
A Relational Pyramid Approach to View Class Determination

Haiyuan Lu, Linda G. Shapiro, and Octavia I. Camps

Department of Electrical Engineering
University of Washington

Seattle, WA 98195

Index terms: 3-D Representation and Recognition, Rela-
tional Matching, View Class, CAD Model

ABSTRACT
Given a CAD model of an object, we would like

to automatically generate a vision model and matching
procedure that can be used in robot guidance and inspection
tasks. We are building a system that can predict features that
will appear in a 2D view of a 3D object, represent each such
view with a hierarchical, relational structure, group together
similar views into view classes, and match an unknown view
to the appropriate view class to find its pose. In this paper,
we describe the relational pyramid structure for describing
the features in a particular view or view class of an object, the
summary structure that is used to summarize the relational
information in the relational pyramid, and an accumulator-
based method for rapidly determining the view class(es) that
best match an unknown view of an object.

I. Introduction
CAD-model-based vision is a growing research

area in which vision models and matching procedures are
automatically constructed from CAD models of objects and
knowledge of the environment in which the vision-related task
is to be performed. CAD-model-based systems are extremely
useful for industrial vision tasks where a number of different
manufactured parts must be automatically manipulated
and/or inspected. Another area where vision systems based
on CAD models is becoming important is in the United States
space program. Since the space station and space vehicles are
recent or even current designs, we can expect to have CAD
models of these objects to work with. Vision tasks in space
such as docking and tracking of vehicles, guided assembly
tasks, and inspection of the space station itself for cracks and
other problems can rely on model-directed vision techniques.

CAD-to-vision research is going on a t a number
of research institutions. Henderson and Bhanu (1986)
are building a CAD-model-based-vision system that uses
their local Alpha1 CAGD modelling system, which produces
complex B-spline surface models, as its input. They
convert the CAGD models to an intermediate representation
consisting of a sampling of surface points and normals a t
these points. This representation is then used to match
against 3D range data. Ikeuchi (1987) has constructed a
system whose purpose is to enable a robot to find an object
in a bin of parts and to grasp it. Starting from CAD data,
he automatically generates an interpretation tree, a decision
tree that can be used to determine the view class of an object
(two views belong to the same class if the same surfaces are
visible in each) and then to determine the exact pose within
that class. The features to be used in the tree are selected
automatically, but from a fixed set of features with a fixed
ordering. The three-dimensional data that is input to the
decision tree analysis comes from dual photometric stereo.

(1987) are working with generalized Ponce et al.

cylinder models of objects. As part of their work, they
have studied the contours of generalized cylinders under
orthographic projection, proved properties of the contours
that are invariant to viewing direction, and used these
to implement recognition algorithms for finding the axes.
Narasimhamurthi and Jain (1988) are working on a CAD-
based system to recognize objects from range data. They
have concentrated, in the early stages of the work, on the
role of features in model-based recognition. Finally, Kak
et al. (1988) have used the PADL-2 solid modeling system
to derive boundary models of objects and matched these to
3D data derived from a structured lighting technique using
relational matching techniques.

We are building a computer vision system that
uses CAD models and other knowledge about the objects it
will view to generate vision models and vision algorithms.
The system has two major subsystems: one for offline
processsing and one for online processing. The offline
processing subsystem handles the task of converting each of
the CAD models, which were meant to be used for design and
display of objects, to a vision model and a procedure that
can be used to recognize, inspect, or manipulate the object.
The online processing uses the vision model and procedure
to perform the inspection/guidance task. Our research has
four main aspects: 1) prediction of images features from
object models, 2) representation of the features predicted
for a given view and their interrelationships, 3) generation
of view classes by a clustering procedure, and 4) matching
an unknown view to the representatives of the view classes
derived from the clustering. This paper addresses aspects 2)
and 4): representing view classes and rapidly identifying the
view class of an unknown view of an object.

