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ABSTRACT 
Given a CAD model of an object, we would like 

to automatically generate a vision model and matching 
procedure that can be used in robot guidance and inspection 
tasks. We are building a system that can predict features that 
will appear in a 2D view of a 3D object, represent each such 
view with a hierarchical, relational structure, group together 
similar views into view classes, and match an unknown view 
to the appropriate view class to find its pose. In this paper, 
we describe the relational pyramid structure for describing 
the features in a particular view or view class of an  object, the 
summary structure that  is used to summarize the relational 
information in the relational pyramid, and an accumulator- 
based method for rapidly determining the view class(es) that 
best match an unknown view of an object. 

I. Introduction 
CAD-model-based vision is a growing research 

area in which vision models and matching procedures are 
automatically constructed from CAD models of objects and 
knowledge of the environment in which the vision-related task 
is to be performed. CAD-model-based systems are extremely 
useful for industrial vision tasks where a number of different 
manufactured parts must be automatically manipulated 
and/or inspected. Another area where vision systems based 
on CAD models is becoming important is in the United States 
space program. Since the space station and space vehicles are 
recent or even current designs, we can expect to have CAD 
models of these objects to work with. Vision tasks in space 
such as docking and tracking of vehicles, guided assembly 
tasks, and inspection of the space station itself for cracks and 
other problems can rely on model-directed vision techniques. 

CAD-to-vision research is going on a t  a number 
of research institutions. Henderson and Bhanu (1986) 
are building a CAD-model-based-vision system that uses 
their local Alpha1 CAGD modelling system, which produces 
complex B-spline surface models, as its input. They 
convert the CAGD models to an intermediate representation 
consisting of a sampling of surface points and normals a t  
these points. This representation is then used to match 
against 3D range data. Ikeuchi (1987) has constructed a 
system whose purpose is to enable a robot to find an object 
in a bin of parts and to grasp it. Starting from CAD data, 
he automatically generates an interpretation tree, a decision 
tree that can be used to determine the view class of an object 
(two views belong to the same class if the same surfaces are 
visible in each) and then to determine the exact pose within 
that class. The features to be used in the tree are selected 
automatically, but from a fixed set of features with a fixed 
ordering. The three-dimensional data that is input to the 
decision tree analysis comes from dual photometric stereo. 

(1987) are working with generalized Ponce et al. 

cylinder models of objects. As part of their work, they 
have studied the contours of generalized cylinders under 
orthographic projection, proved properties of the contours 
that are invariant to viewing direction, and used these 
to implement recognition algorithms for finding the axes. 
Narasimhamurthi and Jain (1988) are working on a CAD- 
based system to recognize objects from range data. They 
have concentrated, in the early stages of the work, on the 
role of features in model-based recognition. Finally, Kak 
et al. (1988) have used the PADL-2 solid modeling system 
to derive boundary models of objects and matched these to 
3D data derived from a structured lighting technique using 
relational matching techniques. 

We are building a computer vision system that 
uses CAD models and other knowledge about the objects it 
will view to generate vision models and vision algorithms. 
The system has two major subsystems: one for offline 
processsing and one for online processing. The offline 
processing subsystem handles the task of converting each of 
the CAD models, which were meant to be used for design and 
display of objects, to a vision model and a procedure that 
can be used to recognize, inspect, or manipulate the object. 
The online processing uses the vision model and procedure 
to perform the inspection/guidance task. Our research has 
four main aspects: 1) prediction of images features from 
object models, 2) representation of the features predicted 
for a given view and their interrelationships, 3) generation 
of view classes by a clustering procedure, and 4) matching 
an unknown view to the representatives of the view classes 
derived from the clustering. This paper addresses aspects 2) 
and 4): representing view classes and rapidly identifying the 
view class of an unknown view of an object. 

2. Features and Their Representation 
A feature is an entity that can be extracted from a 

digital image of an object and that helps us  to recognize 
the object or to determine its view class. A feature is 
useful if it can be economically and reliably extracted from 
the image (or predicted on the basis of other features that 
provide evidence of its existence) and if it helps differentiate 
one view class (or object) from another. Primitive features 
such as line segments and corners are commonly used when 
dealing with gray-tone image data. Since it is difficult or 
impossible to recognize individual line segments or corners 
from local operations, the spatial relationships among the 
primitive features form the basis for the global recognition 
of the entire object or view class. This global recognition 
usually involves relational matching procedures which can be 
computationally expensive. 

