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Abstract 
Mixed objective control problems have attracted much 

attention lately since they allow for capturing different 
performance specifications without resorting to approxi- 
mations or the use of weighting functions, thus eliminat- 
ing the need for trial and error type iterations. This paper 
addresses the problem of designing stabilizing controllers 
that minimize the 11 norm of a certain closed-loop transfer 
function, while maintaining the 7I!z norm (mixed 11/7I !z) ,  

or the 7I!, norm (mixed 11/7I!,), of a different transfer 
function below a prespecified level. Based on a linear ma- 
trix inequality approach, the main results of this paper 
show that, suboptimal controllers can be synthesized by a 
two-stage process, involving an LMI optimization problem 
and a line search over (0 , l ) .  Furthermore, this approach 
also provides an LMI-based parameterization of all subop- 
timal output feedback controllers, including reduced order 
ones, for mixed 11/7I!, and 11/7I!z problems. 

1. Introduction 
During the past decade a powerful robust control 

framework has been developed addressing issues of sta- 
bility and performance in the presence of norm-bounded 
uncertainties. Robust stability and performance are 
achieved by minimizing a suitably weighted norm (either 
11 - /loo [7, 161 or 1 1  111 [5, 61) of a closed-loop transfer func- 
tion. This framework has gained wide acceptance among 
control engineers, since it embodies many desirable design 
objectives. 

However, this framework is limited by the fact that 
in its context, performance is measured in the same norm 
used to assess stability. It is often the case that the con- 
troller is required to meet several different, sometimes 
conflicting goals, such as simultaneous rejection of dis- 
turbances having different characteristics (white noise, 
bounded energy, persistent); good tracking of classes of 
inputs; satisfaction of bounds on peak values of some out- 
puts; closed-loop bandwidth; etc. Clearly, a single norm 
will not be enough to address these diverse specifications. 

lThis work was supported in part by NSF grant ECS-9625920 
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Hence, mixed objective control problems have attracted 
much attention lately since they allow for directly captur- 
ing different performance specifications without resorting 
to approximations or the use of weighting functions, thus 
eliminating the need for trial and error type iterations. In 
particular, 7I !2 /7 I ! ,  (see [I, 101 and references therein) and 
21/71!, [4, 14,151 mixed control problems have been exten- 
sively investigated since its introduction. More recently 
11/7I!z [13] control problems have also been formulated. 

This paper addresses the problem of designing stabi- 
lizing controllers that minimize the I1 norm of a certain 
closed-loop transfer function, while maintaining the 7I!z 
norm (mixed 21/7I!z), or the 3-1, norm (mixed 11/71!,), of a 
different transfer function below a prespecified level. This 
problem arises in the context of rejecting both bounded 
persistent and stochastic (or bounded energy) distur- 
bances. 

Both discrete time mixed Z1/7I!z and 11/7I!, problems 
can be solved by using the Youla parameterization to cast 
the problem into a (infinite-dimensional) constrained con- 
vex optimization [13, 151. However, as in the pure I1 op- 
timal control, it has been shown in [13, 151 that the order 
of the controller is not bounded by the order of the plant, 
and could be arbitrarily high. Motivated by the com- 
plexity of these controllers, an alternative approach will 
be introduced in this paper, based upon recent results on 
synthesizing low order 11 controllers [3, 111. By using up- 
per bounds of the 11 and 7I!z (K,) norms given in terms 
of Linear Matrices Inequalities, a modified problem can 
be obtained such that its solution is feasible and upper- 
bounds the original problem. The main result of this pa- 
per shows that suboptimal controllers can be synthesized 
by a twostage process, involving an LMI optimization 
problem and a line search over (0 , l ) .  Additional results 
include the facts that in the state-feedback case optimal 
performance can be achieved using static controllers, while 
in the output feedback case it can be achieved using con- 
trollers with McMillan degree less or equal than that of the 
plant. Moreover, as in the discrete time 31, case [8,9], our 
approach also provides an LMI-based parameterization of 
all suboptimal output feedback controllers, including re- 
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duced order ones. The latter can be obtained by imposing 
a rank condition on the positive definite solution to a set 
of LMIs, at the price of destroying the overall convexity of 
the problem. Nevertheless, as we illustrate with an exam- 
ple, problems having this additional constraint can still be 
efficiently solved. 