2. Features and Their Representation
A feature is an entity that can be extracted from a

digital image of an object and that helps us to recognize
the object or to determine its view class. A feature is
useful if it can be economically and reliably extracted from
the image (or predicted on the basis of other features that
provide evidence of its existence) and if it helps differentiate
one view class (or object) from another. Primitive features
such as line segments and corners are commonly used when
dealing with gray-tone image data. Since it is difficult or
impossible to recognize individual line segments or corners
from local operations, the spatial relationships among the
primitive features form the basis for the global recognition
of the entire object or view class. This global recognition
usually involves relational matching procedures which can be
computationally expensive.

Instead of using simple relationships among all the
primitive features, we can select more complex features that
are either unique or appear only a small number of times in
a view of the object. For example, Bolles and Cain (1982)
constructed a system which, in a training phase, selected

CH2813-4/89/0000/0177/$01 .OO 1989 IEEE I77

focal features and constructed higher-level features consisting
of the focal features plus several nearby features and the
relationships among them. We agree with the spirit of this
endeavor; a higher-level feature, if i t can be detected, is much
more useful for rapid view class (or object) recognition than
a primitive.

2.1 The Relational Pyramid
In our CAD-to-vision system, the prediction system

will generate the features that appear in a given view, and
those views that produce similar features will be grouped to-
gether as one view class. In order to decide if two views are
similar enough to be grouped together, we need a representa-
tion for the features and their interrelationships. This repre-
sentation should be simple enough that the primitive features
can be easily accessed and complicated enough that power-
ful high-level relationships can be represented. This suggests
a pyramid structure where simple primitives are represented
a t the bottom level, and the succeeding levels represent more
and more complex relationships among the primitives. Thus
the view depicted by this structure can be dealt with a t any
level of complexity desired. The structure is formally defined
as follows.

Let F be a set of detectable primitive features.
Each feature f E F has an associated type Tj and a
vector of attributes A j . A relational pyramid of height h
over feature set F is a sequence of h relational descriptions
(D O , D1,. . . , Dh-1). Description Do is a sequence of no
relations < Rg, . . . , R$o >, each relation representing one
of the primitive types. A pair (f, A I) belongs to relation RP
i f f E F is a primitive feature of the type represented by
RP and Aj is its vector of attributes. Intuitively, a t level
0 of the relational pyramid, each feature is associated with
its attributes and is classified as one of several different legal
types.

Description D1 is a sequence of relations <
Ri, . . . , RA1 > where each relation Rt represents a rela-
tionship among two or more of the level-0 primitives. An
attributed tuple of one of these level-1 relations Rf has the
form ((N I , t l) , . . . , (N , , t ,) , A) where each Nj is the name
of a relation R;, a t level 0, and the corresponding t j is a tuple
of RRj. The semantics of ((N I , t l) , . . . , (N , , tn), A) E Ri
is that the level-0 attributed primitives (t l , . . . , t,) which are
of types (N I , . . . , N n) , are related according to the level-1
relationship R!, and this level-1 relationship has attribute
vector A. This idea can then be extended up the pyra-
mid. At level k , description Dk is a sequence of relations
< R:, . . . , Rkk >, where each relation Rf represents a rela-
tionship among two or more of the entitities from level 0 to
level k - 1. (In the strictest kind of pyramid, they would
all be from level k - 1.) An attributed tuple of such a
level-k relation Rt has the form ((N I , t l) , . . . , (N, , tn) , A)
where each Nj is the name of a relation R”F;, a t a previ-

ous level k’ and t j E RS, for j = 1,. . . , n. The semantics

of ((N l , t i) , . . . , (Nn, t ,) , A) E RF is that the attributed
primitives (t l , . . . , t,) which come from levels 0 to k - 1
and which are of relational types (N I , . . . , N,,) are related
according to the level-k relationship Rf and this level-k re-
lationship has attribute vector A.

Thus the relational pyramid structure allows us to
define an object by its attributed primitives, relationships

among those primitives, relationships among those relation-
ships, and so on up to some predefined maximal level. I t is a
hierarchical, relational structure, but the hierarchy is defined
on relationships instead of on larger and larger pieces of the
object. Having formally defined the structure, we will now
show how it can be used to describe a view or a view class of
a three-dimensional object.

