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On the Design of Robust Controllers for Arbitrary
Uncertainty Structures U ———» —

G(z,A)

Constantino M. Lagoa, Xiang Li, and Mario Sznaier

Abstract—The focal point of this note is the design of robust controllers
for linear time-invariant uncertain systems. Given bounds on performance
(defined by a convex performance evaluator) the algorithm converges to
a controller that robustly satisfies the specifications. The procedure intro- C(z)
duced has its basis on stochastic gradient algorithms and it is proven that
the probability of performance violation tends to zero with probability one.
Moreover, this algorithm can be applied to any uncertain plant, indepen-
dently of the uncertainty structure. As an example of application of this Fig. 1. Closed-loop system.
new approach, we demonstrate its usefulness in the design of robusf,
controllers.

Index Terms—Robust control, stochastic approximation. no assumptions are made on the wéyz,A) depends onA.
The only assumption is that random sampla§ € A can be
generated. Now, consider the closed-loop system in Fig. 1, whose
|. INTRODUCTION closed-loop transfer function is denoted By (z, A, C). Given a
The design of robust controllers has long been considered one of @@@vex objective functiory(-) whose subgradient can be computed
more important problems in the control systems area. Well known a@2d a performance level, the objective is to design a controller
proaches to address this problem include, among otli&gs theory C*(z) such that
and the structured singular value, e.g., see [17]. However, results to
date are only applicable to specific uncertainty structures or/and can be gTor(z, A, CT)] < v
conservative. To overcome these difficulties, recently a new approach
has been developed to address the problem of robustness analysif@nell A € A. Note that the assumption on the availability of a
robust controller design. This new approach relies on well known rgrocedure for generating random uncertainty samples is a rather mild
sults in probability theory and it has shown that classical robustnesse. Algorithms have been developed for generating both random
theory can be very conservative, i.e., one can greatly reduce the orstanples of static uncertain parameters (e.g., see [3], [5], and [9])
of the controller and/or enlarge the admissible set of uncertainties axe well as dynamic uncertain parameters; see [4], [11]. Given the
still have a very low risk of performance violation, e.g., see [1], [3probability measure underlying the random samples generation, the
[7], [16], and [22]. Moreover, these methods can be applied to arkilgorithm provided produces a sequence of control&shaving
trary uncertainty structures, as long as random uncertainty samples ganproperty that the risk of violating the performance specification
be generated. Several stochastic approaches have also been developed
for robust controller design which exploit the advantages of random- P, = Prob{g[Tcr(z, A, Cr)] > v}
ization mentioned above. The work in [8], [18], and [21] uses random

sampling of the control parameters to look for the one with best pPg&nys to zero ag — oo. Moreover. it is proven thal "™ . P, < oo
. . - . ) k=0 1k .

formance. In [6], [10], [12], and [15] a stochastic gradient approach jgance p, tends to zero asymptotically faster thifik. The general
app_lled to robust controller (_1e5|gn. The problem of robugt contrpll%ture of the algorithm provided, enables one to address many
design was also addressed in [13] and [19], where genetic algorithg}§piems in robust controller design. In particular, these procedure
were used tq determlpe the controller parameters. Also,_ in [14], SiMin be used to solve the open problem of roliistontroller design.
lated annealing algorithms were used for controller design. The mai{f example illustrating this particular instance of our algorithm is also
motivation for the work presented in this note is provided by the workqyiged. This algorithm is a nonstandard stochastic approximation
in [6] and [15], where the structure of linear matrix inequalities wagyqorithm in the sense that, in each step, it does not directly adapt
exploited to develop fast stochastic gradient algorithms. Building Qe controller coefficients. Instead, for each given admissible value
this work, we develop algorithms based on a nonstandard stochagfiGhe yncertain parameters, it uses the Youla parametrization of
approximation for the design of robust output feedback controllers. yhe closed-loop transfer function to indirectly adapt the controller

