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Abstract 

The Z1 control theory is appealing, since it allows 
for directly incorporating time-domain specifications 
into the controller synthesis procedure and furnishes a 
complete solution to the robust performance problem. 
Moreover, in the SISO case, the synthesis procedure 
can be recast into a finite-dimensional Linear Program- 
ming problem and solved efficiently. The MIMO case 
can be solved iteratively by adding fictitious inputs and 
outputs to recast the problem into an one-block form. 
However, it is well known that, in contrast to the IFIZ 

and IFI, cases, optimal Z1 controllers can have arbi- 
trarily high order, even when the states of the plant 
are available for feedback. In this paper, motivated by 
Ill], we address the piroblem of designing low order sub- 
optimal Z1 controllers using a Linear Matrix Inequality 
optimization approac:h. The main results show that, 
in the state-feedback case, the suboptimal controller 
is static, while in the: output-feedback case it has the 
same order as that of the plant. In both cases the syn- 
thesis process involves solving an LMI feasibility prob- 
lem and a scalar minimisation over (0, I). 

1 Introduction 

A large number of control problems involve designing 
a controller capable of stabilizing a given linear time 
invariant system, while minimizing the worst case re- 
sponses to  some exogenous disturbances. This problem 
is relevant, for instance, to disturbance rejection, track- 
ing and robustness to  model uncertainty (see [14] and 
references therein). In the case where the signals in- 
volved are persistent bounded signals, it leads to the Z1 
optimal control theory [l, 5, 6, 14, 151. 

In the SISO and one-block (i.e. square) MIMO cases, 
by exploiting duality theory, the Z1 control problem can 
be recast into a finite-dimensional optimization prob- 
lem and solved efficiently[5]. The resulting closed-loop 
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system has a finite impullse response. However, neither 
its order nor the order of the controller is bounded by 
the order of the plant, even in the full state feedback 
case. Rather, the order of the closed-loop system or 
the controller can be arbitrarily high ([4], chapter 12). 

In contrast, multiblock MIMO problems do not lead, in 
general, to finite dimensional linear programming prob- 
lems. Rather, they are solved iteratively through meth- 
ods furnishing sequenceis of upper and lower bounds 
[4]. At the present time, the most efficient method, de- 
lay augmentation (DA), is based upon the idea of aug- 
menting the plant with delays to obtain an one-block 
problem, whose solution can be obtained using finite- 
dimensional linear programming. Clearly, the optimal 
cost for this modified problem provides a lower bound 
- p of the optimal cost; however, the controller obtained 
this way is infeasible for the original problem. A feasi- 
ble controller can be reco'vered by simply discarding the 
inputs and outputs associated with the delays. This 
controller yields a cost ji that is an upper bound of 
the true cost. It can be shown that, under mild con- 
ditions, the lower bound always converges to the true 
cost. The convergence properties of the upper bound 
are harder to ascertain. It is shown in [4] that, when 
the optimal solution is such that the fimt n,, rows of 
the optimal closed-loop (where n,, is the number of 
controls) achieve the optimal norm, then p --+ pol the 
optimal cost. Under thiis condition, there exists a se- 
quence of optimal closed-loop systems q 5 ~  that con- 
verges strongly to the optimal solution. Hence, the 
convergence properties are strongly dependent on the 
ordeTing of the inputs and the outputs. A critical step 
in the optimization is to reorder inputs and outputs in 
such a way that the set of input-output pairs of mini- 
mum order corresponds to the first nu inputs and out- 
puts. Therefore, while tlhis method has the advantages 
of avoiding order inflation (in some cases yielding exact 
solutions) and providing more insights into the struc- 
ture of the optimal solutions, it may require several 
iterations of reordering inputs and outputs. Moreover, 
it shares with the SISO case the disadvantage that the 
controller can have arbitrarily high complexity. This 
poses a problem in many modern control applications 
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involve high-order plant models. In these cases imple- 
mentation considerations dictate that the order of the 
controller must be kept reasonably low, comparable to 
that of the plant. 