2.2 Current Object Representation
Our CAD models are generated by the PADL-2

solid modeling system, a constructive solid geometry system
(CSG) whose primitive solids include rectangular polyhedra,
spheres, cylinders, cones, wedges, and tori. PADL-2 was
chosen because i t had the flexibility of CSG input and
the ability to convert CSG representation into a boundary
representation consisting of the surfaces and edges of the
object. For our first experimental system utilizing the
relational pyramid concept, we selected a fixed set of two-
dimensional primitives and relationships that form a four-
level pyramid.

The level-0 primitives in our current system are
junction points, where two or more line segments meet. The
attribute vector for a junction point consists only of its
coordinates. At level 1 are straight line segments, curved
line segments, and vertical straight line segments. A straight
line segment is represented by its starting point and its ending
point, and a curved line segment is represented by its starting
point, its ending point, and an interior point which is used in
later calculations of relationships. Since we are working with
stable views of the objects, the vertical straight line segments
are also useful in recognition and are treated both as a subset
of all straight line segments and a s a separate level-1 relation.

The level-2 relations represent junctions where two
or three segments meet. (This will later be extended to multi-
segment junctions.) For junctions where only straight lines
meet, we use the standard junction types FORK, ARROW,
T, and L. For junctions including a t least one curved line,
we chose to define a new labeling scheme that helps us to
build up relations a t the next level of the pyramid. (For
an alternate labeling scheme for junction with curves, where
junction types represent 3D information rather than just
2D configurations, see Chakravarty (1979).) In our current
scheme, a curved segment is considered concave (A) or convex
(V) depending on the way it faces the segment previous to
it in a clockwise ordering of the segments. (Since our curve
segments come from spheres, cylinders, and cones, they will
not have inflection points.) The first segment in a junction
with a straight line segment and one or two curved line
segments is defined to be the straight line segment. The
first segment in a junction with two straight line segments
and one curved line segment is the straight line segment
counterclockwise from the curved segment. If there are no
straight lines, the curved segment whose chord joining its
start and end points is closest t o vertical will be considered
the first segment. While the labels of this last group of
junctions are not rotation-invariant, they are sufficient for
our current work that considers only a set of stable views of
each object.

The label of a junction then depends on the labels
of the two or three segments comprising it, in the ordering
in which they are numbered. For example, LA is the label
of a junction where a straight line segment connects to a
concave curve segment, while LAV is the label of a junction
where a straight line segment is followed (in clockwise order)

I78

by a concave curve segment which is followed by a convex
curve segment. The relations currently implemented a t level
2 of the pyramid represent each of the junction types just
described plus the LOOP relation, which consists of sets
of segments that together form a minimal closed boundary.
Other feasible level-2 relations for view classes would be
parallel line segments, collinear line segments, and such
spatial relations a s above, below, left-of, and right-of (when
they are invariant for all views in a view class).

The level-3 relations use level-2 tuples representing
attributed junctions and loops and level-1 tuples representing
line and curve segments as their primitives. The relations
currently being implemented a t level 3 are COLLINEAR,
ADJACENT, and INSIDE. Because these relations are being
defined on junctions rather than on line segments, they have
special definitions.

The COLLINEAR relation consists of attributed
sets of collinear junctions. Two junctions are considered
collinear if there is one pair of corresponding edges which
satisfy the same linear equation. The ADJACENT relation
consists of pairs of junctions which are directly connected to
each other by a common segment. If above, below, left-of,
and right-of are invariant across a view class, these can be
used as attributes to the adjacency of the junctions. Finally
the INSIDE relation consists of a level-1 primitive and a level-
2 loop, where the primitive lies inside the loop. Figure 1
shows a line drawing representing one view class of a three-
dimensional object, and Figure 2 illustrates its relational
pyramid representation.

3. Matching Unknown Views to View Class De-

When an image is taken of a known 3D object
from an unknown view, the first step before inspection or
guidance is to determine the pose (position and orientation)
of the object. To achieve this with a view class model, the
vision system must first determine the correct view class, find
the correspondences between the features extracted from the
image and those in the view class representation, use the
links between 3D features and view class features to find the
correspondence between extracted features and 3D features,
and use this correspondence to find the pose of the object.

