ck; C

�)]

�"2�(2� �)Pk �E Q�;C ;u

1

z

2

2

:

�k(Qk;�) =
�
g(T (z;�;Q ))�+" k@ g(T (z;�;Q))j k

k@ g(T (z;�;Q))j k
; if g(TCL(z;�; Qk)) > ;

0; otherwise.
(4)
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Hence

E[rgap(Ck+1; C
�)] � rgap(C0; C

�)

�"2�(2� �)

k

i=0

Pi �

k

i=0

E Q�;C ;u
1

z

2

2

:

Given the fact thatE[rgap(Ck+1; C
�)] converges to a finite value, we

have to have
1

i=0

Pi <1 and

1

i=0

E Q�;C ;u
1

z

2

2

<1:

Q:E:D:

V. ROBUSTH2 DESIGN

We now turn our attention to the case of robust weightedH2 con-
troller design. For simplicity of exposition, we are going to consider
the single-input–single-output case. A straightforward extension can be
done to the case of multiple inputs and/or outputs. GivenW 2 RH2,
consider the weightedH2 norm defined as

g(G) =
1

2�

2�

0

jW (ej�)G(ej�)j2d�

1=2

:

Now, since we are considering the case of a single input/ single output
system, given a controllerC and an uncertainty value� 2 ���, the
closed-loop transfer function can be represented in the form

TCL(z;�; C) = T 1
�(z) + T 2

�(z)Q�;C(z):

Now, the results in [2] indicate that, in this case, the subgradient with
respect toQ of the objective function is given by

@Qg(TCL(z;�
k; C))(Q) =

1

2�kTCL(z;�; Q)k2

�TCL(z;�; C) T
2
�(z)W(z):

A. Numerical Example

As a numerical example of the application of the ideas put forth
in this note, consider the problem of designing a robust discrete time
controller for a dc armature-controlled servomotor. More precisely,
consider the closed-loop sampled data system in Fig. 2 whereG(s)
represents the dc motor to be controlled andC(z) the discrete-time
controller to be designed. The transfer function of the dc motor is
of the form

G(s;�) =
!2

s(s+ 2�!)

where the value of� = (!; �) is not exactly known. The only informa-
tion available is that! 2 [5; 7] and� 2 [0:2; 0:4]. For a given > 0,
the objective is to design a controllerC(z) such that

kW (z)(1 + C(z)G(z;�))�1k2 � 

for all admissible values of�, whereW (z) is a given weighting
function andG(z;�) is the discretized version of the plantG(s;�).
Throughout this example, we assume that the sampling time is
T = 0:5 s and that the weighting function is

W (z) =
0:033 33z + 0:04536

z � 0:6065
:

To design a controller using the algorithms presented in this note, a
performance level of = 0:15 was chosen and uniform distributions
for the uncertain parameters were used. After 30 000 iterations, the fol-
lowing controller was obtained:

C1(z) =
0:3043z3 � 0:4643z2 + 0:2114z � 0:0102

z4 + 0:6533z3 � 0:9549z2 + 0:002239z + 0:413
:

Fig. 2. Closed-loop system.

Fig. 3. Risk of performance violation.

To assess the performance of this controller, a Monte Carlo simulation
with 100 000 samples was performed and the estimated risk of per-
formance violation was found to bezero. We also estimated the risk
of performance violation as a function of the iteration number. These
estimates were obtained through Monte Carlo simulations with 3,000
samples each and the results obtained are shown in Fig. 3. As it can be
seen, the risk decreases rapidly to very low levels. At the 7 000th iter-
ation, the risk is approximately zero.

VI. CONCLUDING REMARKS

In this note, we address the problem of robust controller design for
linear time invariant systems with arbitrary uncertainty structure. Given
bounds on a convex performance function, the proposed algorithm
converges to an output feedback controller that robustly satisfies the
specifications. Moreover, it is proven that this stochastic gradient
like procedure produces a sequence of controllers with a risk of
performance violation that decreases to zero asymptotically faster
than 1=k, wherek is the number of iterations. As an example, the
problem of robustH2 performance is considered and a numerical
example is provided.

The results presented are just a first step and, hence, there are many
open problems. Effort is currently being put in the elimination of the as-
sumption of the knowledge that a robust controller exists for the given
performance level. Preliminary results indicate that the algorithm pre-
sented in this note can be modified to minimize the expected perfor-
mance. Of interest is also the problem of order of the controller. Since
there are no restrictions on the order of the controllers designed using
the algorithm presented in this note, it would be of interest to modify it
so that it would take the maximum order of the controller as one of the
specifications. Also, the procedure presented does not assure that, at
each iteration, one has a controller that robustly stabilizes the system.
In many cases, this is a “hard” constraint in the sense that the final de-
sign should lead to a robustly stable system. Hence, we believe that
effort should be put in the study of this problem.
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Invariant Subspaces for LPV Systems and
Their Applications

Gary Balas, József Bokor, and Zoltán Szabó

Abstract—The aim of this note is to extend the notion of invariant sub-
spaces known in the geometric control theory of the linear time invariant
systems to the linear parameter-varying (LPV) systems by introducing the
concept of parameter-varying invariant subspaces. For LPV systems affine
in their parameters, algorithms are given to compute many parameter
varying subspaces relevant in the solution of state feedback and observer
design problems.

Index Terms—Distributions, input affine systems, invariant subspaces,
linear parameter-varying (LPV) systems.

I. INTRODUCTION

Important engineering processes involve time-varying linear and
nonlinear models. A general theory for the robust control of nonlinear
systems is not computationally tractable and useful progress requires
an intermediate level of complexity. Linear parameter-varying (LPV)
modeling techniques have gained a lot of interest as they provide a
systematic means of computing gain-scheduled controllers, especially
those related to vehicle and aerospace control, [2], [4], [11], [18], [23].

Many of the control system design techniques using LPV models
can be cast or recast as convex feasibility problem with infinite con-
straints that involve linear matrix inequalities (LMIs). This problem
can be addressed by using affine LPV modeling that reduces the in-
finite constraints imposed on the LMI formulation to a finite number,
[1], [30].

The pure LPV model is not quite matched for practical problems,
e.g., to the flight control problem, where the scheduling variables are
in fact system states (e.g. airspeed and angle of attack), rather than
bounded external variables. An approach to this problem is to generate
so-called quasi-LPV models, which are applicable when the scheduling
variables are measured states, the dynamics are linear in the inputs and
other states, and there exist inputs to regulate the scheduling variables
to arbitrary equilibrium values.

The mathematically dual concepts of (A,B)(or controlled)-invari-
ance and (C,A) (or conditioned)-invariance play an important role in
the geometric theory of linear time-invariant (LTI) systems, [6], [32].
These concepts were used to study some fundamental problems of LTI
control theory, such as disturbance decoupling (DDP), unknown input
observer design, fault detection (FPRG), [19], [20], [32]. The nonlinear
version of this geometrical approach is much more complex and deals
with certain locally controlled or conditioned invariant distributions
and codistributions, [14], [15], [24], [25].

The aim of this note is to extend these notions for the param-
eter-varying systems by introducing the notion ofparameter-varying
(A;B)-invariant, parameter-varying(C;A)-invariant, controllability
and unobservability subspaces, and to give some algorithms to
compute these subspaces if certain conditions are fulfilled.
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