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Robust Identification with Mixed
Parametric/Nonparametric Models and

Time/Frequency-Domain Experiments: Theory and
an Application
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Abstract—We have recently proposed a new robust identifica-
tion framework, based upon generalized interpolation theory, that
allows for combining parametric and nonparametric models and
frequency and time-domain experimental data. In this paper we
illustrate the advantages of this framework over conventional con-
trol oriented identification techniques by considering the problem
of identifying a two-degree of freedom structure used as a testbed
for demonstrating damage-mitigation and life extension control
concepts. This structure is lightly damped, leading to time and fre-
quency domain responses that exhibit large peaks, thus rendering
the identification problem nontrivial.

Index Terms—Convex optimization, Carathéodory–Fejér
problem, interpolatory algorithms, Nevanlinna–Pick interpola-
tion, robust identification.

I. INTRODUCTION

DURING the past few years a large research effort has
been devoted to the problem of developing deterministic

identification procedures that, starting from experimental data
and ana priori class of models, generate a nominal model
and bounds on identification errors. These models and bounds
can then be combined with standard robust control synthesis
methods (such as , or ) to obtain robust systems.
This problem, termed the robust identification problem was
originally posed by Helmickiet al. [6] and has since attracted
considerable attention. Depending on whether the experimental
data available originates from frequency or time-domain
experiments, this framework leads to [1], [5], [6], [14] or

-based identification [7], [9], [10], respectively. Interpolatory
algorithms exploiting both sources of data have been proposed
in [3], [17], [11].

However, a potential drawback of these methods is their non-
parametric nature. In many cases, part of the model has a clear
parametric structure, and disregarding this information may lead
to very conservative results. A typical case is the identification
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of a lightly damped flexible structures, where the use of non-
parametric methods leads to high-order models in order to cap-
ture the frequency response around sharp resonance peaks. In
this situation, a good time-domain fit can be obtained using the
methods proposed in [4] and [8]. However, since these methods
are based on time-domain data, they do not guarantee good fre-
quency domain fitting. In addition, they do not allow for incor-
porating a nonparametric part to take into account unmodeled
dynamics.

Finally, in [13] we have recently proposed a framework that
allows for combining parametric and nonparametric models in
the context of mixed frequency/time-domain robust identifica-
tion. In this paper, we briefly review this framework and we
illustrate its advantages by considering the problem of identi-
fying a model of a two-degree of freedom structure. This struc-
ture, used as a testbed for life-extending controllers [16], has
a very lightly damped resonant mode, resulting in a nontrivial
identification problem. As we show in the paper, conventional
single objective robust identification tools (eitheror ) fail
to capture the complete behavior of the plant. On the other hand,
nonparametric mixed identification yields acceptable results, at
the price of large order models. This difficulty can be over-
come by modeling the low-frequency behavior of the plant using
second-order Kautz filters. The parametric portion of the frame-
work is used to identify the parameters of these filters, while
nonparametric identification is used for the remaining (mostly
high-frequency) portion. As shown in Section IV this results in
low-order models that capture both the time and frequency do-
main behavior of the plant. Moreover, this is achieved using the
same total number of experimental data points, hence similar
computational complexity, as in the conventional single objec-
tive identification.

II. PRELIMINARIES

A. Notation

denotes the space of complex functions with bounded
analytic continuation inside the unit disk, equipped with the
norm . Also of interest is
the space of transfer matrices in which have analytic
continuation inside the disk of radius , i.e., the space of
exponentially stable systems with a stability margin of ,

equipped with the norm .
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denotes the space of absolutely summable sequences
equipped with the norm .

Similarly denotes the space of bounded sequences
equipped with the norm .

Given a sequence , its -transform is defined as
.

For simplicity in the sequel we consider single input–single
output (SISO) models, although all results can be applied to
multiple input–multiple output (MIMO) systems, following
Chenet al. [2].

B. The Robust Identification Framework

In this paper we consider the case where thea posterioriex-
perimental data originates from two different sources: 1) fre-
quency and 2) time domain experiments. The first type of in-
formation consists of a set of samples of the frequency re-
sponse of the system: , , where

, denotes the sampling
frequencies; and where represents complex additive noise,
bounded by in the norm.

The time domain data consists of a set of the firstsamples
of the time response corresponding to a known but otherwise
arbitrary input, also corrupted by additive noise

, , where

...
...

...

is the Toeplitz matrix corresponding to the input sequence and
where the noise is real and satisfies . In the
sequel, for notational simplicity we will collect the samples
and in the vectors and .

