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Abstract

Mixed objective control problems have attracted much attention lately since they allow for capturing di!erent performance
speci"cations. However, optimal multiobjective controllers may exhibit some undesirable properties such as arbitrarily high order.
This paper addresses the problem of designing stabilizing controllers that minimize an upper bound of the l

1
norm of a certain

closed-loop transfer function, while maintaining theH
2

norm (mixed l
1
/H

2
), or the H

=
norm (mixed l

1
/H

=
), of a di!erent transfer

function below a prespeci"ed level. The main results show that these suboptimal controllers have the same order as the generalized
plant and can be synthesized by a two-stage process, involving an LMI optimization problem and a line search over (0, 1). ( 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

During the past decade a powerful robust control
framework has been developed addressing issues of stab-
ility and performance in the presence of norm-bounded
uncertainties. Robust stability and performance are
achieved by minimizing a suitably weighted norm (either
DD ) DD

=
or DD ) DD

1
) of a closed-loop transfer function. While

this framework has gained wide acceptance among con-
trol engineers, it is limited by the fact that in its context,
performance is measured in the same norm used to assess
stability. However, often a single norm cannot capture
several, perhaps con#icting, speci"cations. Motivated by
this shortcoming, multiple objective control problems
have attracted much attention lately (Bernstein &
Haddad, 1989; Kaminer, Khargonekar & Rotea, 1993;
Sznaier & Bu, 1998; Salapaka, Dahleh & Voulgaris,
1995).

qThis paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor
I. Petersen under the direction of Editor R. Tempo.
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This paper addresses the problem of designing stabiliz-
ing controllers that minimize the l

1
norm of a certain

closed-loop transfer function, while maintaining the
H

2
norm (mixed l

1
/H

2
), or the H

=
norm (mixed

l
1
/H

=
), of a di!erent transfer function below a prespeci-

"ed level. This problem arises in the context of rejecting
both bounded persistent and stochastic (or bounded
energy) disturbances.

Both discrete time mixed l
1
/H

2
and l

1
/H

=
problems

can be solved by using the Youla parametrization to cast
the problem into a (in"nite-dimensional) constrained
convex optimization (Salapaka et al., 1995; Sznaier & Bu,
1998). However, as in the pure l

1
optimal control, it has

been shown in Salapaka et al. (1995) and Sznaier & Bu
(1998) that the order of the controller is not bounded by
the order of the plant, and could be arbitrarily high.
Motivated by the complexity of these controllers, an
alternative approach will be introduced in this paper,
based upon recent results on synthesizing suboptimal
low-order l

1
controllers (Bu, Sznaier & Holmes, 1996;

Nagpal, Abedor & Poolla, 1996). By using upper bounds
of the l

1
and H

2
(H

=
) norms given in terms of Linear

Matrices Inequalities, a modi"ed problem can be ob-
tained such that its solution is feasible and upper-bounds
the original problem. The main result of this paper shows
that suboptimal controllers can be synthesized by a two-
stage process, involving an LMI optimization problem
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Fig. 1. (a) The generalized plant for analysis, (b) setup for
synthesis.

and a line search over (0, 1). Additional results include the
facts that in the state-feedback case optimal performance
can be achieved using static controllers, while in the
output feedback case it can be achieved using controllers
with McMillan degree less than or equal that of the plant.
Moreover, as in the discrete time H

=
case (Gahinet

& Apkarian, 1994; Iwasaki & Skelton, 1994), our ap-
proach also provides an LMI-based parameterization of
all output feedback suboptimal controllers, including re-
duced order ones for a class of systems.

2. Preliminaries

2.1. Notation and background results

lp
=

denotes the space of bounded vector sequences
Mh(k)3RpN, equipped with the norm DDhDDl

=
"sup

i
Msup

k
Dh

i
(k)DN.

Alternatively, in this space we will also consider the norm
DDhDD

=,%
Gsup

k
Mh@(k)h(k)N1@2, i.e. the supremum over time of

the pointwise euclidean norm of the vector h(k). The
operator norm induced by DD . DD

=,%
will be denoted by

DDHDD
1,%

, i.e. DDHDD
1,%

Gsup
@@v@@=,%y1

DDH* vDD
=,%

. Note that for
scalar signals this norm coincides with the usual l1 norm,

while in the general case we have: (Jq)~1DDHDD
1
4

DDHDD
1,%

4JpDDHDD
1

Lemma 1 (Bu et al., 1996). Consider the proper stable
FDLTI system

G"C
A

C K
B

DD .