In the sequel, the problem of robust output feedback controllgpetficients. This new approach requires the use of a new “distance
design for linear systems with arbitrary dependence on the uncertgiBasyre” of controllers to establish the convergence of the algorithm,
parameters is addressed. Consider an uncertain @lantA ), where i.e., convergence is proven by using trbust controller gap(see
A € A represents uncertainty anfl is the compact uncertainty gection IV-A).
support set. The uncertainty can be either static or dynamic andrpe note is organized as follows. In Section II, the notation used

in this note is introduced and some ancillary results are provided. The
problem formulation and the algorithm are presented in Section Ill. The

Manuscript received March 27, 2003; revised June 25, 2003. Recommen#a@in result .Concer.ning the convergence of th.e algorithm is provided

by Associate Editor T. Iwasaki. This work was supported by the National S@nd proven in Section IV. The algorithm is applied to robtistdesign

ence Foundation under Grant ECS-9984260 and Grant ECS-0115946, andnb@ection V and concluding remarks are presented in Section VI.
the Air Force Office of Scientific Research under Grant AFSOR-F49620-00-1-
0020.
The authors are with the Electrical Engineering Department, The Il. NOTATION AND PRELIMINARIES
Pennsylvania State University, University Park, PA 16802 USA (e-mail: . .
lagoa@engr.psu.edu; xiangli@psu.edu; msznaier@frodo.ee.psu.edu). We now state the notation used throughout this note as well as some

Digital Object Identifier 10.1109/TAC.2003.819304 standard results needed for the presentation of our results.

0018-9286/03$17.00 © 2003 IEEE



2062 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 11, NOVEMBER 2003

A. Notation [ll. CONTROLLER DESIGN ALGORITHM
Let H; *"" denote the Hilbert space of functiof& C — C"*™ Before providing the controller design algorithm, we first provide a
analytic in the se{~ € C: |z| > 1}, equipped with the inner product precise definition of the problem to be solved and the assumptions that
L g are made.
(H,T) = 9—/ Re{Trace[H (¢’?)"T(c?)]}db
=T Jo A. Problem Statement

whereRe denotes the real parrace(A) is the trace of the matrix ~ Consider the closed-loop system in Fig. 1 and a convex objective
A andA* denotes the conjugate transposeioHence, the; space functiong: H, — R. As mentioned in Section I, given a performance
has norm||T||. = |AZ,T). Also, let RH, denote the subspace ofvalue v, we aim at designing a controllef™(z) such that the
all rational functions inH» analytic in{z € C:|z| > 1}. Moreover, closed-loop systeric:..(z, A, C*) is stable for all admissible values
define the spacé as the space of rational functioss C — C™*"™  of the uncertainty and satisfies
that can be represented as
gTer(z,A,07)] <y
G(z)=Gs(z)+ Gu(z)

o o forall A € A. Throughout this note, we will assume that the problem

whereG, (z) analyticinthe sef= € C:[z| > o} andG. (2)isstrictly  gpove is feasible. More precisely, the following assumption is made.

proper, analytic in the set- € C:|z| < a} and0 < § < a < 1. Agsumption 1: There exists a controllef* and ar: > 0 such that,
Now, given two function€z, H € G define the distance functiohas for g1 A € A

16,1 = (16.) = B+ 16 () Qo Q) < == g [Th(:) + TE()QTE ()] < 7.

. 1/2
- ()m)
& B. Controller Design Algorithm

The results later in the note that make use of this distance function ardVe now state the proposed robust controller design algorithm.
similar for any value ofv. However is usually taken to be very close This algorithm has a free parametgithat has to be specified. This

2

to one. Finally, define the projection,: G — H» parameter can be arbitrarily chosen from the interval (0,2). Although
this algorithm uses the same step as the algorithms in [6] and [15], it
T (G) = Gs. is different in the sense that the update at each step does not directly

_ _ ) involve the design variables (i.e., the controller) but rather it updates
Now, consider a convex function H> — R. Given anyGo € H2, the Youla parameter corresponding to the uncertainty sample.
there exists @ g(Go) € H» such that

