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Abstract

Mixed performance control problems have been
the object of much attention lately. These prob-
lems allow for capturing different performance
specifications without resorting to approxima-
tions or the use of weighting functions. How-
ever, up to date most of the work concerning
multiobjective control is limited to guarantee-
ing nominal performance and robust stability.
In this paper we analyze robust performance for
a class of mixed problems. The main results of
the paper furnish sufficient conditions for guar-
anteeing performance (in the £, sense) under
model perturbations having an £; to £; bounded
norm. These condition can be combined with
previously proposed multiobjective control syn-
thesis techniques to obtain controllers guaran-
teeing robust performance.

1 Introduction

Multiobjective control problems have been the
object of much attention lately (see [18] for ref-
erences on recent work on multiobjective con-
trol). In particular, H;/Ho mixed control has
been extensively investigated since its introduc-
tion (see for instance {2, 7, 10, 11] and refer-
ences therein). More recently £!/H,, [21, 17]
and £/, control problems have been formu-
lated [20]. Given the difficulty in addressing
multiple performance objectives, these papers
concentrate on nominal performance / robust
stability type designs, i.e. controllers that guar-
antee stability for a family of plants, while at
the same time, achieving optimal performance
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for the nominal plant.

However, even if the closed—loop system is guar-
anteed to remain stable for off~nominal condi-
tions, performance can be severely degraded.
This has led to a recent research effort geared to-
wards synthesizing controllers achieving robust
performance. Most of this work concentrates on
developing analysis tools to assess worst—case
performance in the presence of norm-bound
model uncertainty, although some partial syn-
thesis results are also available ([14, 13]). More-
over, a large portion of this research effort has
been directed towards analyzing performance
when the exogenous input is a known, given
signal. Recent work in this respect includes
[14, 4, 5, 1] (see also [8] for the related prob-
lem of robust steady-state tracking).

Following along these lines, in this paper we
study the problem of robust performance (in
the £ sense) to a fixed input, when the system
is subject to model uncertainty with bounded
£2 induced norm. This problem can be though
of as a natural extension of the mixed £ /H
problem formulated in [15, 16]. The main re-
sult of the paper provides sufficient conditions
for achieving robust performance under these
conditions. Omne of these conditions, given in
terms of the spectral radius of a matrix, pro-
vides a simple robustness check. The second
condition reduces conservatism, at the price of
more involved computations. These results are
illustrated with a simple example.

2 Notation and preliminary results

2.1 Notation

Given a vector ¢ € R"™ its 2—~norm is defined
A o sals
as |z}l = Yomo2? and its infinity norm as



l12])ca 2 max |z:]. £ denotes the space of
bounded energy sequences A = {h;} with the
1

A 0 F
norm [hlj;s = (Z !h-;lz) < 0. £ denotes
=0
the linear space of bounded sequences equipped
with the norm ||Al|¢e £ sup |hi} < oo.
i>0

Hoo denotes the space of complex valued ma-
trix functions that are analytic outside the
unit disk. The norm on H is defined by
1G(2)||#., £ ess SUP|,|>1 7 (G(2)), where 7 de-
notes the largest singular value.

Assume now that H : £2 — £2 is a bounded lin-

ear operator defined by the usual convolution

relation y = H * u. Its £2 induced norm is de-

fined as ||H||;aps = sup ||H * uf|s. It is
ulj,2<1

well known that if H is linear time-invariant,

| Hllez oz = [ H |-

In the sequel, we shall assume that the system
uncertainty block A belongs to the following
class:

Do & {A : Aiscausal and ||A|[zoza <1}

2.2 The robust mixed £*/H,, problem

Definition 2.1 Given the input w € £, the
system shown in Figure 1 achieves robust per-
formance in the mized £*°/Ho, sense if the in-

terconnection is robustly stable and such that
||z||¢°o <1 forall A, ”A”p_.p <1l

A

M

Figure 1: Robust mixed £ /X, problem

In the sequel we derive several conditions guar-
anteeing mixed £ /H, robust performance. To
this effect we begin by introducing the following
two lemmas about non-negative matrices.

Lemma 2.1 Let A be a square non-negative
matriz, i.e., aij > 0. Then p(A) < 1 if and
only if the inequalities ¢ < Az and ¢ > 0 have
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no solution, where the vector inequalities should
be interpreted in a componentwise sense.

Proof: See, for instance, References [3,6]. H

Lemma 2.2 Let A be a non-negative ma-
triz partitioned as (ﬁ:i jz), and suppose
p(A22) < 1. Then p(4) < 1 if and only if
p(A1s + Aa(I — Az2) TAn) < 1.

Proof: The proof, omitted for space reasons,
follows from Lemma 2.1 and standard proper-
ties of non negative matrices. u

3 Robust mixed {*°/H,, performance
analysis

In this section we provide some conditions guar-
anteering robust performance (in the £*° sense)
against one-block (unstructured), LTV pertur-
bations having bounded £ — £2 induced norm.