Then

DDGDD2
1,%

4DDGDD2wO inf
a|(0,a.!9 )

<(a)

where a
.!9

"1!o(A) and

<(a)" inf
p;0, Q;0

c2,

subject to

A
apQ~1 0 CT

0 (c2!p)I DT

C D I B'0, (1)

1

1!a
AQAT!Q#BBT40. (2)

Moreover <(a) is a quasiconvex function for a3(0,a
.!9

).

3. Mixed w/H
2

and w/H
=

performance measures

3.1. Mixed w/H
2

problem formulation

Consider the FDLTI system P shown in Fig. 1(a),
where w represents an exogenous disturbance, z

1
and

z
2

represent performance outputs, and P has the follow-
ing realization:

P"C
A B

C
1

D
1

C
2

D
2
D (3)

with A stable. The following lemma provides an upper
bound of the H

2
norm of ¹

z2w
.

Lemma 2. Given a3(0,a
.!9

), let X and Qa denote positive
semi-dexnite solutions of

AXAT!X#BBT"0 (4)

and (2), respectively. Then Qa5X50 and DD¹
z2w

DD2
2
4

Trace(C
2
QaCT

2
#D

2
DT

2
).

Proof. It is well known (see for instance SaH nchez Pen8 a
& Sznaier (1998, p. 475)) that DD¹

z2w
DD2
2
"Trace(C

2
XCT

2
#

D
2
DT

2
). Let *GQa!X. Subtracting (4) from (2)

yields

A*AT!*#a(Qa!BBT)40.

Since, from (2) we have that Qa!BBT50 and since A is
stable, it follows from the properties of Lyapunov equa-
tions that *50. The rest of proof then follows immedi-
ately. h

Motivated by Lemma 2, we de"ne the mixed w/H
2

performance measure as

Jw,2
O inf

a|(0,a.!9 ), p;0, Q;0

c2 (5)
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subject to

A
apQ~1 0 CT

1
0 (c2!p)I DT

1
C

1
D

1
I B'0,

1

1!a
AQAT!Q#BBT40, (6)

Trace(C
2
QCT

2
#D

2
DT

2
)41.

This leads to the following mixed w/H
2

control
problem:

Problem 1 (w/H2). Given the system shown in Fig. 1(b),
where the plant P has the following state-space realization:

P"

A B
1

B
2

C
1

0 D
12

C
2

0 D
22

C
3

D
31

0

(7)

and where the pairs (A,B
2
) and (C

3
, A) are stabilizable

and detectable, respectively, xnd an internally stabilizing
controller K such that Jw,2

is minimized.

For simplicity, we have assumed here that the open
loop plant P is strictly proper, and without loss of gener-
ality, we have set the H

2
constraint level at 1. The

general case of a proper plant is addressed in Bu (1997).
More detailed discussions on removing these assump-
tions by loop-shifting can be found in Bu (1997), SaH nchez
Pen8 a and Sznaier (1998) and references therein.

3.2. Mixed w/H
=

performance measure

Lemma 3. Consider system (3). For a given a3(0,a
.!9

),
let >">T'0 be any positive-dexnite solution to the
following inequality:

A
!> A B 0

AT (a!1)>~1 0 CT
2

BT 0 !I DT
2

0 C
2

D
2

!IB(0. (8)

Then > also satisxes inequality (2) and DD¹
z2w

(z( )DD
=
(1,

where z("(J1!a)z.

Proof. Applying Schur complements to the (1,1) block of
(8) yields

1

1!a
A>AT!>#BBT40

which is precisely (2). Moreover, multiplying (8) on the
left and right by

A
I 0 0 0

0 1J1~a
I 0 0

0 0 I 0

0 0 0 IB
and using the Bounded Real Lemma (SaH nchez Pen8 a and
Sznaier, 1998, p. 181) shows that

KKD2
#

1

J1!a
C

2AzI!
1

J1!a
AB

~1
BKK

=

(1.

Finally, the transformation z("(J1!a)z yields
DD¹

z2w
(z( )DD

=
(1. h

Remark 1. Note that the transformation zP(J1!a)z
maps the unit disk into a disk with radius dGJ1!a.
Therefore, from the Maximum Modulus Theorem
it follows that DD¹(z)DD

=
4DD¹(z( )DD

=
. Moreover

DD¹(z)DD
=

C DD¹(z( )DD
=

as a B 0. This transformation is similar
to the transformation used in Sznaier and Bu (1998) to
decouple the mixed l

1
/H

=
problem into a convex

"nite-dimensional optimization and an unconstrained
H

=
problem.