Instead of using simple relationships among all the 
primitive features, we can select more complex features that 
are either unique or appear only a small number of times in 
a view of the object. For example, Bolles and Cain (1982) 
constructed a system which, in a training phase, selected 
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focal features and constructed higher-level features consisting 
of the focal features plus several nearby features and the 
relationships among them. We agree with the spirit of this 
endeavor; a higher-level feature, if i t  can be detected, is much 
more useful for rapid view class (or object) recognition than 
a primitive. 

2.1 The Relational Pyramid 
In our CAD-to-vision system, the prediction system 

will generate the features that appear in a given view, and 
those views that produce similar features will be grouped to- 
gether as one view class. In order to decide if two views are 
similar enough to be grouped together, we need a representa- 
tion for the features and their interrelationships. This repre- 
sentation should be simple enough that the primitive features 
can be easily accessed and complicated enough that power- 
ful high-level relationships can be represented. This suggests 
a pyramid structure where simple primitives are represented 
a t  the bottom level, and the succeeding levels represent more 
and more complex relationships among the primitives. Thus 
the view depicted by this structure can be dealt with a t  any 
level of complexity desired. The  structure is formally defined 
as follows. 

Let F be a set of detectable primitive features. 
Each feature f E F has an  associated type Tj and a 
vector of attributes A j .  A relational pyramid of height h 
over feature set F is a sequence of h relational descriptions 
( D O ,  D1,. . . , Dh-1). Description Do is a sequence of no 
relations < Rg, . . . , R$o >, each relation representing one 
of the primitive types. A pair (f,  A I )  belongs to relation RP 
i f f  E F is a primitive feature of the type represented by 
RP and Aj  is its vector of attributes. Intuitively, a t  level 
0 of the relational pyramid, each feature is associated with 
its attributes and is classified as one of several different legal 
types. 

Description D1 is a sequence of relations < 
Ri,  . . . , RA1 > where each relation Rt represents a rela- 
tionship among two or more of the level-0 primitives. An 
attributed tuple of one of these level-1 relations Rf has the 
form ( ( N I ,  t l ) ,  . . . , ( N , , t , ) ,  A )  where each Nj is the name 
of a relation R;, a t  level 0, and the corresponding t j  is a tuple 
of RRj. The semantics of ( ( N I ,  t l ) ,  . . . , ( N , ,  tn), A )  E Ri 
is that the level-0 attributed primitives ( t l ,  . . . , t,) which are 
of types ( N I , .  . . , N n ) ,  are related according to the level-1 
relationship R!, and this level-1 relationship has attribute 
vector A. This idea can then be extended up the pyra- 
mid. At level k ,  description Dk is a sequence of relations 
< R:, . . . , Rkk >, where each relation Rf represents a rela- 
tionship among two or more of the entitities from level 0 to 
level k - 1. (In the strictest kind of pyramid, they would 
all be from level k - 1.) An attributed tuple of such a 
level-k relation Rt has the form ( ( N I ,  t l ) ,  . . . , (N, , tn ) ,  A )  
where each Nj is the name of a relation R”F;, a t  a previ- 

ous level k’ and t j  E RS, for j = 1,.  . . , n. The semantics 

of ( ( N l , t i ) ,  . . . , (Nn, t , ) ,  A )  E RF is that the attributed 
primitives ( t l ,  . . . , t,) which come from levels 0 to k - 1 
and which are of relational types ( N I ,  . . . , N,,) are related 
according to the level-k relationship Rf and this level-k re- 
lationship has attribute vector A. 

Thus the relational pyramid structure allows us to 
define an object by its attributed primitives, relationships 

among those primitives, relationships among those relation- 
ships, and so on up to some predefined maximal level. I t  is a 
hierarchical, relational structure, but the hierarchy is defined 
on relationships instead of on larger and larger pieces of the 
object. Having formally defined the structure, we will now 
show how it can be used to describe a view or a view class of 
a three-dimensional object. 

2.2 Current Object Representation 
Our CAD models are generated by the PADL-2 

solid modeling system, a constructive solid geometry system 
(CSG) whose primitive solids include rectangular polyhedra, 
spheres, cylinders, cones, wedges, and tori. PADL-2 was 
chosen because i t  had the flexibility of CSG input and 
the ability to convert CSG representation into a boundary 
representation consisting of the surfaces and edges of the 
object. For our first experimental system utilizing the 
relational pyramid concept, we selected a fixed set of two- 
dimensional primitives and relationships that form a four- 
level pyramid. 

