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Abstract 

Mixed performance control problems have been 
the object of much attention lately. These prob- 
lems allow for capturing different performance 
specifications without resorting to approximi+ 
tions or the use of weighting functions. How- 
ever, up to date most of the work concerning 
multiobjective control is limited to guarantee- 
ing nominal performance and robust stability. 
In this paper we analyze robust performance for 
a class of mixed problems. The main results of 
the paper furnish sufficient conditions for guar- 
anteeing performance (in the e ,  sense) under 
model perturbations having an to & bounded 
norm. These condition can be combined with 
previously proposed multiobjective control syn- 
thesis techniques to obtain controllers guaran- 
teeing robust performance. 

1 Introduction 

Multiobjective control problems have been the 
object of much attention lately (see [18] for ref- 
erences on recent work on multiobjective con- 
trol). In particular, ' H z / ' H ,  mixed control has 
been extensively investigated since its introduc- 
tion (see for instance [2, 7, 10, 111 and refer- 
ences therein). More recently [21, 171 
and .11/7i2 control problems have been formu- 
lated [20]. Given the difficulty in addressing 
multiple performance objectives, these papers 
concentrate on nominal performance / robust 
stability type designs, i.e. controllers that guar- 
antee stability for a family of plants, while at 
the same time, achieving optimal performance 
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for the nominal plant. 

However, even if the closed-loop system is guar- 
anteed to remain stable for off-nominal condi- 
tions, performance can be severely degraded. 
This has led to a recent research effort geared to- 
wards synthesizing controllers achieving robust 
performance. Most of this work concentrates on 
developing analysis tools to assess worst-case 
performance in the presence of norm-bound 
model uncertainty, although some partial syn- 
thesis results are also available ([14, 131). More- 
over, a large portion of this research effort has 
been directed towards analyzing performance 
when the exogenous input is a known, given 
signal. Recent work in this respect includes 
[14, 4, 5, 11 (see also [8] for the related prob- 
lem of robust steady-state tracking). 

Following along these lines, in this paper we 
study the problem of robust performance (in 
the em sense) to a fixed input, when the system 
is subject to model uncertainty with bounded 
l2 induced norm. This problem can be though 
of as a natural extension of the mixed P / R ,  
problem formulated in [15, 161. The main re- 
sult of the paper provides sufficient conditions 
for achieving robust performance under these 
conditions. One of these conditions, given in 
terms of the spectral radius of a matrix, pro- 
vides a simple robustness check. The second * 

condition reduces conservatism, at the price of 
more involved computations. These results are 
illustrated with a simple example. 

2 Notation and preliminary results 

2.1 Notation 
Given a vector x E Rn its 2-norm is defined 
as l lxll2 = C ~ = o ~ ~  and its infinity norm as A 
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A llxllw = maxi Izil. t2 denotes the space of 
bounded energy sequences h = {h.,) with the 

norm llhllp 2 (E lhil')' < CQ. tw denotes 

the linear space of bounded sequences equipped 
with the norm Ilhllp = sup /hi( < CQ. 

7-tw denotes the space of complex valued ma- 
trix functions that are analytic outside the 
unit disk. The norm on 7-1, is defined by 
l l G ( z ) 1 1 . ~ ~  = esssupl,l,lB(G(z)), where 8 de- 
notes the largest singular value. 

Assume now that H : t2 --i La is a bounded lin- 
ear operator defined by the usual convolution 
relation y = H * U. Its e2 induced norm is de- 
fined as IIHllfa,p & sup llH * u11p. It is 

well known that if H is linear time-invariant, 

In the sequel, we shall assume that the system 
uncertainty block A belongs to the following 
class: 

i=O 

A 

i>_Q 

A 

IIUllr~Sl 

I I m a . + f a  = llH1l.Hm. 

A D2 = (A : A is causal and IlAlIp,,, < 1 } 

2.2 The robust mixed P / X ,  problem 

Definition 2.1 G i v e n  the i n p u t  w E P ,  t h e  
s y s t e m  s h o w n  in Figure I achieve3 robust per- 
f o r m a n c e  in t h e  mixed em/%, sense  i f  t he  in- 
terconnect ion is robustly stable and such  tha t  
11211i- 5 1 f o r  all  A, lIA/lc.+p < 1. 

Figure 1: Robust mixed P / R ,  problem 

In the sequel we derive several conditions guar- 
anteeing mixed P / 7 - t W  robust performance. To 
this effect we begin by introducing the following 
two lemmas about non-negative matrices. 

Lemma 2.1 L e t  A be a square non-negative 
m a t r i z ,  i.e., ajj 2 0. T h e n  p(A) 5 1 i f  and 
only i f  t h e  inequalit ies x < Ax and x >_ 0 have 

no solution, where the  vector  inequalit ies should 
be interpreted in a componentwise sense.  

Proof: See, for instance, References [3, 61. 