The paper is organized as follows: In section 2 we 
introduce the notation to be used and some preliminary 
results. In section 3 and 4 we show that when suitably 
modified, both the mixed 11/3ta and 11/3t, can be re- 
duced to an LMI optimization problem and a line search 
in (0 , l ) .  These results are illustrated in 5 with some sim- 
ple design examples. Finally, in section 6 ,  we summarize 
our results and we present some concluding remarks. Due 
to space limitations, proofs for some theorems are omit- 
ted. 

2. Preliminaries 
2.1. Notation 

Given a vector x E R”, its 1-norm is defined as 
llxlllt Cy’o /xi1 and its infinity norm as I I Z \ I ~ G  maxi Izil. 
11 denotes the space of absolutely summable sequences 
h = {hi} equipped with the norm ~ ~ h ~ ~ ~ l ~ ~ ~ o  < 00. 

1, denotes the space of bounded sequences h = {hi} 
equipped with the norm llhllloo A supi2o lhil < 00. Sim- 
ilarly, lP, denotes the space of bounded vector sequences 
(h(k) E RP}. In this space we define the norm llhlllm A 
supi //hi(k)ll, .  Alternatively, in this space we will also 
consider the norm: Ilhllm,e A supk (h’(k)h(k”’’’, i.e. the 
supremum over time of the pointwise euclidean norm of 
the vector h(k). 

l& -+ lP, is a bounded lin- 
ear operator defined by the usual convolution relation 
y = H U. Its induced l& -+ lP, norm will be de- 
noted as IIHlllm.+lm & IIHII1. It is a standard result 
that llHll1 = m q  E,”,, ~ ~ H ~ j ~ ~ ~ l .  Similarly, the operator 
norm induced by Il.ll,,c will be denoted by IIHlll,c, i.e. 
IIHll1,c S ~ P I I , , I I ~ , ~ ~ I  IIH * vllm,e. Note that for scalar 
signals these norms coincide, while in the general case we 

Assume now that H : 

- 

have hIIHII1 I IIHlI1,e I JBIIHII1* 
E ,  denotes the space of complex valued matrix func- 

tions that are analytic outside the unit disk. The norm on 
3t, is defined by IIG(z)llm-eSSsupI,I,lF(G(z)), where F 
denotes the largest singular value. By 3 t z  we denote the 
space of complex valued matrix functions that are ana- 
lytic outside the unit disk and square integrable on the 
unit circle, with llG(z)lla defined as: 

dz trace( G(z)* G(z)) - 

where * denotes complex conjugate. 

2.2. Some Useful Results 
The following lemmas related to linear matrix inequal- 

ities play a central role in our approach. 

~ 
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Lemma 2.1 ( [8, 91) Given a symmetric matrix \E E 
XmXm and two matrices P ,  Q of column dimension m, 
there exists some matrix 0 such that 9 + PTOTQ + 
QTOP < 0 if and only if Wp9Wp < 0 and W~\EWQ < 0 ,  
where Wp, WQ are any matrices whose columns form 
bases of the null space of P and Q respectively. 

Lemma 2.2 (Schur Complements [2, 81) The block: 

matrix ( iT t )  is negative definite i f  and only  i f  

Q < 0 and P - MQ-lMT < 0 .  

Next we recall some well known results [8, 9, lo] about 
the discrete time 3tz-norm and %,-norm. 

Lemma 2.3 Consider a discrete time stable FDLTI sys- 
tem G ( z )  = D + C(z1 - A)-lB. Then, IlGll$ = 
trace(CXCT + DDT) ,  where X > 0 satisfies 

A X A ~ - X + B B ~ = O  (1) 

Lemma 2.4 Consider a discrete time transfer function 
T ( z )  = D + C ( z 1 -  A ) - l B .  Then, IITII, < 1 and A is 
stable i f  and only i f  there exists X = X T  > 0 such that 

(-?I BT -; 0 - I  ; DT I) < 0. 