9(G) = 9(Go) > (09a(Ga). G — Go) (1) Step O Let £k =0. Pick a controller Co(z).
Step 1 Draw sample A*. Given G(z, A*), com-
forall G € H:. The quantitydcg(Go) is said to be a subgradient ofpute T, (z), Ti.(z), T3.(z) as described in

g at the pointGo. [17] .
Step 2 Let Qi(z) be such that the
B. Closed-Loop Transfer Function Parametrization closed-loop transfer function using
Central to the results presented in this note is the parametrizat@ntroller Cr(s) is
of all closed-loop transfer functions. Consider the closed-loop plantin R L ) ) L
Fig. 1 with uncertain parameters € A. The uncertainty can in- Tor(z, A%, Ck) = Tar(2) + Tar(2)Qr(2)Tar (2).
clude static uncertainty, uncertain transfer function matrices or a com- o o
bination of both. The Youla parametrization (e.g., see [17]) indicat&§ep 3 Do the stabilizing projection !
that, givenA € A and a stabilizing controllef' € G, the closed-loop
transfer function can be represented as Qr,s(2) = ma(Qi(2)).
Tor(2,A,C) = TA(2) + Ta(2)Qa.c(2)TA(2) (2) Step 4 Perform update

whereTx, TX,TA € RH- are determined by the pla6t(z, A) (and, Q.41 (2) = Qr..(2)

hence, they also depend on the uncertaibjyandQa,c € RH, de- _ YR Ak

pends on both the open-loop plaitz, A) and the controllec (). A (Qrs, AT)(2)I09(Tonlz A% Qlaw,. (3)
Also, given anyQa ¢ (s) € RH,, there exists a controllef’ € G ere (4) , as shown at the bottom of the
such that the equality above is satisfied. This parametrization also ho t page 7h0|ds.

for all closed-loop transfer functions, stable and unstable. Using afr§fep 5 Détermine the controller Cri1(2) SO
guency scaling reasoning, one can prove the following result: Givi k+1

A € A and a controllec” € G, the closed-loop transfer function can
be represented as (2) whérg, T3, Ta € RH, are the same as above
andQa c(s) € G. Furthermore, given an@a «(s) € G there exists
a controllerC' € G such that the equality above is satisfied. Note th

the mapping from\ to Tx , T3, T is not unique. In what follows, we aétep 6let k=k+1 Go to Step 1.

assume that a unique mapping has been selected. Results to follow dRte that, since, is not guaranteed to be a robustly stabilizing controller,
not depend on how this mapping is chosen. Q1 might not be stable.

QAkeCk-)-l = Qk7~l~:+1 .
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C. Remark B. Proof of Theorem 1

In the previous algorithm, we assume the knowledge of the quantityThe first part of the proof is similar to the one in [6] and [15], and
<. If the value ofz is not available, one can instead use a decreasiigy therefore, omitted. L&t'™ be a controller which achieves the robust

sequence;, > 0 whose limit is zero and performance specification and @« , = TA + TAQT3 . Using
oo Assumption 1 and using the same reasoning as in [6], one can prove
Zgi = . that if g(Tax , .) > 7, One gets

k=1 . 9 . .

— . A(Qr—tt1,Qar o) <||Qk,s — Qar o

The results presented in this note can be easily altered to allow for (Qitpn Qar o) < 10 2ak,c
this modification. However, if the value afis available, one should Now, define the indicator function

3= 2 —n).

use it since the introduction of the sequenrgereduces the speed of 0 L[ 9(Tar g, ) >~
convergence. (oA g, )>7) 0, otherwise
D. Stopping Criterion and obtain the following inequality:

In a practical implementation of the aforementioned algorithm,da(Q,HH],({)M,C.,g)2 <Qks = Qar o I3
possible stopping criterion is the following: Periodically perform a
Monte Carlo simulation to estimate the risk of performance violation
and stop if the risk is below a given threshold. Now, letQr.. = Qr — Q... Since

=2 = e, o >

2

= ‘l(QkaQAk,O*)2

2

. 1
IV. MAIN RESULT 1Qk.s — Qar o |5 + HQM <;)
We now present the main result of this note, i.e., the algorithm de-
scribed in Section 11l converges to a controller that robustly satisfies th€ have
performance specifications. The exact statement is given as followsy (g, _, 1 Q. )2 < d(Qr. Qar )2
Theorem 1: Let g: H> — R be a convex function with subgradient veaner = ane
0y € RH> and lety > 0 be given. Define the risk of performance
violation as