I t is desirable to determine the correct view class
as rapidly as possible. Chakravarty and Freeman (1982)
represented a view class by a vector containing the number
of junctions of each junction type. They used the values in
the vector to select the best view class, relying especially on
the most frequent junction type. We feel that this approach,
while simple and rapid, will not work very well when some of
the segments do not show up in the image, causing missing
or erroneous junction types, or when extra segments appear
in the image. Ikeuchi (1987), using range data, created an
interpretation tree during his offline processing phase. The
interpretation tree was a decision tree used to select the best
view class, depending on the values of various measurements.
We will consider this approach in the future, but initially, we
are trying a simple idea based on the accumulator method
used in most implementations of the Hough transform, which
we consider promising.

Suppose each view class is represented by a rela-
tional pyramid structure. For each relational pyramid, we
can easily derive a s u m m a r y pyramid structure. Where
the relational pyramid has a relation R with c tuples

scriptions

(((Nl,tl,j),(N2,tZ,j),..’,(N,,t,,j),A) I j = l , . . . , c) ,

the summary pyramid has a corresponding relation R with
a single tuple ((N I , N z , . . . , N,) , c) representing those c tu-
ples. For example, if the collinear relation has 4 tuples of the
form ((FORK, f), (ARROW, a)), then the collinear sum-
mary relation has one tuple ((FORI<, ARROW), 4). This
is done for each relation and at each level of the pyramid. At
level 0, the summary is just the count c of how many prim-
itive features there are of each type. Figure 3 illustrates the
summary structure for the relational pyramid of Figure 2 .

Along with the original relational pyramid struc-
tures and the summary structures, the online system requires
one more structure to be produced by the offline system: the
index s t ruc ture . The index allows direct access, given a sum-
mary tuple of the form ((N I , N z , . . . , N ,) , c), to a list of
all view classes that have this tuple in their summary struc-
tures. I t keeps an evidence accumulator for each view class,
initialized to zero. For exact matching, the online system
traverses the summary structure derived from the unknown
view, and for each tuple in the summary structure, it adds
one to the accumulators of all the view classes on the list
attached to that tuple in the index. The view class or classes
with maximal evidence are selected.

Exact matching will produce erroneous results, due
to missing and extra segments. We have investigated two
approaches toward the solution of this problem: 1) adding
models of imperfect versions of each view to the database
of view class models and 2) developing an inexact matching
procedure that can work with either the original or extended
database.

3.1 Extended Database Method
When our prediction system is completed, it will be

possible to predict, for each view class, the variants within
that view class and the probability of each variant. For this
initial matching procedure, we assume that the only variants
of the perfect line drawing of a view class are similar line
drawings with a t most two internal line segments missing, all
boundary line segments present, and no extra line segments.
We are well aware that this assumption is too restrictive for
many real imaging situations, even with carefully controlled
lighting. However, it does allow us to study the behavior of
the matching routines.

For each view class of an object, a perfect line
drawing of that view class is obtained from the PADL-2
system and converted to its relational pyramid and related
summary representation. Each line segment of the perfect
line drawing is assigned a probability of being detected in
an image. Boundary line segments are assigned probability
one and internal segments are assigned lesser probabilities,
currently based only on observation and intuition. These
probabilities will later be assigned by the prediction system.
Next, a set of imperfect line drawings are constructed by
removing one or two internal line segments from the perfect
line drawing. Each perfect or imperfect example V, of a view
class is assigned a probability p(V,) which is the product
of the probabilities of its visible line segments multiplied by
the product of one minus the probabilities of its missing line
segments. Each perfect view class V is assigned a probability
p(V) meant to indicate how often an unknown view is
expected to belong to that view class. These probabilities are
also. assigned by the experimenter. The a priori probability
of a perfect or imperfect view class V, which belongs to the
perfect view class V is defined to be P(V,) = p(V,)p(V).

I19

The database of relational pyramid summaries
consists of summaries of all the perfect views of the object
plus the summaries of all the imperfect views of each view
class. The summary structure of an unknown view is matched
against this entire database of summaries as described above.
The accumulator method is used to determine a set of perfect
and imperfect views that best match this summary. Now we
can use the probability information to order the models in
this set.