In this paper we propose an alternative, suboptimal 
solution to l1 problems, based upon the minimization 
of an upper bound of the cost, which is obtained by 
overbounding the closed-loop origin reachable set with 
a family of ellipsoids. This approach is motivated 
by a similar approach used in [ll] in the context of 
continuous time L1 control theory. As in there, the 
main results of this paper show that, for the state- 
feedback case the optimal controller is static, and for 
the output-feedback case it has the same order as that 
of the augmented plant. Moreover, the synthesis pro- 
cedure only entails solving a Linear Matrix Inequality 
optimization problem, followed by a line search over 
(0, l), which can be efficiently solved with existing al- 
gorithms [3, 111. Compared with the continuous time 
version of the problem [ll], the discrete-time results 
presented here, while involving more complicated ex- 
pressions, have the advantage that the scalar minimiza- 
tion is limited to  the interval (0,l) (versus (0, CO)). 

The main drawback of the method is that at the present 
time there is no analytical expression for the gap be- 
tween the upper bound minimized and the true l l  
norm. In moderately large systems this gap can be as- 
sessed by solving the optimal l 1  problem using the DA 
method (see also [13] for an alternative) and compar- 
ing the optimal cost with the suboptimal cost obtained 
using the proposed method. As we illustrate with an 
example taken form literature, the order of the opti- 
mal I’ controller may be several times the order of the 
plant, necessitating some type of model reduction, and 
this model resuction may not be trivial. For instance, 
in our example, the optimal l1 controller has order of 
16, and model reduction to order 14 already yields a 
larger cost than that obtained using the suboptimal 
controller. Moreover, attempting to reduce the order of 
the controller below 12 produces unstable closed-loop 
systems. Thus, we believe that the proposed method 
offers a valuable alternative to Delay Augmentation, es- 
pecially in cases where the DA method results in large 
optimization problems or in high order controllers. 

2 Preliminaries 

2.1 Notation and Definitions 
Given a vector x E Rn its 1-norm is defined as 
llxlll f CEO lzil and its infinity norm as 1 1 ~ 1 1 ,  2 
ma% 1zi1. l1 denotes the space of absolutely summable 
sequences h = {h,} equipped with the norm llhlll~ 
C,collhil < 00. I, denotes the space of bounded se- 
quences h = {h i }  equipped with the norm Ilhlll, & 
supirolhil < 00. Similarly, l& denotes the space of 

bounded vector sequences {h(k) E Rp}. In this space 
we define the norm Ilhlllw supi Ilhi(k)ll,. Alterna- 
tively, in this space we will also consider the norm: 
Ilhll,,e sup, {h’(k)h(k)}’’’, i.e. the supremum over 
time of the pointwise euclidean norm of the vector h(k).  

Assume now that H : 1% -+ lP, is a bounded linear 
operator defined by the usual convolution relation y = 
H * U. Its induced 1% -+ 1s norm will be denoted 
as IIHlllm-+lm = IIHII1. It is a standard result that: 
IlHlll = maxi IIHijllp. Similarly, the operator 
norm induced by in/,+ will be denoted by IIHlll,e, i.e. 

signals these norms coincide, while in the general case 
we have: 3IIHII1 5 llHlllle 5 JiTllHlll. Next werecall 

with positively invariant sets. 

IIHll1,e 1 suPllvll.p,,<l IIH * ~ l l m , e .  Note that for scalar 

some resu f ts connecting the I, to I, induced norm 

Definition 1 Consider the discrete-time dynamic sys- 
tem 

where z ( k )  E R” and d(k) E Rq, lld(k)llw 5 1. A 
convez, compact set P containing the origin is said to 
be positively invariant for  this system if for all x E P 
we have Ax + Bd E P .  

x(k + 1) = A+) + Bd(k)  (1) 

Definition 2 Consider the system (1). G ’  wen a se- 
quence d = {d(O), d(l) ,  . . .} and an initial condition 
a0 I denote b y  d(k, x,, d(.)) the corresponding trajec- 
tory. The origin-reachable set R, i s  defined as R, 
{t: ( = $(k, 0, d ) }  for some finite time k and some se- 
quence d ( k ) ,  lld(k)ll, 5 1. 