2

o <1>

P, = Prob{g(Ter(z, A, Cr)) > 7). Given the definition of robust gap, provided in Section Ill, the previous
' equation can be rewritten in the following form:
Then, if Assumption 1 holds, the algorithm described in Section 11I-B
generates a sequence of controllé€fis for which the risk of perfor- Tgap (Chr1,
mance violation satisfies the equality

2
== 2= mgr o > T ‘

2

C*) < Tgan(ckvc*)
1
_5277(2 - 77)1{9(TA"'.QA, y>v) — HQ;WU, (j)
) S P4 2

> pk < oo where  E[Vi|Cri1. Cr. O] = 0. now let

k=0 Fr = 0 (rgap(C1,C"), ..., 1eap(Cr, C*))  be the

Hence, risk tends to zero &s— oc. c-algebra generated by re., (Ci,C*), 71gap(C2,C*), ...,

Before the proof of Theorem 1 is presented, we introduce the concept (Cy,C™), e.g., see [20] for a precise definition ofraalgebra.
of robust controller gap. robust controller gap. Now, take expectation conditioned ¢n..Then

2
+ Vi

A. Robust Controller Gap E[rgap (Crr1, C)Fr] <rgap(Cr, C7) = £29(2 = 1)

In order to prove the previous result, one needs a measure of how x Prob{g(Ta,q;..) > v Fe}
far is a controller from the optimal. Hence, the conceptotiust con- 1\ ||
troller gap is introduced. This “distance” measure uses the difference -E ‘ Qa,cpu <;) |
between closed-loop transfer functions as an indication of how far are 2
the controllers. Leff be the probability density function used to gen- ®)
erate the samples in the controller design algorithm. Then, given tyReareg « n < 2. Now, note that.,(Cx.C*) > 0. Furthermore,
controllersCy andCx, the robust gap is one can easily prove th&[r,.,(Co,C*)] < oc. Hence, the process

_ S o , {rgap(Cr,C*), k > 1} is a supermartingaleand it is bounded
Paap(C1. C2) = /d (@Qa.cr: Qa.co) f(A)A. in £', e.g., see [20] for a precise definition of a supermartingale.

Therefore, r,., (Cr, C*) converges to a finite value with proba-
bility one, e.g., see [20]. Hence, its expectation also converges to

Hence, given three controlle€s;, C'; andC™*, we have

(IQ(QA‘CI./QA:@*) — dg(QA,CQ,QA1(7VX) =7gap(C1, Ci) a finite value. Now, compute the expected value of both sides of
— raap(Ca, C4) (5). Let P, = Prob{g(Ta,q,.) > 7}, and, using the fact that
gapl L2, Lk - - >
E[E[X|Y]] = E[X], get
+V
E[reap(Crt1,C™)] < E[rgap(Cr, C*
with E[V|C,.C2,C*] = 0 whereE[X|Y] denotes the conditional [rsap (i1, O] < Blrgap (Cr, €] ,
expectation ofX givenY'. — (2= )P — F HQA o <}> '
We are now ready to present the proof. Rz ),

C9(Tor(2:8,Q1) =742 19Q9(TeL(2:4,Q) g, |2 P >
ap(Qr, A) = n 10Q9(Tern(2,4,@Q)g, 113 , g(TC_L(hA7Qk)) > 4
0, otherwise.
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Hence

. . — C(2) ZOH G(s)
E[Tgap(ck+17 C )] < 7“gap(cba C ) -
k k 1 2
_5277(2—7))ZR —ZE ‘QA,Oi.u <f) :| .
i=0 i=0 </ 2

Fig. 2. Closed-loop system.

v

Given the fact thaE[r,.,, (Cry1, C™*)] converges to a finite value, we

have to have 1 ' ' ' ‘ .