Let {VI, V2, . . . , VN} be the set of view classes that
best match unknown view V via the accumulator method of
matching. Let P(V,) be the a priori probability that any
unknown view belongs to view class V, as defined above.
Let P (S I V,) be the probability of a particular summary
S given that the summary came from an image whose view
class is V,. The quantity P (s I Vn) is derived from the
value in the accumulator for dlass Vi’after the matchii
performed on summary S. Then the probability P(V,
of view class V, given summary S is given by

The most probable view class V k is the one
satisfies

5 is
S)

hat

P(Vk I S) = max P(V, I S).
n=1, ..., N

Of course if several view classes have similar high
probabilities, we must consider each of thein further in the
detailed matching (See Section 3.3.)

3.2 Iiiexac t Matching Method
The inexact matching version of the procedure

is as follows. Suppose the unknown view has a sum-
mary tuple ((NI, N2,. . . , N,), c). We add one to the ac-
cumulators of those view classes on the list attached to
((NI, N2 . . . , N,), c) . We add a quantity less than one to
the accumulators of those view classes on the lists attached
to ((N I , N2 . . . ,N,), c + 1) and ((N I , Nz . . . ,N,) ,c - 1).
We add an even smaller quantity to the accumulators of those
view classes on the lists attached to ((NI, Nz . . . , N,), c+2)

and ((NI, N2. . . , N,), c - 2). In general, we add e 7 to
the accumulators of those view classes on lists attached to
((N 1 , N 2 . . . , N ,) , c + k) and ((N 1 , N z . . . , N ,) , c - k) , for
k = 0 , . . . , K where I< is the maximum amount of devia-
tion allowed and can be controlled by the experimenter. Cur-
rently, we allow as big a deviation as the data presents. As in
the exact matching case, this process should be repeated for
each tuple in the summary structure of the unknown view.
Finally, the view class or classes that have the highest evi-
dence counts are selected and the probability analysis used to
order the set as before. Because this method uses a Gaussian
distribution in the accumulator updating process, we call it
the Gaussian distribution method. The exact matching ver-
sion, which merely adds one to the accumulators of models
whose count is identical to that of the unknown and zero to
the rest, is called the spike distribution method.

3.3 Detailed Matcliing
Once a view class has been selected, we must

determine the correspondence between the primitives of its

- k 2

relational pyramid and those of the unknown view’s relational
pyramid. Since the relational pyramid structure is a highly
constrained, relational representation of a view class or view,
a variation of the A* algorithm can rapidly find the best
mapping from view class structure to view structure. In
particular, the higher-level relations aid in efficient pruning
of the tree. Furthermore, it is not necessary to find a
correspondence for every primitive feature of a view class. We
need only find enough correspondences to reliably compute
the pose of the object. A separate research effort is adressing
this issue.

4. Experiments and Results
We have implemented the accumulator-based

matching and run a sequence of experiments that test the
four variants of the matching procedure: 1) spike distribu-
tion using erroneous (imperfect) views, 2) spike distribution
using only perfect views, 3) Gaussian distribution using er-
roneous views, and 4) Gaussian distribution using only per-
fect views. The experiments were applied to both real and
synthetic images of six test objects. The objects, which are
metal, machined parts with low specularity, are shown in Fig-
ure 4. We will refer to them as cubehole, widget, cubecut,
tarrow, cubecyl, and cube3cut in our discussion. The objects
were modeled with the PADL-2 geometric modeling system,
and the line drawings of various stable views produced by
PADL were used to construct the database of perfect and
imperfect view class pyramids and summaries, as described
previously. Five test images were produced for each object,
three from real images of the actual metal objects and two
from a locally available and very flexible CAD system called
Renaissance, which was developed by Prof. Anthony DeRose
of our Computer Science Department. The names of the
images indicate the object they represent and the method
of formation. Those objects whose name ends in “mvi” fol-
lowed by an integer were digitized on the MVI Genesis-2000
machine vision system. Those objects whose name ends in
“tony” followed by an integer came from Renasissance.