Finally we recall a result on the upper bound of the 1 1  Ill,e 
norm of a stable FDLTI system. 

Lemma 2.5 ([3]) Consider the proper, stable FDLTI 
system G(z)  = D + C(zI  - A)-lB. Then ~ ~ G ~ ~ ~ , e  I 
11G112 !? , ~ ~ ~ l ~ z  : 3~7 > Os.t.L(Q) > 0) where L(Q) = 

I 

0 

D 
and Q > 0 satisfies 

LAQAT - Q + BBT = o 
1 - L Y  

3. Mixed Z1/’Flz and Zl/’Flm Performance 
Measures 

Figure 1: The generalized plant for analysis 

3.1. Mixed 11/3.12 Problem Formulation 
Consider the FDLTI system S shown in Figure 1, 

where w represents an exogenous disturbance and 21, zz 



represent performance outputs. Assume S has the follow- 
ing state-space realization: 

s =  [*I (3) 

Lemma 3.1 Let Q and X denote any positive definite 
solutions to  (1) and (2) respectively. Then  Q 2 X > 0 
and llTzawIIi 5 trace(C2QCr + D2Dg). 

Motivated by Lemma 3.1, we can define the mixed 
I l / ' H a  performance mesure as Jl,2 = inf {r2 : 
30 > Os.t.L(Q) > 0) where Q > 0 satisfies (2) and 
trace(C2QCr + 0 2 0 ; )  < pa. Based on this performance 
measure, the mixed */'HZ control problem can be formu- 
lated as follows: 

Problem 1 (*/'H2) Given the system shown in Figure 2, 
and where the plant P has the following state-space real- 
ization: 

A 

a W J )  

(4) 

find an  internally stabilizing controller K such that 
J1,2(Tztw) i s  minimized. 

For simplicity, we have assumed here that the open loop 
plant P given in (4) is strictly proper, i.e., 0 1 1 ,  D21, 0 3 1 ,  

0 3 2  = 0 ,  and ,f3 = 1. 

i U Y 

Figure 2: The setup for controller synthesis 

3.2. Mixed E l / ' F I ,  Performance Measure 
Lemma 3.2 Consider the system (3) and for  a given Q E 
(0 ,  l), denote by Q the positive definite solution to  (2). 
Let Y = YT > 0 be any positive definite solution to  the 
following inequality: 

A B 

P(Y) = -I 0 C$) D f  < 0 (5) 

cz Dz -I/ 
Then, Y 2 Q > 0 and IITzaw(i)llm < 1, where z + 5 is 
defined by  the mapping 2 = ( 4 G )  z .  

Remark 1 Note that the transformation z + (4G) z 
maps the unit disk into a disk with radius 6 I f i . 
Therefore, f rom the Maximum Modulus Theorem it follows 
that llT(~)11~ 5 l l ~ ( ~ ) l l y .  Moreover llT(z)lloo T llT(~)lloo 
as Q 1 0 .  This transformation i s  similar to  the transfor- 
mation used in [l4] to  decouple the mixed 11/'H, problem 
into a convex finite-dimensional optimization and an  un- 
constrained 'Hoe problem. 

As in the mixed 11/7& case, based upon Lemma 3.2 we 
define the following mixed 11 /'Hm performance measure 
J l , ,  = infpE(o,l){r2 : 30 > Os.t.L(X) > 0) where X = 
xT > o satisfies P ( X )  < 0. 

Problem 2 (*/'H,) Given the system in Figure 2, and 
P by  (4), find an  internally stabilizing controller K such 
that J ~ , o o ( T z , w )  4s minimized. 

A .  

3.3. State Feedback Controllers Synthesis 
In this section, we analyze the structure of the optimal 

solutions to Problems 1 and 2. The main result shows 
that for the state feedback case the optimal cost over the 
set of stabilizing controllers is achieved by static feedback 
controllers. 