Lemma 2.2 L e t  A be a non-negative m a -  

t r i x  partitioned as (;:: ti:) , i n d  suppose 

p ( A z z )  < 1. T h e n  p(A)  5 1 if and only i f  
p(A11 + - 4 1 4 1  - A22)-'A21) 5 1. 

Proof: The proof, omitted for space reasons, 
follows from Lemma 2.1 and standard proper- 

E ties of non negative matrices. 

3 Robust mixed Lw/3-1 ,  performance 
analysis 

In this section we provide some conditions guar- 
anteering robust performance (in the P sense) 
against one-block (unstructured), LTV pertur- 
bations having bounded L2 -+ L2 induced norm. 

Theorem 3.1 A s s u m e  t h a t  IIM1rllxoo 5 1. I f  

llM2111xa l lM22wl l t~  

t h e n  t h e  sy s t em M has  m i z e d  robust  perfor- 
mance  f o r  all L T V p e r t u r b a t i o n s  A E D2. 

Proof: It is sufficient to show that 

(2) 
I I M 2  1 I h a  I I M22 w I It- 

Suppose for some A E D2, llzllf- > 1. For this 
A, it follows that 

It is well known that sup IIMzlIt- = IIMII.H~ . 
ll4lt~ I1 

and sup llMCllfa = llMll.~,. Thus, from the .. .. ~~ 

l l s I l d a < 1  - '  .-  

triangle inequality, it follows that 
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Therefore, 

I I M21I171a I I M2zwl If- 
By Lemma 2.1 this implies 

I I M2 1 I 1x1 I I Ma 2 w I I f -  

IZ(N)I = N N )  + C n z ( i ) t ( N  - i) 
i = O  

Next we obtain a less conservative condition, at 
the price of increased computational complex- 
ity. Begin by considering the worst case value 
of llylla = IIMllt + M12wII2 when the input t is 
constrained to the y b a l l  in i2.  

FY(4 2 err0 t- ( 9 )  
5 

A Lemma 3.1 Let G,(w) = SUpll,tlla <, 11Milt + 
M12W11za. Then the following properties hold: 

I .  G,(w) is a continuoas, monotonically in- 
creasing, and concaue function of 7 for 
720. 

2. Suppose IIM1111x, < 1. Then the equa- 
tion 

- 

G J W )  = 7 (4) 

has a unique solution 7*. 
satisfies 

MoreoueT 7* 

IIM12wllLaa 
(1 - llM1lllXm)2 

(5) 

57* 5 IIMl2W112a 

1 - l l ~ l l l l ~ ,  

Proof: omitted for space reasons. 

Similarly, we consider now worst-case perfor- 
mance in the em sense. Define 

IN 

where {m(i)} denotes the impulse response of 
Mal and where $ = M22w. By choosing E as: 

0 elsewhere 

we have that I I E I I p  = y and 
(6) 

This implies that 

If the supreme is achieved for some finite N = 
N ( Y ) ,  it follows that 

I N  

On the other hand, if 

(N 

where 5 = IIMzlllfa and b7 = 
N-tm 

Therefore, it is always possible to write: 
lim I$(N)I. 

F,(w) = a-,7 + b,, 0 I % 5 l l ~ 2 1 1 I f ~  
0 5 4 5 Ill%=-. 

(8'1 

I N  I 
Lemma 3.2 The function $'.,(tu) has the for- 
lowing properties: 
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I. F7(w) is a continuous, monotonically 
non-decreasing, convex function of 7 for 
7 4 0. 

2. For any 71, 7 2  4 0, 

lF'i(w) - F Y a ( w ) I  I I I ~ ~ ~ I I L ~ I Y I  - 7 2 1  

Proof: Monotonicity follows immediately from 
the definition of F7. To prove item 2, given 
71,72 2 0, let 73 = A w  + (1 - A ) ~ z , O  5 X 5 1. 
It follows from (8) and (9) that 

F73(w) = a7373 + b73 = A ( 9 3 ? 1  + b73)  

+ 
I AF7i ( w )  + (1 - ( w )  

(l - A)(a73y2 + b 3 )  

(10) 
Therefore, F7(w) is a convex function of 7 2 0. 
Moreover, for any 71 2 7 2  2 0, 

F7i (w) - F7a (w> I +i (TI - 7 2 )  

5 IIM2lllfa(Tl - 7 2 )  

(11) 

Now, we are ready to present the main result of 
this section, providing a less conservative con- 
dition for mixed lm/3t, robust performance. 

Theorem 3.3 If the following two conditions 
hold: 

1) llMllllNm < 1; 

2) F f l ( w )  51- 
(12) 

where 7* 2 0 i s  the unique solution of the equa- 
tion 7 = G,(w). Then the system M has mized 
robust performance in the loo/3t;FI, sense for all 
LTV perturbations A E D2. 