It can be easily shown that the set R, is the smallest 
invariant set containing the origin in its interior. More- 
over, consider a stable system having a state-space 
realization ( A ,  B, C, D) and define the following set: 
E(p) = {I: ICtl 5 pi - 6}, where i & [ 1 1 . . . 11’ E 
RP and S E RP is the vector whose i-th component is 
given by Si f IID;lll. Then ll(A, B ,  C, D)111 5 p if and 
only if R ,  E(p)  [2]. 

This result can be used to synthesize (sub)optimal 11 

controllers by selecting a performance level p and then 
finding the largest invariant set S (along with the cor- 
responding control action) contained in +) (see [2] 
for details). This approach has been successfully used 
to synthesize static non-linear optimal l1 controllers 
’ .  However, attempting to proceed in a similar way to 
synthesize linear controllers leads to non-differentiable, 
non-convex optimization problems. 

In order to circumvent this difficulty, following an idea 
introduced in [12] and used in [ll] in the context of 

loptimd controllers can be synthesized by finding the smallest 
p such that the set S is non-empty. 
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continuous-time E' control, in this paper we will bound 
R ,  by a family of invariant ellipsoids. An upper bound 
of the ll.lll,e norm can then be found by finding the ele- 
ment of this family having the tightest fit in E(p). Fur- 
thermore, suboptimal controllers can ther be found by 
optimizing this upper bound. As we shocli An the sequel, 
both the resulting analysis and synthesis problems can 
be solved by combining an LMI feasibility problem with 
a scalar convex optimization in ( O , I ) .  

2.2 Computing Hounds on the ll.lll,e Norm 
Motivated by the discussion in the last section, we con- 
sider next the problem of computing the tightest upper 
bound of ll.lll,e based on invariant ellipsoids. We will 
first consider the catse of strictly proper systems. 

Lemma 1 Consider the stable strictly proper discrete- 

4 - r  system: G = [:*], Given 0 < CY < 1, define 

f (a )  & inf { a  [CQCT]}, where Q > 0 solves the the 

following Linear Matriz Inequality: 
Q>O 

Then the following properties hold: 

I .  The set {x: x'~Q-'x 5 1)' is invariant for G .  

3. f (a )  is convez for a E (0 , l ) .  
2. IIGll1,e 5 f ( Q ) l 1 2 .  

This lemma suggests that an upper bound of IIGlll,e 
can be computed by minimizing f ( a ) .  Following the 
approach in [ll] we will define this upper bound as the 
*-norm of G, i.e.: IIGII. --I mina f(a)ll2. Note that 
from Lemma 1 it follows that IIGli. can be efficiently 
computed by combining an LMI optimization with a 
scalar convex Optimization in (O,I). 

Lemma 2 Considler the stable proper discrete-time 

system: G = [<*I. Given 0 < CY < 1, let 

rUo-l o cTi 

where Q > 0 solves the the following LMI: 
- 

( a - l ) Q  (3) 
AQ 1 [ - '4;;j:BT) 

Then the following properties hold: 

1. The set {x: xTQ-lx 5 1)  is invariant for  G .  

2. IIGlll,e 5 V(CC)'/~.  
3. V(a) is qxasiiconuez for CY E (O,1). 

Hence, the *-norm of a proper system G can be defined 
as IlGII. = info<=<l V(Q)'/'. A 

Figure 1: Block diagram of the closed-loop system 

3 Controller Synthesis: The Full State 
Feedlback Case 

In this section we consider the problem of synthesizing 
full state feedback controllers that minimize the *-norm 
of the closed loop system. The main result of this sec- 
tion shows that these controllers are static and can be 
found by combining an LMI optimization with a scalar 
optimization in (0 , l ) .  