As in the mixed w/H
2

case, based upon Lemma 3 we
de"ne the following mixed w/H

=
performance measure:

Jw,=
O inf

a|(0,a.!9 ), p;0, X;0

Mc2N (9)

subject to

A
apX 0 CT

1
0 (c2!p)I DT

1
C

1
D

1
I B'0,

(10)

A
!X~1 A B 0

AT (a!1)X 0 CT
2

BT 0 !I DT
2

0 C
2

D
2

!IB(0.

¹he mixed w/H
=

control problem is then formulated
as:

Problem 2 (w/H
R

). Given the system shown in Fig. 1(b),
where P is given by (7), xnd an internally stabilizing con-
troller K such that Jw,=

is minimized.

3.3. State feedback controllers synthesis

In this section, we analyze the structure of the optimal
solutions to Problems 1 and 2. The main result shows
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that for the state feedback case the optimal cost over the
set of stabilizing controllers is achieved by static feedback
controllers.

Theorem 4. Consider the system P given in (7) and assume
C

3
"I and D

31
"0 (i.e. state feedback). The following

statements are equivalent:
(1) There exists an FDLTI controller such that Jw,2

(c2.
(2) There exists a static control law u"Kx such that

Jw,2
(c2.

(3) The following LMIs (in the variables Q, < and S)
admit a solution:

A
c2I C

1
Q#D

12
<

QCT
1
#<TDT

12
aQ B'0,

A
S C

2
Q#D

22
<

QCT
2
#<TDT

22
Q B'0,

A
!Q#B

1
BT

1
AQ#B

2
<

QAT#<TB
2

(a!1)Q B40, Trace(S)(1.

Moreover, a suitable static controller is given by
K"<Q~1.

Proof. (1N3) Suppose that there exists an FDLTI
controller

K"

A
k

B
k

C
k

D
k

that renders Jw,2
(c2. Then

A
¹

z1w
¹

z2w
B"

A#B
2
D

k
B
2
C

k
B
1

B
k

A
k

0

C
1
#D

12
D

k
D

12
C

k
0

C
2
#D

22
D

k
D

22
C

k
0

O

AM BM
CM

1
0

CM
2

0

From the de"nition of Jw,2
we have that there exists

a symmetric matrix Q'0 such that

1

1!a
AM QAM T!Q#BM BM T40,

1

a
CM

1
QCM T

1
(c2I

and

Trace(CM
2
QCM T

2
)(1.

By Schur complements, the "rst two conditions are
equivalent to

A
!Q#BM BM T AM Q

QAM T (a!1)QB40, (11)

A
c2I CM

1
Q

QCM T
1

aQ B'0. (12)

Partition Q as

A
Q

11
Q

12
Q T

12
Q

22
B.

Since Q'0, it follows that Q
11

'0. Multiplying (11) on
the left by

A
(I 0) 0

0 (I 0)B
and on the right by its transpose yields

A
!Q

11
#B

1
BT
1

AQ
11

#B
2
<

Q
11

AT#<TBT
2

(a!1)Q
11
B40

where <"D
k
Q

11
#C

k
QT

12
. Multiplying (12) on the left

by

A
I 0

0 (I 0)B
and on the right by its transpose yields

A
c2I C

1
Q

11
#D

12
<

Q
11

CT
1
#<TDT

12
aQ

11
B'0.

Finally, from Trace(CM
2
QCM T

2
)(1 it follows that there

exists a symmetric matrix S such that

Trace(S)(1,

A
S C

2
Q

11
#D

22
<

Q
11

CT
2
#<TDT

22
Q

11
B'0.

(3N2 and 3N1) With the controller given by
u"<Q~1x, the closed-loop system becomes

A
¹

z1w
¹

z2w
B"

A#B
2
<Q~1 B

1
C

1
#D

12
<Q~1 0

C
2
#D

22
<Q~1 0

"

A
f

B
1

C
1f

0

C
2f

0

.

It can be easily veri"ed that

1

a
C

1f
QCT

1f
!c2I(0, Trace(C

2f
QCT

2f
)(1,

and

1

1!a
A

f
QAT

f
!Q#B

1
BT
1
40.

It follows that this static controller renders
Jw,2

(c2. h

As in Bu et al. (1996), the optimal solution to
Problem 1 can be obtained by minimizing <

2
(a) over

a3(0, 1), where<
2
(a) is de"ned as<

2
(a)"Mmin c2: LMIs

in Theorem 4 are feasibleN.
For completeness we quote below similar results for

the mixed w/H
=

problem. The proof is omitted since it
follows along the same lines as the proof of Theorem 4.
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Theorem 5. Consider the plant P given in (7) in the state
feedback case. The following statements are equivalent:

(1) There exists an FDLTI controller such that Jw,=
(c2.