Thea priori information available is that the systemunder
consideration belongs to the following classes of models:

1) where and denote the
parametric and nonparametric part, respectively.

2) The parametric portion belongs to the following
class of affine models:

where the components of vector are known
functions.

3) The nonparametric portion belongs to the class of

models where

a)

b) is the set of models satisfying a time-domain
bound of the form:

To recap, thea priori information and thea posterioriexper-
imental input data are

(1)

By using these definitions the robust identification problem
with mixed models and data can be precisely stated as the fol-
lowing.

Problem 1: Given the experiments and thea priori
sets , determine:

1) if thea priori anda posterioriinformation are consistent,
i.e., the consistency set

(2)

is nonempty;
2) a nominal model which belongs to the consistency set

;
3) a bound on the worst case identification error.
Next we recall a result from [13] showing consistency can be

established by solving an LMI feasibility problem.
Theorem 1: Define

...
...

.. .
...

(3)

and

...
...

...
...

(4)

Then, thea priori anda posterioriinformation are consistent
if and only if there exists three vectors

(5)

such that

(6)

(7)

(8)
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where

(9)

...
...

...
...

...

...
...

.. .
...

(10)

C. Identification

Once consistency is established, the second step toward
solving Problem 1 consists of generating a nominal model in
the consistency set , proceeding as follows.

1) Find feasible data vectors for the consistency
problem by solving the LMI feasibility problem given by
(6)–(8).

2) Compute a model from the consistency setfor the non-
parametric portion of the plant. Recall that all the models
in can be parameterized as a linear fractional transfor-
mation (LFT) of a free parameter , ,
as follows:

(11)

(12)

where the transfer function depends on the experi-
mental data and the solution to the LMI problem (see [11]
for details).

Since the proposed algorithm is interpolatory, it has several
advantages over the usual “two step” algorithms sometimes
used in the context of robust identification [5], [6]. In particular,
since the identified model is in set , its distance
to the Chebyshev center of this set is within the diameter of
information. As a consequence the algorithm is optimal up
to a factor of two as compared with central strongly optimal
procedures. For the same reasons, it is also convergent and

therefore the modeling error tends to zero as the information
is completed.

D. Some Numerical Considerations

From Theorem 1 we have that the central [i.e., ]
nonparametric identified model is given by

(13)

Note however that since and have the same poles,
attempting to compute from (13) will lead to a large
number of quasi pole/zero cancellations and numerical dif-
ficulties. To avoid these difficulties we will compute
explicitly. As a byproduct of this computation we will show
that there exists exact pole/zero cancellations in (13).
To this effect start by rewriting and in Theorem 1
explicitly as

(14)

where

(15)

(16)

(17)

(18)

(19)

Straightforward calculations show that

(20)

Using the similarity transformation and removing
uncontrollable and unobservable modes yields

(21)

Finally, using the matrix inversion lemma to compute ex-
plicitly yields the following expression for :

(22)

(23)

(24)

(25)

(26)
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TABLE I
DESCRIPTION OF THETESTBED

Practical implementation of the algorithm also requires ad-
dressing the issue of the conditioning of the problem as the
cardinality of the data grows. Note that reducing the con-
sistency problem to an LMI feasibility problem required an
explicit inversion of . However, while this matrix is
always positive definite, is asymptotically singular, with its
condition number growing without bound as the number of
data points increases. The following lemma gives an estimate
on the growth of ’s condition number in the most favorable
case, i.e., when the are equidistant1 (roots of the unity). It
provides a lower bound on the conditioning of matrix .

Lemma 1: Let , (the
th roots of the unity). In this case, the singular values and

condition number of (Nevanlinna–Pick) are bounded by

(27)

(28)

Proof: When the are chosen as the roots of unity, the
Pick matrix is acirculantmatrix, i.e., . Since

is normal, its singular values are the absolute value of its
eigenvalues. Since the eigenvalues of a circulant matrix can be
obtained as the discrete Fourier transform of the elements of the
first row, it follows that the singular values of can be obtained
from the following equality2 :

The desired result follows now from the interlacing property of
the eigenvalues of a symmetric matrix and its diagonal subma-
trix ( in this case).

Thus, we see that the condition number of the generalized
Pick matrix, has at least an exponential growth with the number
of frequency data samples.

III. A PPLICATION: ROBUST IDENTIFICATION OF A FLEXIBLE

STRUCTURE

In this section, we illustrate the proposed framework by
applying it to the problem of identifying a flexible structure.
This mass-beam system, intended to model a plant subjected

1If for somei; j, jz � z j < �, as�! 0, M tends to singularity.
2This equality follows from considering the partial fraction expansion of the

right-hand side (as a function of�).