Theorem 1 Assume that the system shown in Fig- 
ure I has the following state space realization: 

[ z(:(q z(k) = [-3+] [*I U P )  
(4) 

Then, the following statements are equivalent: 

I .  There ezists a finite-dimensional, f i l l  state feed- 
back internally stabilizing LTI controller such 

2. There ezists a static control law U = K x  such 

3. There ezists a scalar a, 0 < a < 1 such that the 

that llT~wII. 5 7. 

that llT& 11. 5 7. 

following LMI's (in Q and V )  are feasible: 

Q QC? + V T D E  ] > ,, [ S Q +  Dn'V ?I 

- Q A ~  (Q - + $BIB?') V : ~ B ?  ",:;; ] 5 0 [ 
(5) 

An internally stabilizing static controller such 
that llTzwll. 5 7 i s  given by  K = VQ-l.  

Hence, the optimal *--norm problem with full state 
feedback control, i.e., the problem of minimizing 
llTzwll* using full state feedback, reduces to the prob- 
lem of minimizing 7 subject to (5) followed by a line 
search over a E (0 , l ) .  It is worth noticing that if the 
optimal value rapt is achieved for some aopt, the closed- 
loop system will have a guaranteed stability measure of 
p(A) < d-. Moreover, numerical evidence sug- 
gests that the line search of Q is indeed a convex min- 
imization, but no form,al proof of this fact is available 
at the present time. 
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Next we illustrate these results with a simple 
example taken from literature. Consider the 
third order system of Example 1 in [7]. A 
state-space realization of the plant is given by: [ 2;7 -5" 4:6 I ] 

0 0  
-2.5 n 0 0 

where K, > 0 is a parameter. As shown in [7], for K, > 3.5 
the optimal l1 state-feedback controller is static. How- 
ever, for 1.5 < rc < 3.5, the optimal state-feedback con- 
troller is dynamic, leading to an optimal closed-loop of 
the form: @ = X + 4k(2)Xa $- q5k(NK)AN-. Moreover, it 
can be shown that as rc 1 1.5, N ,  t 00 and 11@111 1 3. 
Table 1 shows a comparison of the optimal 1' norm cor- 
responding to different values of ffi versus the I' norm 
achieved by the static controller synthesized using the 
proposed method. It is worth noticing that the gap 
remains constant at about 15%, even when the order 
of the optimal controller approaches 00. Moreover, for 
K, = 1.501, Delay Augmentation leads to a Linear Pro- 
gramming problem having an 103 x 5 constraint matrix. 

Table 2 shows the results obtained when attempting 
to reduce the order of the controller corresponding to 
K, = 1.501 using balanced truncation. While the con- 
troller can be easily reduced to  15th order, reduction 
to  14th order already yields worse performance than 
that obtained with the suboptimal static controller. 
Attempting to  reduce the order below 12 yields con- 
trollers that do not stabilize the plant. Similar results 
were obtained when using Hankel norm [SI and bal- 
anced stochastic truncation [9] model reduction. 

1.51 
1.501 
1.500 

11 3.04 3.48 14% 3.91 
16 3.01 3.46 15% 3.90 
60 3.00 3.46 15% 3.90 

N 11 16 1 15 1 14 I 12 I 11 1 1  subopt 
l l @ ) ) l  11 3.01 I 3.08 I 3.62 I 4.71 1 unst. 11 3.46 

Table 2: Performance of reduced-order controllers, n = 
1.501 (119stat;clli = 3.46) 

Cl 

4 The Output Feedback Case 

0 

In this section we consider the output feedback case. 
The main result of the section shows that output feed- 
back controllers can be designed by solving an optimal 
(in *-norm sense) estimation problem and an optimal 

n z  

Figure 2: Filtering setup 

control problem. To establish this result, we will con- 
sider first the problem of designing optimal estimators. 