Theorem 3.1 Assume that [|Myq||y,, < 1. If

p(HMuHHw HmeIIz:) (1)
IMa1l7, || Mazwl|ee

then the system M has mized robust perfor-
mance for all LTV perturbations A € Do.

<1

Proof: It is sufficient to show that
P sy lellm > 1=

P (llMuHHoo HMlszu) 5p @

IMasllz, |[Ma2wlle

Suppose for some A € D9, ||z}l > 1. For this

A, it follows that

|M2]eee = || M ]|,

It is well known that

M,
M2y

My,
M,

3

w

)
z

sup
|2 ‘:_1
and sup ||Mz|z = ||M||x... Thus, from the
& ‘251

triangle inequality, it follows that
( (HMHHH«, ||M12w”z=) (Hfﬂn)

1Mzallre, || Mazwl|ee 1
Since A € D9 and {[z||¢= > 1, it also follows
that ”E”p < ”y”p and

||E||z=> (Hyﬂp )

<
( 1 llzllee



Therefore,
|| M1]|7,,

(”ﬂll’) < (”MH”'H:

By Lemma 2.1 this implies
o (HMnIIHw ) S 1

(1 Mz21[3,
Corollary 3.2 If || Mu|ln, < 1, then for a
fized input w we have:

|| M12w)|ea
| Mz2w||gee

1315
1

)

| M1zw||
([ M22w]| 2o

sup |{zllee < || Magwllses
aeD
| Maa||7, (1 — [ M1a]l3..) | Miawlle
(3)

+

Next we obtain a less conservative condition, at
the price of increased computational complex-
ity. Begin by considering the worst case value
of ||y|l2 = || M11€ + Miw||; when the input £ is
constrained to the y—ball in £2.

Lemma 3.1 Let G,(w) £ SUP¢|j2, < [|M1:€ +
Myaw||%,. Then the following properties hold:

1. G,(w) is a continuous, monotonically in-
creasing, and concave function of v for

v20.

2. Suppose ||Mui||n, < 1. Then the eque-
tion

Gy(w) =7 (4)
has a unique solution v*. Moreover 4*
satisfies
||M1zw||f; <y < [|M12w]iZ:

1—||Muli3,, (1 =1 Maflne, )2

(5)
Proof: omitted for space reasons.

Similarly, we consider now worst—case perfor-
mance in the £*° sense. Define

Fy(w)

sup ||Ma1€ + Maaw|j¢ee
[(€llea <7

Let z = My:€ + Maw. Clearly for each N > 0,

N
|2(N)| = \w(N) + Zm(i)a(N -9)| <
. 1=0
)]+ |3 m(@EW - i)
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N
e <

=0

N
S m2(3)

=0

J

where {m(:)} denotes the impulse response of
M, and where ¥ = Ma,w. By choosing £ as:

S|¢(N)I+\x

N
W]+ 74 > m ()

=

sign [(Marw)(W)] —md——m(N ),

0N ma)
=93 i201...N 2

0 elsewhere
()
we have that ||£]|;z = ¥ and

N
o) = )|+ 74| o m2 ()

This implies that

N
Z m2(z)

=0

o

If the supreme is achieved for some finite N =
N(7), it follows that

N
Fy(w) = [9(N)] + ml > ma() £ by +ayy

On the other hand, if

N

Fy(w) = lim {I¢(N)I+w zmza)}
Y A

Jim [$()| + Jim gmz(ih 7+ 6y

where a, = |[Mai||z and b, = Nlim [ (N)].
- 00
Therefore, it is always possible to write:

Fy(w) = sup {|¢(N)I +

ay < || Malea
by < lIlles--

(8)
Morevoer, from the definition of F, it follows
immediately that for any vo # 7,

Fy(w) =ayy+by, 0 <
0 <

Fy(w) Z ay70 + by

(9)

Lemma 3.2 The function F,(w) has the fol-
lowing properties:



1. Fy(w) is a continuous, monotonically
non-decreasing, convez function of v for
v 2 0.

2. For any 11,72 2 0,
| Fy, (w) = Fy (w)] < [[Maa]le2r1 — 72)

Proof: Monotonicity follows immediately from
the definition of F,. To prove item 2, given
Y7220, let 3= Ay + (1= Ay, 0 <A< L
It follows from (8) and (9) that
F’Ya(w) = OypYz + bYa = A(a")'z,")'l + b’n)
+ (1-2)(ay72 + by,)
< ARy, (w) + (1 - \)Fy, (w)
(10)
Therefore, F,(w) is a convex function of v > 0.
Moreover, for any v; > 3 > 0,
F‘71 (W) - F’Y: (W) Ay, (71 - 72)
|| M21]|g2(v1 = 72)
(11)
|

Now, we are ready to present the main result of
this section, providing a less conservative con-
dition for mixed £ /H o, robust performance.