Fig. 1. The flexible testbed.

(a)

(b)

Fig. 2. Normalized experimental time-domain data points (a)y and (b)y .
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Fig. 3. Normalized experimental frequency-domain data points: (a)y and (b)y .

to damage inducing stress, is being used to test the concepts
of life-extending and damage mitigating control [16]. Life ex-
tension is achieved by designing multiobjective controllers that
keep the peak values of both the time and frequency responses
below some prespecified thresholds. Thus, in this application
is important to have models that accurately reproduce the
behavior of the system in both domains.

For benchmarking purposes the same structure is also iden-
tified using pure and methods, using the same total
number of experimental data points (hence similar computa-
tional complexity). The quality of the resulting models is as-
sessed by comparing their time and frequency responses against
the experimental data.

A. Description of the Structure

The flexible structure used to test the proposed identifica-
tion method consists of a two degree of freedom mass-beam
system consisting of two discrete masses supported by can-
tilever beams, excited by the vibratory motion of a shaker table
as shown in Fig. 1.

The first mass is connected to the shaker table, which excites
the mechanical system by vibrating up and down, through a flex-
ible pivot. The displacements and of the masses caused

by the shaker table are measured using linear variable differen-
tial transformer (LVDT) sensors located at the midpoints of the
masses and connected to a data-acquisition board. Thus,
the problem becomes that of identifying a sampled-data system,
i.e., a continuous-time system cascaded with zero order hold
elements. The numerical values of the parameters are given in
Table I, where and denote the length, height, width,
and Young’s modulus of each beam (see [16] for details).

An eigenvalue analysis of the model obtained using these
values yields Hz and Hz for the natural
frequencies of the first and second modes of vibration [16]. The
first mode has large damping due to the coupling of the mass

to the shaker table used as an actuator. On the other hand,
the 17.67 Hz mode is very lightly damped, with a damping ratio
on the order of 10 .

B. Selection of the Input Signals

Since the proposed algorithm is interpolatory, it is conver-
gent [15, Ch. 10]. Thus, as the number of data points ,
the identified model converges to the actual model. However,
from a practical standpoint the number of data points is limited
by two factors: 1) As shown in Lemma 1 the problem becomes
ill-conditioned exponentially with and 2) the computational
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Fig. 4. Responses of the reduced order models found using` identification.

complexity of currently available LMI solvers grows as . It
can be shown that [15], for a given, the time domain signal
that yields the lowest worst-case identification error is an im-
pulse. However, the low damping and physical constraints on
the structure prevent the use of signals that approximate an im-
pulse. As a good compromise between identification error and
ease of implementability in this paper we used a step as the
time-domain input. The frequency response data was obtained
by driving the structure by peak-to-peak 0.5-V sinusoidal sig-
nals, with frequencies ranging from 1 Hz to 21 Hz. This fre-
quency range captures the first two resonant modes (9 and 17.7
Hz).

C. Time-Domain Experiments

As indicated above, in principle a step input offers a compro-
mise between physical implementability and worst case error.
However, due to stiction phenomena in the actuators a single
step will not yield a correct model. This was avoided by exciting
the structure with a peak-to-peak 0.5-V 2 Hz square wave and
collecting the data after a few cycles. By measuring the output

in the absence of a driving signal it was determined that the nor-
malized noise levels were V and V in
and , respectively. The data points (normalized by the input)
are shown in Fig. 2.

D. Frequency-Domain Experiments

By measuring the output in the absence of a driving signal it
was determined that in this case the (normalized) measurement
noise was bounded by V in and by V in

. The frequency-domain data points, normalized by the input
amplitude are shown in Fig. 3.

Following a common technique used to obtain real-rational
models in Nevanlinna–Pick type identification, the complex
conjugates of these points were added to set of experimental
data, to obtain a set with conjugate symmetry.

IV. I DENTIFICATION RESULTS

As discussed in Section II-C, the order of the central ( )
models of and obtained using Carathéodory–Fejér
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Fig. 5. Responses of the reduced order models found usingH identification.

identification is equal to the number of time-domain data points
(in this case 30 and 40, respectively). However, model reduc-
tion using balanced truncation yielded first- and third-order
models of and still interpolating the time-domain
data points within the error bounds and having virtually the
same frequency response. Fig. 4 shows the time and frequency
responses of these reduced-order model and compares them
against the experimental data. In this figure “” denotes an
experimental data point used in the identification, while “”
denotes additional experimental data, plotted for validation
purposes. As shown there, the responses of the model obtained
for match well the experimental data points. On the other
hand, while the step response of the identified model for
matches the experimental time-domain data points within the
experimental error, the frequency domain matching is rather
poor, completely missing the resonance peak.