The level-0 primitives in our current system are 
junction points, where two or more line segments meet. The 
attribute vector for a junction point consists only of its 
coordinates. At level 1 are straight line segments, curved 
line segments, and vertical straight line segments. A straight 
line segment is represented by its starting point and its ending 
point, and a curved line segment is represented by its starting 
point, its ending point, and an interior point which is used in 
later calculations of relationships. Since we are working with 
stable views of the objects, the vertical straight line segments 
are also useful in recognition and are treated both as a subset 
of all straight line segments and a s  a separate level-1 relation. 

The level-2 relations represent junctions where two 
or three segments meet. (This will later be extended to multi- 
segment junctions.) For junctions where only straight lines 
meet, we use the standard junction types FORK, ARROW, 
T, and L. For junctions including a t  least one curved line, 
we chose to define a new labeling scheme that helps us to 
build up relations a t  the next level of the pyramid. (For 
an alternate labeling scheme for junction with curves, where 
junction types represent 3D information rather than just 
2D configurations, see Chakravarty (1979).) In our current 
scheme, a curved segment is considered concave (A) or convex 
(V) depending on the way it  faces the segment previous to 
it in a clockwise ordering of the segments. (Since our curve 
segments come from spheres, cylinders, and cones, they will 
not have inflection points.) The first segment in a junction 
with a straight line segment and one or two curved line 
segments is defined to be the straight line segment. The 
first segment in a junction with two straight line segments 
and one curved line segment is the straight line segment 
counterclockwise from the curved segment. If there are no 
straight lines, the curved segment whose chord joining its 
start and end points is closest t o  vertical will be considered 
the first segment. While the labels of this last group of 
junctions are not rotation-invariant, they are sufficient for 
our current work that considers only a set of stable views of 
each object. 

The label of a junction then depends on the labels 
of the two or three segments comprising it,  in the ordering 
in which they are numbered. For example, LA is the label 
of a junction where a straight line segment connects to a 
concave curve segment, while LAV is the label of a junction 
where a straight line segment is followed (in clockwise order) 
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by a concave curve segment which is followed by a convex 
curve segment. The relations currently implemented a t  level 
2 of the pyramid represent each of the junction types just 
described plus the LOOP relation, which consists of sets 
of segments that together form a minimal closed boundary. 
Other feasible level-2 relations for view classes would be 
parallel line segments, collinear line segments, and such 
spatial relations a s  above, below, left-of, and right-of (when 
they are invariant for all views in a view class). 

The level-3 relations use level-2 tuples representing 
attributed junctions and loops and level-1 tuples representing 
line and curve segments as their primitives. The relations 
currently being implemented a t  level 3 are COLLINEAR, 
ADJACENT, and INSIDE. Because these relations are being 
defined on junctions rather than on line segments, they have 
special definitions. 

The COLLINEAR relation consists of attributed 
sets of collinear junctions. Two junctions are considered 
collinear if there is one pair of corresponding edges which 
satisfy the same linear equation. The ADJACENT relation 
consists of pairs of junctions which are directly connected to 
each other by a common segment. If above, below, left-of, 
and right-of are invariant across a view class, these can be 
used as attributes to the adjacency of the junctions. Finally 
the INSIDE relation consists of a level-1 primitive and a level- 
2 loop, where the primitive lies inside the loop. Figure 1 
shows a line drawing representing one view class of a three- 
dimensional object, and Figure 2 illustrates its relational 
pyramid representation. 

3. Matching Unknown Views to View Class De- 

When an image is taken of a known 3D object 
from an unknown view, the first step before inspection or 
guidance is to determine the pose (position and orientation) 
of the object. To achieve this with a view class model, the 
vision system must first determine the correct view class, find 
the correspondences between the features extracted from the 
image and those in the view class representation, use the 
links between 3D features and view class features to find the 
correspondence between extracted features and 3D features, 
and use this correspondence to find the pose of the object. 