Theorem 3.1 Consider the system P given in (4) and 
assume C3 = I (i.e. state feedback). Then, there exists 
a static control law U = K x  rendering J l ,a (Tz lw)  < ra if 
and only i f  the following LMIs  (in the variables Q ,  V and 
S) admit a solution: 

(QCT ?iTDF2 

(QCF + VTD& Q 
S 

( -Q+B& A Q + B . V )  
Q A T + V T B ~  (.-I)Q s o  trace(S) < I; 

The static controller K i s  given by K = V Q - l .  

As in [3], the optimal solution to problem 1 can be 
obtained by minimizing a function Vl,a(a) over Q E 
( O , l ) ,  where V~,Z(Q)  is defined as V ~ , ~ ( C Y )  = {miny2 : 
LMIs in Theorem 3.1 are feasible}. 

Theorem 3.2 Consider the system P given in (4) in the 
state feedback case C3 = I .Then, there exists a static con- 
trol Zaw U = Kz, K = VQ-',  such that J1,oo(Tzlw) < -y2, 
where V ,  Q satisfy: 

(QCT Z i T D F z  
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4. All Output Feedback Controllers for 
Mixed */'FIm Problems 

In this section we establish necessary and sufficient 
conditions for the existence of ysuboptimal output feed- 
back controllers for mixed */%!, and * / % ! z  control prob- 
lems. 

Theorem 4.1 Consider a discrete t ime F D L T I  plant P 
of McMillan degree n with a minimal realization: 

15.7189 60.1616 
K = 1 2.9893 -1.4317 

(:) = [""f] C2 Dai D22 (:) (6) 

c3 D31 

17.3008 0.1790 J 

Assume that (A ,  Bz, Cz) i s  stabilizable and detectable. 
Then, J l , ,  < r z  i f  and only i f  thepe exist pairs of sym- 
metric matrices (R ,  S )  in Rnxn and IY > 0 such that: 

T P A R A ~ - R  +Bl BY PARC:+B~ D& 
Np ( PC2RAT+D2lB? - I + P C Z R C ~ + D ~ ~ D ~  

AT SA-; S+CzCg ATSBi+C$Dzr 
B,TsA+D:~c~ -I+B?SB~+D:~ D~~ ( R I  I .> 2 0; W~(CYIYI - C1RCT)W3 > 0 

where p = 2 N p  , NQ , and W3 are any matrices whose 
columns f o r m  bases of the null spaces of (BT D&),  
( C, D31), and DTz respectively. Moreover, the set of 7- 
suboptimal controllers of order k i s  nonempty i f  and only 
i f  the above inequalities hold for  some RI S which further 
satisfy the rank Constraint rank  ( I  - RS) 5 k .  

Remark 2 Theorem 4.1 implies that i f  the performance 
measure J I , ~  < y2 i s  achieved by  some controller of order 
k 2 n, there exists a controller of order n also rendering 
J l , ,  < rz. It follows that in the output feedback case op- 
timal performance can be always achieved with controllers 
having the same order as the generalized plant. 

1 -a)  

The LMI-based approach introduced in Theorem 4.1 
is also useful for synthesizing reduced-order controllers. 
These ysuboptimal controllers of order k < n correspond 
to pairs of (R,S) satisfying conditions in Theorem 4.1 and 
the additional rank constraint r a n k ( I  - RS) = k. Note 
that this additional constraint is non-convex in R and S, 
making the problem harder to solve. A detailed discus- 
sion on reduced-order controller design can be found in 
[a]. For completeness, we state necessary and sufficient 
conditions for the existence of T-suboptimal output feed- 
back controllers for mixed * /%!a  problems. 