Fig. 5 shows the step and frequency responses of the first–
and 30th-order models of and obtained after per-
forming balanced truncation model reduction on the original
39th-order models obtained using -based identification. As

before, the model obtained for fits both sets of experi-
mental data-points within the error level. However, in this case
the frequency response of the identified model for interpo-
lates the experimental frequency-domain data points well, while
the step response is quite different.

From these experiments it follows that eitherand iden-
tification are adequate for identifying , where the resonant
peak is well damped. On the other hand, both methods fail to
capture the complete behavior of .

Nonparametric mixed identification takes into ac-
count both sources of data. Hence the corresponding model for

interpolates the experimental data within the error bounds.
Note however that in this case the order of the central model is
given by . Model reduction was done using
balanced realizations but even increasing the error bounds to

and yields an 19th-order model. This
is due to the fact that, when using pure nonparametric estima-
tion, thea posterioriinformation characterizes only the
smoothness and peak magnitude of the class of models, but does
not include additional structural information, such as number or
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(a)

(b)

Fig. 6. Simulation results for the reduced order model ofT found using
nonparametric mixed̀ =H identification.

approximate location of resonant peaks. As illustrated in Fig. 6,
this leads to conservative results in cases where the plant has
large, narrow peaks in its responses, by forcing the use of very
small values for and large values for .

This difficulty can be overcome by using parametric/non-
parametric mixed identification. To this effect, the res-
onance is handled by describing the parametric portion of the
flexible structure in terms of the following second-order Kautz
filters:

and

(29)

where the parameter valuesand were chosen to match the in-
formation available on the critical frequencies and damping fac-
tors of the plant output . Solving the LMI feasibility problem
given by (6)–(8) with and yields

and . The nonparametric portion of the
model can now be obtained from (22). To illustrate the potential
advantages of the method over conventional approaches, in this
case we used only and points, so that thetotal
number of data points (and hence computational complexity)

(a)

(b)

Fig. 7. Simulation results for the reduced order model found using
parametric/nonparametric mixed` =H identification.

is similar to the pure and cases, obtaining a 44th-order
model that interpolates the data within the experimental error
levels. While the order of this model is similar to the one found
using nonparametric identification (since comparable number of
experimental data points were used), now it is more amenable
to model reduction. In this case balanced truncation yielded a
seventh-order model that interpolates well both sources of data.
The responses of this reduced order model are shown in Fig. 7,
where, as before “” denotes experimental data points used in
the identification and “” denotes additional experimental data.
A complete comparison between the models obtained using dif-
ferent methods is given in Table II.

V. CONCLUSION

In this paper we use the problem of identifying a lightly
damped flexible structure, intended to explore the concept
of damage-mitigating controllers [16], to benchmark several
recently proposed robust identification methods. Since these
controllers attempt to keep both the time and frequency domain
responses of the plant below given “safety” thresholds, in this
context it is important to have models that accurately replicate
its behavior in both domains. As shown in Section III, due
to the light damping of the plant, both the frequency and
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TABLE II
IDENTIFICATION RESULTS FORT

time-domain responses exhibit peaks that lead to difficulties
when using either Carathéodory–Fejér or Nevanlinna–Pick
identification methods. Purely nonparametric mixed
identification can solve this problem. However, in this case the
presence of lightly damped poles leads to small values ofand
larger values of . This in turn results in larger interpolation
error bounds as well as oscillatory interpolation functions and
large order models.

These difficulties can be solved by using a mixed para-
metric/nonparametric approach, where the resonant behavior
of the plant is captured using second-order Kautz filters (with
parameters to be determined) and nonparametric identification
is used to identify any residual dynamics. As we show in Sec-
tion IV, this approach leads to low-order models that interpolate
all the experimental data points (both in the time and frequency
domains) within the given error bounds.

A potential drawback shared by all the methods discussed
in this paper is the computational complexity of the resulting
LMI optimization problem. Since this complexity grows as,
these methods cannot at this point handle large amounts of ex-
perimental data. Note, however, that by exploiting time and fre-
quency domain data in a mixed parametric/ nonparametric con-
text, the proposed method requires a smaller amount of data
points to obtain models capturing the complete behavior of the
plant.
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