All the test images were first processed on the
Genesis-2000 machine to remove noise and to detect edges
using a morphological edge operator (Lee et al, 1987).
Next, the edge images were transferred to a Sun 3/280
computer where junctions were detected, and the pyramid
and summary structures were constructed. Figure 5 shows
the five original test images of the widget object, their edge
images (after noise removal, thinning, and edge linking) and
the detected junctions.

The accumulator method was implemented as de-
scribed above, but with separate accumulators for each sep-
arate relation of each view class. The motivation for this
approach was that some of the relations would turn out to
be more important or more useful than others, and we wanted
to be able to view the separate results before adding them all
into one accumulator for the view class. As a result of our ex-
perience with the particular relations we chose, we were able
to determine that some of the relations were more useful than
others, some were not only not useful, but detrimental (par-
allel line segments under perspective projection), and some
that we had not started with were added (junction points
and vertical lines).

Based on our experience with the relations, we
added a set of weights to the system. Each relation type
was assigned a weight depending on its perceived usefulness.
The final result in the accumulator for a view class V is a

I U0

weighted, normalized sum of the results in the accumulators
for the separate relations of view class V. The numbers shown
in our result tables are the final probabilities assigned to
each view class after the probabilistic analysis followed in
parentheses by the number of the specific perfect or imperfect
view subclass that the unknown image matched best to in
each of the six main view classes involved in the experiments.

The results for object widget are shown in Table 1.
Table 2 indicates how many images matched best to the
correct view and how many images matched best or second
best t o the correct view for all four methods.

5. Conclusions
As shown in Table 2, the test images matched best

or second best to the correct view class in 90% of the
experiments and 96% of the experiments using the Gaussian
distribution with erroneous views. Most of the cases where
the test image did not match best to the correct view class
were due to erroneous versions of two different view classes
being similar. Of the thirty images, three did not satisfy our
assumption that a t most two internal lines were missing. Of
these, two which had three lines missing still matched best
to the correct view class (one under the spike variant and
one under both the spike and Gaussian variants) and the
third which had six lines missing still matched second best
to the correct view class using the Gaussian variant. For
these images that did not meet our assumptions, the variants
using the erroneous views did better than the variants that
only knew about the perfect views.

6. Ongoing Work in Prediction
The assumptions used in this preliminary study are

only valid for near-perfect images obtained by optimizing
the lighting for each object. I t is more realistic in
industrial applications to assume an environment where the
image acquisition procedure is carefully defined, but remains
constant over all the objects in a class. Our current research
involves the development of a prediction system that takes
into account the object geometry, the lighting, and other
environmental factors and predicts what will appear on
an image. The system is called PREMIO (PREdiction in
Matching Images to Objects).

PREMIO’s goals are (I) to predict the features that
will appear on an image of an object from a given viewpoint
and under given lighting conditions, (2) to evaluate the
features with respect to detectability, reliability, utility, and
cost; and (3) to organize the data resulting from application
of (1) and (2) a t a sampled set of viewpoints into a structure
that can be used effectively in matching. The major work
so far has been the development of the software to convert
a PADL-2 model into a generic hierarchical, relational
structure and to use this structure to predict features that
will appear on an image from a specified viewpoint. Because
the purpose is vision, not graphics, we use analytic feature
prediction instead of the slower ray casting approach. The
result is a data structure of two-dimensional symbolic line
segments that know what three-dimensional entity they came

from. We are now working on adding a lighting model to the
system which will ray trace along these potentially visible
line segments to determine the effect of the lighting setup
on the features. Thus for each view class of the object, we
will be able to determine the likelihood of a line segment
appearing as a whole, disappearing entirely, or breaking into
disconnected pieces. The resultant probabilities will allow us
to make realistic assumptions in our matching procedures for
specific vision tasks. The design of this sytem is discussed in
Camps et al. (1989).

References
1.

2.

3.

4.

5.

6.

7.