I t  is desirable to determine the correct view class 
as rapidly as possible. Chakravarty and Freeman (1982) 
represented a view class by a vector containing the number 
of junctions of each junction type. They used the values in 
the vector to  select the best view class, relying especially on 
the most frequent junction type. We feel that this approach, 
while simple and rapid, will not work very well when some of 
the segments do not show up in the image, causing missing 
or erroneous junction types, or when extra segments appear 
in the image. Ikeuchi (1987), using range data, created an 
interpretation tree during his offline processing phase. The 
interpretation tree was a decision tree used to select the best 
view class, depending on the values of various measurements. 
We will consider this approach in the future, but initially, we 
are trying a simple idea based on the accumulator method 
used in most implementations of the Hough transform, which 
we consider promising. 

Suppose each view class is represented by a rela- 
tional pyramid structure. For each relational pyramid, we 
can easily derive a s u m m a r y  pyramid structure. Where 
the relational pyramid has a relation R with c tuples 

scriptions 

(((Nl,tl,j),(N2,tZ,j),..’,(N,,t,,j),A) I j = l , . . . , c ) ,  

the summary pyramid has a corresponding relation R with 
a single tuple ( ( N I ,  N z ,  . . . , N,) ,  c) representing those c tu- 
ples. For example, if the collinear relation has 4 tuples of the 
form ( (FORK,  f), (ARROW, a)), then the collinear sum- 
mary relation has one tuple ((FORI<, ARROW), 4). This 
is done for each relation and at each level of the pyramid. At 
level 0, the summary is just the count c of how many prim- 
itive features there are of each type. Figure 3 illustrates the 
summary structure for the relational pyramid of Figure 2 .  

Along with the original relational pyramid struc- 
tures and the summary structures, the online system requires 
one more structure to be produced by the offline system: the 
index s t ruc ture .  The index allows direct access, given a sum- 
mary tuple of the form ( ( N I ,  N z ,  . . . , N , ) ,  c), to a list of 
all view classes that have this tuple in their summary struc- 
tures. I t  keeps an evidence accumulator for each view class, 
initialized to zero. For exact matching, the online system 
traverses the summary structure derived from the unknown 
view, and for each tuple in the summary structure, it adds 
one to the accumulators of all the view classes on the list 
attached to that tuple in the index. The  view class or classes 
with maximal evidence are selected. 

Exact matching will produce erroneous results, due 
to missing and extra segments. We have investigated two 
approaches toward the solution of this problem: 1) adding 
models of imperfect versions of each view to the database 
of view class models and 2) developing an  inexact matching 
procedure that can work with either the original or extended 
database. 

3.1 Extended Database Method 
When our prediction system is completed, it will be 

possible to predict, for each view class, the variants within 
that view class and the probability of each variant. For this 
initial matching procedure, we assume that the only variants 
of the perfect line drawing of a view class are similar line 
drawings with a t  most two internal line segments missing, all 
boundary line segments present, and no extra line segments. 
We are well aware that this assumption is too restrictive for 
many real imaging situations, even with carefully controlled 
lighting. However, it does allow us to  study the behavior of 
the matching routines. 

For each view class of an  object, a perfect line 
drawing of that  view class is obtained from the PADL-2 
system and converted to its relational pyramid and related 
summary representation. Each line segment of the perfect 
line drawing is assigned a probability of being detected in 
an image. Boundary line segments are assigned probability 
one and internal segments are assigned lesser probabilities, 
currently based only on observation and intuition. These 
probabilities will later be assigned by the prediction system. 
Next, a set of imperfect line drawings are constructed by 
removing one or two internal line segments from the perfect 
line drawing. Each perfect or imperfect example V, of a view 
class is assigned a probability p(V,) which is the product 
of the probabilities of its visible line segments multiplied by 
the product of one minus the probabilities of its missing line 
segments. Each perfect view class V is assigned a probability 
p(V) meant to indicate how often an unknown view is 
expected to belong to that view class. These probabilities are 
also. assigned by the experimenter. The a priori probability 
of a perfect or imperfect view class V, which belongs to the 
perfect view class V is defined to be P(V,) = p(V,)p(V). 
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The database of relational pyramid summaries 
consists of summaries of all the perfect views of the object 
plus the summaries of all the imperfect views of each view 
class. The summary structure of an unknown view is matched 
against this entire database of summaries as described above. 
The accumulator method is used to determine a set of perfect 
and imperfect views that best match this summary. Now we 
can use the probability information to order the models in 
this set. 