<
<

Theorem 3.3 If the following two conditions
hold:
1)

where v* > 0 is the unique solution of the equa-
tion v = G,(w). Then the system M has mized
robust performance in the £° [Ho, sense for all
LTV perturbations A € Do,

1 M11||7,, < 1;
(12)

Proof: The first condition guarantees robust
stability of the system. From Lemma 3.1, there
exists a unique solution ¥* > 0 to the equation
4 = G,(w). Define the following sets:

r
£

{r>0 :G4(w) 27}

(13)
From these definitions it follows that if £ € £,
then [|¢]|2, € T. From the monotonicity and
continuity of G,{w) we have that for all y € T,
v £ v*. Using the monotonicity of F, and the
second assumption in the hypothesis yields:

Fm(w) S Fae(w) <1

Therefore, for all £ € £, ||z][ee < Fjgy,.(w) <
1. The proof is completed by noting that since
lA]le2 — £2 < 1, ||€]ls < ||ylles and therefore
£eé. [ |

{€ : lléllex < l|¥lleas ¥ = M11€ + Myaw}
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Remark 1 From definition (8) and Lemma 3.1
it follows that

F (w) < || Maaw||ee
el (1~ Maslle) 1Mz
(14)
Thus, by Corollary 3.2, the conditions obtained .
in Theorem 3.3 are less conservative than the
one presented in Theorem 3.1.

Finally, we end this section by providing an up-
per bound on the worst case value of ||2||¢e.

Lemma 3.3 For a given input w, the worst

case value of the outpui sup [|z||¢ is upper
AEDZ

bounded by:

sup [lelem < Fye(w) < Fry(w) — (15)

A€D2

where Y1 = (1 - HMnH%“)"lHMuwHu-

Proof: The proof follows immediately by com-
bining Lemma 3.1 and Theorem 3.3. |

4 Example
The following example is taken from [19]. Con-

sider the ACC benchmark problem, where the
system has the following state-space realization:

¢ v
ufl=P|w
y u©
[ o 0 1 0|0 0 0]

0 0 0 1{0 00

-125 125 0 01 o0 1

P=j] 125 -125 0 0|-1 1 0

1 -1 0 0[O0 o0 0

0 0 o0 0|0 o0 1

| o 1 o0o6|0 00

In [19], this system was discretized using sam-
ple and hold elements at the inputs and out-
puts, with sampling time of 0.1 seconds, and
an ly /He controller was designed to achieve
| Tevll3. ~< %, and the control action |u], in
response to an impulse disturbance, ~< 1. This
controller has the following state-space realiza-
tion:

—1.7404 —0.7769 | 0.9975
K= 0.9950 0 0
—-1.1347  1.0044 | 4.1150



The closed-loop system, with the uncertainty
‘pulled out’, is shown in Figure 2. Suppose the

A

K

Figure 2: The standard form

LTV perturbations are limited to ﬁA € Ds.
It can be shown that
pa(F(P,K)) = 3.947
I Teullt, N1 Tew ]l ) (an
= 6.821
? (nTwnh 1Tl

Thus, both p-analysis and Il; theory indicate
that this system doesn’t have robust perfor-
mance against worst-case inputs. However, by
applying the proposed analysis for fixed inputs
(leo /H o Tobustness), we obtain that «y; = 2.070
and

1TeullHee | Tewllen )
o = 1.002
p ( 1 Tuollrea || Tosw e
Foy(Tuy, Tuw) = 0.9837<1

(18)
Therefore, we conclude that for an impulse
input w, the closed-loop system achieves
mixed robust performance against ||Aljpors <
0.645.This is consistent with numerical results
when A € (—0.645, 0.645), as shown in Figure 3.

5 Conclusions and directions for further
research

In this paper we consider the problem of ana-
lyzing robust performance (in the £ sense) for
systems subject to £2 — £2 norm bounded per-
turbations. This problem can be considered as
a natural extension of the mixed £ /H,, nom-
inal performance/robust stability type problem
introduced in [15], and it is relevant for cases
where some of the performance specifications
are given in terms of the response to a fixed,
given signal.

450

Amplitde

200 250 300 350 400 450
No. of Sampies

A=-0.645

Amplitude

" : L s L L
200 250 300 350 400 450

No. of Samples

Figure 3: Impulse responses, different A’s

The main results of the paper provide suf-
ficient conditions guaranteeing robust perfor-
mance. One of these conditions is given in terms
of the spectral radius of a matrix involving dif-
ferent induced norms and can be easily checked.
The second condition reduces conservatism at
the price of more involved computations.

These results are illustrated with a simple ex-
ample taken from the literature. This example
shows that although the proposed conditions
are only sufficient, they provide results that
are less conservative than those obtained via a
worst—case input analysis, such as p-synthesis
or {'~theory.

The results provided here are a first step to-
wards the goal of synthesizing multiobjective ro-
bust controllers. These controllers could be ob-
tained for instance by combining the spectral-
radius based condition with standard similarity
scaling and some of the techniques available for
optimizing nominal performance. Research in
this direction is currently being pursued.
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