4.1 Optimal Filtering in the *-Norm 
Consider the setup shown in Figure 2. The problem of 
interest is to design a filter that minimizes the *-norm 
of T,,, the transfer function from the driving noise to 
the estimation error. For simplicity, we will assume 
that we are interested in strictly proper filters and that 
the process and measurement noises are independent. 

Theorem 2 Consider the setup shown in Figure 2 
where P has the following state-space realization: 

z(k + 1) 

4.2 Output Feedback Control Using Strictly 
Proper Controllers 

Theorem 3 Consider the sy s t em shown in Figure 3, 
and assume P has the following state space realization: 

Additionally, assume that ( I )  (CZ, A )  i s  detectable and 
( A ,  Bl) ,  ( A ,  Ba) both are stabilizable; (2) BIRTl = 0;  
(3) D21 has linearly independent TOWS,  i.e., DzlDTl > 
0 .  T h e n  the following statements are equivalent: 



1. There ezasts on internally stabilizing strictly 

2. There ezists 0 < a < 1 such that the following 
proper L T I  controller such that llTzw [ I t  < 7. 

L M I s  (in &I, &a1 and V )  are feasible: 

(a - 1)1 

AQi + B2V 
QlA* + VTBT (tr - 1)Qi (a 

(a - 1)Q;' 
(8) 

-91 + $BIB? 

I Q1ClT+VTD?2 
(2i-l ClT 

CiQ1 + D12V CI r21 

where Qa solves the following Riccati equation: 

(9) 
e A Q 2  CF ( 0 2 1  D h  + &Ca Qa C a  -lCa Qa AT 

+&AQ2,AT - Q2 + $91 BF = 0 

Moreover, in this case a stabilizing controller ren- 
dering llTzw :I 7 is given by: 

where F = V(Q1 - Qz)-l and L = 

-LAQ2C,T  1-a (Dz1D& + &CzQaC$)-'. 

Remark 1 It is interesting t o  analyze the structure of  
the conditions in Theorem 3. These conditions estab- 
lish the ezistence of a separation-like principle, where 
the ezistence of a controller depends o n  the existence 
of a solution t o  a filtering Riccati  equation, a condition 
requiring the ezistence of a state feedback controller ca- 
pable of rendering llTzw I \+ 5 7 and a condition coupling 
the solution of the  control and filtering problems. 

These results can be used to synthesize a controller that 
minimizes ~ ~ T z w  by minimizing y (as a function of a) 
subject to the feasibility of (8). As in the state feedback 
case, this entails combining a LMI feasibility problem 
with a scalar minimisation in (0 , l ) .  Moreover, consis- 
tent numerical evidence suggests that the function of 
a to be minimized is convex, although no formal proof 
of this fact is available. 

4.3 Output Feedbiack Example 
Consider again the simple example used in section 3, 
and assume that the only measurement available to the 
controller is the first state, corrupted by noise, i.e. the 
plant is given by: 

' 1  12; 0 0 I o  0 0 
-23.5 4.6 1 0 

L 1 0 0 10 0.1 0 1  

Table 3 shows a comparison of ll@llil , the closed-loop 
1' norm achieved by the optimal I' controller versus 
Il@outllll, the norm achieved by the 3Cd order output 

feedback optimal *-normi controller for different values 
of IE. Note that as IE 1 1.5, the order of the optimal I' 
controller N, -, 00, while the maximum gap between 
the optimal and suboptimal norms remains below 15%. 
These results are consistent with the results obtained 
in section 3 for the full-state feedback controller. 

5 The General Case 
As in the F t z  and Ftm control theory, the assumption 
BDT = 0 can be relaxed in the more general case of 
optimal *-norm control design. For completeness, we 
state the following theorem, which gives results for the 
general case of output feedback control in the *-norm, 
where the controllers are! not limited to strictly proper. 