Let {VI, V2, . . . , VN} be the set of view classes that 
best match unknown view V via the accumulator method of 
matching. Let P(V,) be the a priori probability that any 
unknown view belongs to view class V, as defined above. 
Let P ( S  I V,) be the probability of a particular summary 
S given that the summary came from an image whose view 
class is V,. The quantity P ( s  I Vn) is derived from the 
value in the accumulator for dlass Vi’after the matchii 
performed on summary S. Then the probability P(V,  
of view class V, given summary S is given by 

The most probable view class V k  is the one 
satisfies 

5 is 
S) 

hat 

P(Vk I S )  = max P(V, I S). 
n=1, ..., N 

Of course if several view classes have similar high 
probabilities, we must consider each of thein further in the 
detailed matching (See Section 3.3.) 

3.2 Iiiexac t Matching Method 
The inexact matching version of the procedure 

is as follows. Suppose the unknown view has a sum- 
mary tuple ((NI, N2,.  . . , N,), c). We add one to the ac- 
cumulators of those view classes on the list attached to 
((NI, N2 . . . , N,), c ) .  We add a quantity less than one to 
the accumulators of those view classes on the lists attached 
to ( ( N I ,  N2 . .  . ,N,), c + 1) and ( ( N I ,  Nz . .  . ,N,) ,c  - 1). 
We add an even smaller quantity to the accumulators of those 
view classes on the lists attached to ((NI, Nz . . . , N,), c+2) 

and ((NI, N2. . . , N,), c - 2). In general, we add e 7  to 
the accumulators of those view classes on lists attached to 
( ( N 1 , N 2 .  . .  , N , ) , c + k )  and ( ( N 1 , N z . .  . , N , ) , c - k ) ,  for 
k = 0 , .  . . , K where I< is the maximum amount of devia- 
tion allowed and can be controlled by the experimenter. Cur- 
rently, we allow as big a deviation as the data presents. As in 
the exact matching case, this process should be repeated for 
each tuple in the summary structure of the unknown view. 
Finally, the view class or classes that have the highest evi- 
dence counts are selected and the probability analysis used to 
order the set as before. Because this method uses a Gaussian 
distribution in the accumulator updating process, we call it 
the Gaussian distribution method. The exact matching ver- 
sion, which merely adds one to the accumulators of models 
whose count is identical to that of the unknown and zero to 
the rest, is called the spike distribution method. 

3.3 Detailed Matcliing 
Once a view class has been selected, we must 

determine the correspondence between the primitives of its 

- k 2  

relational pyramid and those of the unknown view’s relational 
pyramid. Since the relational pyramid structure is a highly 
constrained, relational representation of a view class or view, 
a variation of the A* algorithm can rapidly find the best 
mapping from view class structure to view structure. In 
particular, the higher-level relations aid in efficient pruning 
of the tree. Furthermore, it is not necessary to find a 
correspondence for every primitive feature of a view class. We 
need only find enough correspondences to reliably compute 
the pose of the object. A separate research effort is adressing 
this issue. 

4. Experiments and Results 
We have implemented the accumulator-based 

matching and run a sequence of experiments that test the 
four variants of the matching procedure: 1) spike distribu- 
tion using erroneous (imperfect) views, 2) spike distribution 
using only perfect views, 3) Gaussian distribution using er- 
roneous views, and 4) Gaussian distribution using only per- 
fect views. The experiments were applied to both real and 
synthetic images of six test objects. The objects, which are 
metal, machined parts with low specularity, are shown in Fig- 
ure 4. We will refer to them as cubehole, widget, cubecut, 
tarrow, cubecyl, and cube3cut in our discussion. The objects 
were modeled with the PADL-2 geometric modeling system, 
and the line drawings of various stable views produced by 
PADL were used to construct the database of perfect and 
imperfect view class pyramids and summaries, as described 
previously. Five test images were produced for each object, 
three from real images of the actual metal objects and two 
from a locally available and very flexible CAD system called 
Renaissance, which was developed by Prof. Anthony DeRose 
of our Computer Science Department. The names of the 
images indicate the object they represent and the method 
of formation. Those objects whose name ends in “mvi” fol- 
lowed by an integer were digitized on the MVI Genesis-2000 
machine vision system. Those objects whose name ends in 
“tony” followed by an  integer came from Renasissance. 

All the test images were first processed on the 
Genesis-2000 machine to remove noise and to detect edges 
using a morphological edge operator (Lee et al, 1987). 
Next, the edge images were transferred to a Sun 3/280 
computer where junctions were detected, and the pyramid 
and summary structures were constructed. Figure 5 shows 
the five original test images of the widget object, their edge 
images (after noise removal, thinning, and edge linking) and 
the detected junctions. 