8

9

Bolles, R. C. and R. A. Cain, “Recognising and
Locating Partially Visible Objects: the Local-
Feature Focus Method”, International Journal of
Robotics Research, Vol. 1, No. 3, 1982, pp. 57-82.

Camps, O.I., L.G. Shapiro, and R.M. Haralick,
“PREMIO: The Use of Prediction in a CAD-Model-
Based Vision System,” Technical Report #EE-
ISL-89-01, Department of Electrical Engineering,
University of Washington, July, 1989.

Chakravarty, I, “A Generalized Line and Junction
Labelling Scheme with Application to Scene Anal-
ysis”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-1, No. 2, 1979,
pp. 202-205.

Chakravarty, I. and H. Freeman, “Characteristic
Views as a Basis for Three-Dimensional Object
Recognition”, Proceedings of SPIE 336 (Robot Vi-
sion), 1982, pp. 37-45.

Henderson, T., C. Hansen, A. Samal, C.C. Ho, and
B. Bhanu, “CAGD-Based 3-D Visual Recognition”,
Proceedings of the Eighth International Conference
on Pattern Recognition, Paris, October 1986, pp.

Ikeuchi, K. “Generating an Interpretation Tree
From a CAD Model for 3D-Object Recognition
in Bin-Picking Tasks”, International Journal of
Computer Vision, 1987, pp. 145-165.

Lee, S.J., R. M. Haralick, and L.G. Shapiro,
“Morphological Edge Detection”, IEEE Journal of
Robotics and Automation, Vol. RA-3, No. 2, April,
1987, pp. 142-156.

Narasimhamurthi, N. and R. Jain, “CAD-Based Ob-
ject Recognition: Incorporating htetric and Topo-
logical Information”, Proceedings of the SPIE Con-
ference on Digital and Optical Shape Recognition
and Pattern Recognition, Vol. 938, April, 1988, pp.

Ponce, J. and D. Chelberg, “Finding the Limbs
and Cusps of Generalized Cylinders”, International
Journal o f Computer Vision, Vol. 1, No. 3 , 1987,
pp. 195-210.

230-232.

436-443.

This research was sponsored by the National Aeronautics and Space Administration (NASA) through a subcontract
from Machine Vision International.

A1

A0

Figure 1 illustrates the line drawing representing
a view class o f a machined part object.

Level 0 Level 3

Collinear Points 13

Level 1

Straight 13
Curved 6
Vertical 5

Level 2

Junctions

[CL00P,L00P). 21

Figure 3 illustrates a summary structure for the
relational pyramid o f Figure 2.

Gaus inn Diilribulion U s i q Erroneous Vicar

Cinsified PS

I L I O.((AlIl~OW.A2).(L,L2)]]
(< I l.((FORK.FO).(ANtOW.A2]]]
~ s l 2 . ~ ~ O R K . F O) . (~ R O W . A O) I 1

ArrowJuncllons
A0 (rlZsl.s0)
AI (sZ.s3,s4)
AI (slOs9,sll)

LAVJuncIiona
LCI (sS.c3.d)
LC4 (S7S4,CS)

[cl. (2il.421).(233.4!G).(2023G2),0.4)
(~ 4 . (I H7.2*Y>).(I.IK.2PO).(170.3 ln.0.41
(cS. (I R7.299).(185.263).(19I,Z79).0.4)

VerUcal ha
12
I10
112
87
d

Figure 2 illustrates the pyramid structure for the
view class shown in Figure 1 with attribute information
suppressed for simplicity.

I Spike Dbbibulion Using Only P~rfecl Vierss I

Table 1 gives the results o f matching five test images to the widget object for each o f the four matching variants.

1x2

Figure 4 illustrates the six objects used in our
experiments.

SDPV I 0.86

Method 1 Match best I M;itch best or second best
SDEV I 0.86 ____

0.90
I GDEV I 0.83 I 0.96 I

0.90 1 I GDPV I 0.73

Widget-mvil

Widget-mvi2

WidPet mvi3

Widget-tony2

Figure 5 illustrates the original test images, the
edge images, and the junctions for the widget object.

Table 2 shows the number of images that matched
best or second best to the correct view class for each of the
four methods.

I83