(2) There exists a static control law u"Kx such that
Jw,=

(c2.
(3) The following LMIs (in the variables Q and <) admit

a solution:

A
c2I C

1
Q#D

12
<

QCT
1
#<TDT

12
aQ B'0,

A
!Q AQ#B

2
< B

1
0

QAT#<TBT
2

(a!1)Q 0 QCT
2
#<TDT

22
BT
1

0 !I 0

0 C
2
Q#D

22
< 0 !I B(0.

A suitable static controller is given by K"<Q~1.

4. All output feedback controllers for a class of mixed
w/H

p
problems

In this section we establish necessary and su$cient
conditions for the existence of c-suboptimal output feed-
back controllers for a class of mixed w/H

=
and w/H

2
control problems.

Theorem 6. Consider a discrete time FDLTI plant P1 of
McMillan degree n with a minimal realization:

A
z
1

z
2
y B"

A B
1

B
2

C
1

0 0

C
2

D
21

D
22

C
3

D
31

0

A
w

uB (13)

Assume that (A,B
2
,C

3
) is stabilizable and detectable. The

suboptimal mixed w/H
=

problem with parameter c, i.e.
Jw,=

(c2, is solvable if and only if there exist pairs of
symmetric matrices (R, S) in RnCn such that the following
inequalities are feasible:

NT
PA

1

1!a
ARAT!R#B

1
BT

1

1

1!a
ARCT

2
#B

1
DT

21

1

1!a
C

2
RAT#D

21
BT
1

!I#
1

1!a
C

2
RCT

2
#D

21
DT

21BNP
(0, (14)

NT
QA

ATSA!(1!a)S#CT
2
C

2
ATSB

1
#CT

2
D

21
BT

1
SA#DT

21
C

2
!I#BT

1
SB

1
#DT

21
D

21
BNQ

(0, (15)

ac2I!C
1
RCT

1
'0; A

R I

I SB50 (16)

1Formulae for the general case where D
12

O0 can be found in Bu
(1997).

where N
P

and N
Q

are any matrices that span the null
spaces of (BT

2
DT

22
) and (C

3
D

31
) respectively. Moreover,

the set of c-suboptimal controllers of order k is nonempty if
and only if (14)}(16) hold for some R, S which further
satisfy the rank constraint rank(I!RS)4k.

Proof. The proof follows along the following lines:

(1) Given any controller K(z)"D
k
#C

k
(zI!A

k
)~1B

k
,

A
k
3RkCk write conditions (10) in terms of the closed-

loop matrices, leading to an LMI of the form:

'#PT#Q#QT#TP(0 (17)

where

#"A
A

k
B
k

C
k

D
k
B

contains all the controller parameters, the matrices
P and Q depend only on the open-loop plant and
where

'"A
!X~1

c
A

0
B
0

0

AT
0

(a!1)X
c

0 CT
02

BT
0

0 !I
m1

DT
21

0 C
02

D
21

!I
n2
B

A
0
"A

A 0

0 0
k
B; B

0
"A

B
1
0 B

C
02

"(C
2

0); D
02

"(0 D
22

)

(2) partition X
c

and X~1
c

as

X
c
"A

S N

NT *B; X~1
c

"A
R M

MT * B
where R,S3RnCn and M,N3RnCk.

(3) Proceed as in SaH nchez Pen8 a and Sznaier (1998, Sec-
tion 6.4.1) to eliminate the parameters of the control-
ler, leading to two LMIs in R and S.

A complete proof can be found in Bu (1997). A discussion
on how to reconstruct the controller from the solution to
the LMIs (14)}(16) can be found for instance in Gahinet
and Apkarian (1994). h
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Table 1
Results for the mixed l

1
/H

=
problem

Type Controller order DD¹
z1w

DD
1

DD¹
z1w

DDw DD¹
z2w

DD
=

Optimal l
1

16 23.07 45.02 32.60
Optimal H

=
3 83.86 128.2 9.862

Optimal l
1
/H

=
7 (red.) 32.03 47.66 15.00

Mixed w/H
=

2 33.49 50.73 14.95

Therefore, as in the state feedback case, the optimal
solution to the mixed w/H

=
problem can be obtained

by minimizing over a3(0, 1) the function

!
=

(a)OMmin c2: LMIs in Theorem 6 are feasibleN.

Remark 2. Theorem 6 implies that if the performance
measure Jw,=

(c2 is achieved by some controller of
order k5n, there exists a controller of order n also
rendering Jw,=

(c2.