The accumulator method was implemented as de- 
scribed above, but with separate accumulators for each sep- 
arate relation of each view class. The motivation for this 
approach was that some of the relations would turn out to 
be more important or more useful than others, and we wanted 
to be able to view the separate results before adding them all 
into one accumulator for the view class. As a result of our ex- 
perience with the particular relations we chose, we were able 
to determine that some of the relations were more useful than 
others, some were not only not useful, but detrimental (par- 
allel line segments under perspective projection), and some 
that we had not started with were added (junction points 
and vertical lines). 

Based on our experience with the relations, we 
added a set of weights to the system. Each relation type 
was assigned a weight depending on its perceived usefulness. 
The final result in the accumulator for a view class V is a 
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weighted, normalized sum of the results in the accumulators 
for the separate relations of view class V. The numbers shown 
in our result tables are the final probabilities assigned to 
each view class after the probabilistic analysis followed in 
parentheses by the number of the specific perfect or imperfect 
view subclass that the unknown image matched best to in 
each of the six main view classes involved in the experiments. 

The results for object widget are shown in Table 1. 
Table 2 indicates how many images matched best to the 
correct view and how many images matched best or second 
best t o  the correct view for all four methods. 

5. Conclusions 
As shown in Table 2, the test images matched best 

or second best to the correct view class in 90% of the 
experiments and 96% of the experiments using the Gaussian 
distribution with erroneous views. Most of the cases where 
the test image did not match best to the correct view class 
were due to erroneous versions of two different view classes 
being similar. Of the thirty images, three did not satisfy our 
assumption that a t  most two internal lines were missing. Of 
these, two which had three lines missing still matched best 
to the correct view class (one under the spike variant and 
one under both the spike and Gaussian variants) and the 
third which had six lines missing still matched second best 
to the correct view class using the Gaussian variant. For 
these images that did not meet our assumptions, the variants 
using the erroneous views did better than the variants that 
only knew about the perfect views. 

6. Ongoing Work in Prediction 
The assumptions used in this preliminary study are 

only valid for near-perfect images obtained by optimizing 
the lighting for each object. I t  is more realistic in 
industrial applications to  assume an environment where the 
image acquisition procedure is carefully defined, but remains 
constant over all the objects in a class. Our current research 
involves the development of a prediction system that takes 
into account the object geometry, the lighting, and other 
environmental factors and predicts what will appear on 
an image. The system is called PREMIO (PREdiction in 
Matching Images to Objects). 

PREMIO’s goals are (I) to  predict the features that 
will appear on an image of an object from a given viewpoint 
and under given lighting conditions, (2) to evaluate the 
features with respect to detectability, reliability, utility, and 
cost; and (3) to organize the data resulting from application 
of (1) and (2) a t  a sampled set of viewpoints into a structure 
that can be used effectively in matching. The major work 
so far has been the development of the software to convert 
a PADL-2 model into a generic hierarchical, relational 
structure and to use this structure to predict features that 
will appear on an image from a specified viewpoint. Because 
the purpose is vision, not graphics, we use analytic feature 
prediction instead of the slower ray casting approach. The 
result is a data structure of two-dimensional symbolic line 
segments that know what three-dimensional entity they came 

from. We are now working on adding a lighting model to the 
system which will ray trace along these potentially visible 
line segments to determine the effect of the lighting setup 
on the features. Thus for each view class of the object, we 
will be able to determine the likelihood of a line segment 
appearing as a whole, disappearing entirely, or breaking into 
disconnected pieces. The resultant probabilities will allow us 
to make realistic assumptions in our matching procedures for 
specific vision tasks. The design of this sytem is discussed in 
Camps et al. (1989). 
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Figure 1 illustrates the line drawing representing 
a view class o f  a machined part object. 
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Figure 3 illustrates a summary structure for the 
relational pyramid o f  Figure 2. 
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Figure 2 illustrates the pyramid structure for the 
view class shown in Figure 1 with attribute information 
suppressed for simplicity. 
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Table 1 gives the results o f  matching five test images to the widget object for each o f  the four matching variants. 
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Figure 4 illustrates the six objects used in our 
experiments. 
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Figure 5 illustrates the original test images, the 
edge images, and the junctions for the widget object. 

Table 2 shows the number of images that matched 
best or second best to the correct view class for each of the 
four methods. 
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