0 oo 1 2 I . 4
ZP;‘ < oo and ZE HQA,CML <f> < 00. g 0.9
i=0 1=0 ~ 2 :C_,% 0.8 i : 7
QED. £ 07] |
8 06t .
V. ROBUST H DESIGN E 05 ]
We now turn our attention to the case of robust weighfiedcon- “% 0.4 \ . 1
troller design. For simplicity of exposition, we are going to conside®~ 03 i
the single-input—single-output case. A straightforward extension can _3 ' 1
done to the case of multiple inputs and/or outputs. GNiére RH, § 02 i
consider the weighte@ > norm defined as 0.1 it J ce 1
1 [ 1z % 0s 1 15 2 25 3
Y 17/ .30 g /]9 2 / . .. . .
9(d) = <27r/0 )G d9> Number of Iterations x10*

Now, since we are considering the case of a single input/ single out
system, given a controllef’ and an uncertainty valuA € A, the
closed-loop transfer function can be represented in the form

%. 3. Risk of performance violation.

) To assess the performance of this controller, a Monte Carlo simulation
Tor(z,A,C) = TA(2) + TR (2)Qa,c(2). with 100 000 samples was performed and the estimated risk of per-
rmance violation was found to keera We also estimated the risk
performance violation as a function of the iteration number. These
) estimates were obtained through Monte Carlo simulations with 3,000

(- AR _ samples each and the results obtained are shown in Fig. 3. As it can be
Oa0Ter(z A% 0)(@) 2n||Ton(z, A, Q)| seen, the risk decreases rapidly to very low levels. At the 7 000th iter-
xTor(z,A,C) Ti(Z)W(Z)- ation, the risk is approximately zero.

Now, the results in [2] indicate that, in this case, the subgradient wﬁﬁ
respect ta) of the objective function is given by 0

. VI. CONCLUDING REMARKS
A. Numerical Example

h In this note, we address the problem of robust controller design for
aear time invariant systems with arbitrary uncertainty structure. Given
ounds on a convex performance function, the proposed algorithm
onverges to an output feedback controller that robustly satisfies the
specifications. Moreover, it is proven that this stochastic gradient
Iiige procedure produces a sequence of controllers with a risk of
performance violation that decreases to zero asymptotically faster

As a numerical example of the application of the ideas put for
in this note, consider the problem of designing a robust discrete ti
controller for a dc armature-controlled servomotor. More precisel
consider the closed-loop sampled data system in Fig. 2 whése
represents the dc motor to be controlled &n) the discrete-time
controller to be designed. The transfer function of the dc motor

of the form . ; .
than1/k, wherek is the number of iterations. As an example, the
Cls. A) = w? problem of robustH. performance is considered and a numerical
(s, 8) = (s + 26w) example is provided.

The results presented are just a first step and, hence, there are many
where the value ah = (w, 8) is not exactly known. The only informa- open problems. Effort is currently being put in the elimination of the as-
tion available is that € [5, 7] andé € [0.2,0.4]. For a giveny > 0,  sumption of the knowledge that a robust controller exists for the given
the objective is to design a controll€f(z) such that performance level. Preliminary results indicate that the algorithm pre-

V(. N~ AL sented in this note can be modified to minimize the expected perfor-

W)L+ C(G(z A) 2 < v mance. Of interest is also the problem of order of the controller. Since

for all admissible values of\, where W (z) is a given weighting there are no restrictions on the order of the controllers designed using
function andG(z, A) is the discretized version of the pla@(s, A). the algorithm presented in this note, it would be of interest to modify it
Throughout this example, we assume that the sampling time sie that it would take the maximum order of the controller as one of the

T = 0.3 s and that the weighting function is specifications. Also, the procedure presented does not assure that, at
0.033332 + 0.045 36 each iteration, one has a controller that robustly stabilizes the system.
W(z) = In many cases, this is a “hard” constraint in the sense that the final de-

) ) T 0'60_60 o sign should lead to a robustly stable system. Hence, we believe that
To design a controller using the algorithms presented in this notegfyrt should be put in the study of this problem.

performance level of = 0.15 was chosen and uniform distributions
for the uncertain parameters were used. After 30 000 iterations, the fol-
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