Theorem 4.2 Consider the plant P of McMillan degree n 
with the minimal realization (6). Assume that ( A ,  Bz, Ca) 
is stabilizable and detectable. Then, J1,z < yz i f  and only 

i f  there exist pairs of symmetric matrices (R ,  S )  in gnXn, 
IY > 0, and a symmetric matrix A such that: 

a 

ATSA - (1 - a)S 

WT (A - D21DTl - C2RC:) Wz > 0 

W r ( a 1 ~ 1  - C1RCT)W3 > 0; (;: z) > 0 

(: i) 2 0; 7' - LT > 0; trace(A) < 1. 

where N p  = (2 ) , NQ, and W3 are any matrices whose 

columns form bases of the null spaces o f  ( B r  D r . ) ,  
( C3 D31 ), and D& respectively. Moreover, the set of 7- 
suboptimal controllers of order k i s  nonempty i f  and only 
i f  the above conditions hold for  some RI S which f i r ther  
satisfy the rank constraint rank  ( I  - RS) 5 k. 

5. A Simple Example 
We use the next example to illustrate the synthesis 

of reduced-order output feedback controllers for mixed 
*/%!, problems. Consider the plant given by the follow- 
ing s tate-space realization: 

2.7 -23.5 4.6) (8) 
A = (  1 0 0 ;B1=Bz= ; Dlz = 0; 

0 1 0  

The design objective is to minimize IITzlwlll subject to 
llTz2,,,Ilm -5 15. By using the LMI-based parameteri- 
zation introduced in Section 4, the optimal performance 
measure J l , ,  over the set of all controllers is obtained by 
minimizing the function I'l,,(a). Figure 3 shows the plot 
of I'l,oo(a) versus a. Note that this plot is convex, with 
a minimum J I , ~  = 4470 achieved for a M 0.162. The 
corresponding reduced-order controller is given by 

r -0.7927 0.3796 I -0.0081 1 

and yields IITziwlll = 33.49. For benchmarking purposes 
we also synthesized an optimal 11/%!, controller using 
the convex optimization method described in [15]. This 
method yields a 7th order controller (after model reduc- 
tion) with optimal cost llTZ,,,, 111 = 32.03. It is worth notic- 
ing that the different between the optimal llTzl,,, 111 and the 
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one achieved using the proposed LMI approach is rather 
small. Moreover, achieving the additional performance en- 
tails a substantial increase in the controller order. These 
results are summarized in Table 1. 

optimal %, 
optimal 11/Noo 
optimal */X, 

3 83.86 128.2 9.862 
7 32.03 47.66 15.00 
2 33.49 50.73 14.95 

Table 1: Results for the mixed Z1/Zoo problem 

" ' " I !  . ! . ! . ! . ! . ! . ! . ! . ! . _ _ . . . . .  - . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #moll 0;1 0:12 0;3 o h  0;s 0:18 0.;7 0:18 0;s J2 
Figure 3: Evaluation of the function I'l,,(a) vs. CY 

6. Conclusions 
Multiple objective control problems have attracted 

much attention lately since they allow for simultaneously 
addressing several different, sometimes conflicting perfor- 
mance specifications. In this paper we consider discrete 
time mixed 11/%z and 11/Z, problems, where the 11 norm 
of a certain closed-loop transfer function is minimized, 
while maintaining the %z norm (or the %, norm) of a 
different transfer function below a prespecified level. 

By exploiting upper bounds of the 11 and % Z  (%,) 
norms given in terms of Linear Matrices Inequalities, we 
defined alternative performance measures for both prob- 
lems. The main result of the paper shows that controllers 
optimizing these performance criteria can be synthesized 
via a two-stage process, involving an LMI optimization 
problem and a line search over cy E (0,l) .  Furthermore, 
we present necessary and sufficient conditions for existence 
of ?-suboptimal controllers, including reduced-order ones. 
As a byproduct of these conditions we establish that in the 
state-feedback case optimal performance can be achieved 
with static controllers, while in the output feedback case 
the controller has the same order as the plant. These re- 
sults are illustrated through some simple examples in Sec- 
tion 5, where the proposed controllers compare favorably 
with the exact, high order solutions. Consistent numeri- 
cal experience suggests that the second step in the design 
process, i.e. the line search over a! E (0, l ) ,  is a convex 
optimization problem, although no formal proof of this 

~ 
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fact exists at the present. Finally, our approach also al- 
lows for synthesizing output feedback controllers having 
a lower order than the plant, by imposing an additional 
rank constraint, at the price of losing overall convexity. 
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