The LMI-based approach introduced in Theorem 6 is
also useful for synthesizing reduced-order controllers.
These c-suboptimal controllers of order k(n corres-
pond to pairs of (R,S) satisfying (14)}(16) and the addi-
tional rank constraint rank(I!RS)"k. Note that this
additional constraint is non-convex in R and S, making
the problem harder to solve. A detailed discussion on
reduced-order controller design can be found in Gahinet
and Apkarian (1994).

Finally, for completeness we state the necessary and
su$cient conditions for the existence of c-suboptimal
output feedback controllers for mixed w/H

2
control

problems.

Theorem 7. Consider a discrete time FDLTI plant P of
McMillan degree n with the minimal realization (13). As-
sume that (A,B

2
, C

2
) is stabilizable and detectable and

D
22

"0. The suboptimal mixed w/H
2

problem with para-
meter c, i.e. Jw,2

(c2, is solvable if and only if there exist
a pair of symmetric matrices (R,S) in RnCn such that the
following inequalities are feasible:

=T
1A

1

1!a
ARAT!R#B

1
BT
1B=1

(0, (18)

NT
QA

ATSA!(1!a)S ATSB
1

BT
1
SA !I#BT

1
SB

1
BNQ

(0, (19)

Trace(C
2
RCT

2
#D

21
DT

21
)(1, (20)

ac2I!C
1
RCT

1
'0; A

R I

I SB50, (21)

where =
1

and N
Q

are any matrices whose columns form
bases of the null spaces of BT

2
and (C

3
D

31
) respectively.

Moreover, the set of c-suboptimal controllers of order k is
nonempty if and only if (18)}(21) hold for some R, S which
further satisfy the rank constraint rank(I!RS)4k.

Proof. Omitted, for space reasons, follows along the
same lines as in Theorem 6. h

5. A simple example

Consider a plant with the following state-space
realization:

A"A
2.7 !23.5 4.6

1 0 0

0 1 0 B; B
1
"B

2
"A

1

0

0B;

A
C

1
C

2
C

3
B"A

1 !2.5 2

1 0 0

0 1 0B;
D

12
"0; D

21
"0.1; D

22
"0.01; D

31
"0.1.

The design objective is to minimize DD¹
z1w

DD
1

subject
to DD¹

z2w
DD
=
&415. The LMI-based method introduced

in Section 4 yields Jw,=
"4470 achieved at a+0.162.

The corresponding (second order) controller
is given by

K"

!0.7927 0.3796 !0.0981

2.9893 !1.4317 0.1790

15.7189 60.1616 17.3008

and yields DD¹
z1w

DD
1
"33.49. For benchmarking purposes

we also synthesized an optimal l
1
/H

=
controller using

the convex optimization method described in Sznaier
and Bu (1998). This method yields a seventh-order
controller (after model reduction) with optimal cost
DD¹

z1w
DD
1
"32.03. It is worth noticing that the di!erent

between the optimal DD¹
z1w

DD
1

and the one achieved
using the proposed LMI approach is rather small. More-
over, achieving the additional performance entails a
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substantial increase in the controller order. These results
are summarized in Table 1.

6. Conclusions

Multiple objective control problems have attracted
much attention lately since they allow for simultaneously
addressing several di!erent, sometimes con#icting, per-
formance speci"cations. In this paper we consider dis-
crete time mixed l

1
/H

2
and l

1
/H

=
problems, where

the l
1

norm of a certain closed-loop transfer function
is minimized, while maintaining the H

2
norm (or the

H
=

norm) of a di!erent transfer function below a pres-
peci"ed level.

By exploiting upper bounds of the l
1

and H
2

(H
=

)
norms given in terms of Linear Matrices Inequalities, we
de"ned alternative performance measures for both prob-
lems. The main result of the paper shows that controllers
optimizing these performance criteria can be synthesized
via a two-stage process, involving an LMI optimization
problem and a line search over a3(0, 1). Furthermore, we
present necessary and su$cient conditions for existence
of c-suboptimal controllers, including reduced-order
ones. As a byproduct of these conditions we established
that in the state-feedback case optimal performance can
be achieved with static controllers, while in the output
feedback case the controller has the same order as the
plant. These results are illustrated with a simple example
in Section 5, where the proposed controller compares
favorably with the exact, high-order solution. Consistent
numerical experience suggests that the second step in the
design process, i.e. the line search over a3(0, 1), is a con-
vex optimization problem, although no formal proof of
this fact exists at the present. Finally, our approach also
allows for synthesizing output feedback controllers hav-
ing a lower order than the plant, by imposing an addi-
tional (non-convex) rank constraint.
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