Proof: The first condition guarantees robust 
stability of the system. From Lemma 3.1, there 
exists a unique solution 7' 2 0 to the equation 
7 = G7(w). Define the following sets: 

r = { 7 > 0  : ~ ~ ( w ) 4 7 }  
E = {t : l l € l l t a  < IIYIIP, Y = m1< + MIP}  

# (13) 
From these definitions it follows that if E E ,  
then Il(ll$ E I?. From the monotonicity and 
continuity of G7(w)  we have that for all 7 E I?, 
y 5 7*. Using the monotonicity of F7 and the 
second assumption in the hypothesis yields: 

Ffi(4 5 F&+J) 5 1 

Therefore, for all ( E E ,  llzllt- 5 ql t l l ra (w)  5 
1. The proof is completed by noting that since 
llAll-!' --t t2 5 1, 11(11p < IIgllfa and therefore 
4 E E. 

Remark 1 From definition (8)  and Lemma 3.1 
it follows that 

F ( w )  5 IIM22wII@= 
+E21 11% ( 1 - I I M l  1 1 1 %  ) - I I M12w I If 2 

(14) 
Thus, by Corollary 3.2, the conditions obtained 
in Theorem 3.3 are less conservative than the 
one presented in Theorem 3.1. 

Finally, we end this section by providing an up- 
per bound on the worst case value of IIzIlfoo. 

Lemma 3.3 For a given input w ,  the worst 
case value of the output sup llzllfm is upper 

bounded by: 
A E D ~  

SUP llzllf- 5 F f l ( 4  L: F7lW (15) 
A E D ~  

where 71 = (1 - l l M i i I l ~ , ) - ' l l ~ i z ~ I l ~ a .  
Proof: The proof follows immediately by com- 
bining Lemma 3.1 and Theorem 3.3. 

4 Example 

The following example is taken from [19]. Con- 
sider the ACC benchmark problem, where the 
system has the following state-space realization: 

(%)=.(E) 
P =  

0 0 1 0  
0 0 0 1  

-1.25 1.25 0 0 
1.25 -1.25 0 0 
1 -1 0 0 
0 0 0 0  
0 1 0 0  

0 0 0  
0 0 0  
1 0 1  
-1 1 0 
0 0 0  
0 0 1  
0 0 0  

(1 
In [19], this system was discretized using sam- 
ple and hold elements at the inputs and out- 
puts, with sampling time of 0.1 seconds, and 
an lm/Xm controller was designed to  achieve 
IITtuIl~, -2 $, and the control action IuI, in 
response to an impulse disturbance, -5 1. This 
controller has the following state-space realiza- 
tion: 

-1.7404 -0.7769 0.9975 
K =  [ 0.9950 

0 I 0 ] -1.1347 1.0044 4.1150 

) .  
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The closed-loop system, with the uncertainty 
'pulled out', is shown in Figure 2. Suppose the 

Figure 2: The standard form 

LTV perturbations are limited to &A E D2. 
It can be shown that 

Thus, both yanalysis and 11 theory indicate 
that this system doesn't have robust perfor- 
mance against worst-case inputs. However, by 
applying the proposed analysis for fked inputs 
( I w / ' &  robustness), we obtain that 71 = 2.070 
and 

F71(T,u, Tu,;) = 0.9837 < 1 

Therefore, we conclude that for an impulse 
input w ,  the closed-loop system achieves 
mixed robust performance against 11 Ah(lp,p 5 
0.645.This is consistent with numerical results 
when A E (-0.645,0.645), as shown in Figure 3. 

(18) 

5 Conclusions and directions for further 
* research 

In this paper we consider the problem of ana- 
lyzing robust performance (in the 1- sense) for 
systems subject to 1' -+ 1' norm bounded per- 
turbations. This problem can be considered as 
a natural extension of the mixed P/R,, nom- 
inal performance/robust stability type problem 
introduced in [15], and it is relevant for cases 
where some of the performance specifications 
are given in terms of the response to  a fixed, 
given signal. 

I 
O 50 100 IS0 2M 250 300 350 4M) 450 500 

-11 ' 

No. of Sampler 
A=-O.645 

I 

I 
0 50 IW 150 200 250 3M) 350 4CQ 450 500 

No. of Samples 

Figure 3: Impulse responses, different A's 

The main results of the paper provide suf- 
ficient conditions guaranteeing robust perfor- 
mance. One of these conditions is given in terms 
of the spectral radius of a matrix involving dif- 
ferent induced norms and can be easily checked. 
The second condition reduces conservatism at 
the price of more involved computations. 

These results are illustrated with a simple ex- 
ample taken from the literature. This example 
shows that although the proposed conditions 
are only sufficient, they provide results that 
are less conservative than those obtained via a 
worst-case input analysis, such as p-synthesis 
or el-theory. 

The results provided here are a first step to- 
wards the goal of synthesizing multiobjective ro- 
bust controllers. These controllers could be ob- 
tained for instance by combining the spectral- 
radius based condition with standard similarity 
scaling and some of the techniques available for 
optimizing nominal performance. Research in 
this direction is currently being pursued. 
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