Theorem 4 Consider ihe setup of Figure 3, where P 
i s  given b y  

z(k + 1) A i. Bi [ 4;; ] = [z 1 ;;; 21 [-] (11) 

1. (Car A) i s  detectable and (A ,  B l ) ,  (A ,  231) both are 

2. D ~ l h a s  linearly independent TOWS, i.e. DzlD& > 
stabilizable; 

0 is invertible. 

Then ,  the following statements are equivalent: 

1. There exists a proper, finite-dimensional, LTI 
controller K that internally stabilizes the sy s t em 
and rendem llTewllt < 7.  

2. There e2iSt.9 a! E ( 0 , l )  such that the following 
L M I  (in the variables Q1 = QT, cr, Dk, and V )  
admits a solution: 
-Qi Bi+BaDhDai AQi +B2V A+&DkC2 Q l  

1 
[ 
[ !  c@i+D12v ci+&flhc.ca D11+DiPQ21 I 

( B ~ + B z D ~ D ~ ) ~  -aaI 0 
(AQi + BaV)T 0 ( a - i ) ~ l  ( u - i ) r  5' 
(A+BZD~CZ)~ 0 (a - 1)1 (U - 1)cQ;' 

I 0 (Cl 81 w 1 2  V)= 
UQ$ 0 (Ci+DiaDho2)T ,o 

0 (7' - -11 ( D ~ ~ + D ~ ~ D L D ) I z ) *  

where Q z  solves the following Riccati  equation: 

1 
-E 1 - - a  [Q; '+zQ2CZ 1 - U  @21D&-1C2] -iT-Q2+dF1F?=o 

where E = A - BIDrl (D21Dz1)-1C~ and FI = 
B1 - BlD% (D21.D:1)-1 DZl. 

Moreover, the controller that achieves llTewII* < 7 i s  
given b y  K, = K (1 + I22zK)-' where 

A -I- B2 F + LC2 - B2 DkC2 - L + B2 Dk 
K =  [ F - DLC2 +] (12) 

where F = (aV - DkC2Qz)(aQ1 - Qz)-', L = 
- (&AQ&'+ BID&) (D2tDT1 + &C2Q2C?)-l. 
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‘ 1.51 25 10.98 11.29 12.18 11% 
. 1.501 40 10:59 11.23 12.08 14% 

1.500 m 10.45 11.22 12.07 15% 

w 
Figure 3: Block diagram for output feedback 

6 Conclusions 

In this paper we propose an alternative, suboptimal so- 
lution to 2’ problems, based upon the minimization of 
an upper bound of the cost, obtained by overbounding 
the closed-loop origin reachable set by a family of ellip- 
soids. The main result of the paper shows that, for the 
state-feedback case the optimal controller is static, and 
for the output-feedback case it has the same order it8 
that of the augmented plant. The synthesis procedure 
only entails solving a Linear Matrix Inequality opti- 
mization problem, and a scalar minimization in (0,l) .  
Both problems can be efficiently solved with existing al- 
gorithms [3, 111. Moreover, for the state feedback case 
the objective function of the scalar minimization is con- 
vex, further simplifying the problem. While consistent 
numerical experience suggests that this also holds in 
the general output feedback case, no formal proof of 
the fact is available at  the present time. 

The main drawback of the method is the fact that at 
the present time there is no analytical expression for 
the gap between the upper bound minimised and the 
true I1 norm. In moderately large systems this gap can 
be assessed by solving the optimal Z1 problem using 
the DA method (see also [13] for an alternative) and 
comparing the optimal cost with the suboptimal cost 
obtained using the proposed synthesis method. As we 
illustrate with an example taken form the literature, 
the optimal I’ controller may be high order (several 
times the order of the plant) necessitating some type 
of model reduction, and this step may not be trivial. 
Thus, we believe that the proposed method offers a 
valuable alternative to Delay Augmentation, specially 
in cases where it results in large optimization problems 
or in high order controllers. Moreover, in cases where 
the number of inputs or outputs is not small, DA will 

result in larger LP problems, and it may require a large 
number of trial and error type iterations (reordering 
inputs and outputs) before converging. 
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