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ABSTRACT 

A systematic and complete design procedure for robust 
predictive controllers is proposed. The synthesis method 
is based on rigorous theoretical foundations, without 
resorting to approximations or ad hoc design guidelines, 
yet it remains a viable tool for practical utilization. A 
significant feature is that the robustified predictive 
controller retains the servo performance of a nominal 
predictive controller designed using conventional 
methods. In addition, the robust predictive controller can 
be designed to guarantee perfect steady-state rejection of 
asymptotically constant disturbances. The robust design 
method is developed for systems affected by unmodeled 
dynamics, and is based on solving a discrete-time model- 
matching problem. It is shown that the robustified 
controller can legitimately be classified as a predictive 
controller. An illustrative design example is given. 

1. INTRODUCTION 

Predictive control strategies have received much 
attention in the literature and have also found acceptance 
in industry. Currently there is an increasingly visible 
interest in the research community to revisit the 
predictive-control design techniques with the intention of 
including robustness features that guarantee stability or 
adequate performance when the plant model is uncertain. 
Zafiriou [ 1 ] uses a contraction-mapping property to derive 
sufficient robust-stability conditions for a quadratic DMC 
technique with constraints. Although the approach is 
rigorous, it is likely to require large computational effort. 
More recently, Genceli and Nikolaou [2] and Zheng and 
Morari [3 ] derive sufficient robust-stability conditions for 
a control technique based on a linear cost functional 
instead of the more classical quadratic functional of 
prevalence in predictive control. Robinson and Clarke [4] 
investigate indirectly the robustness of the GPC technique 
by analyzing two particular designs, namely a dead-beat 
and a mean-level controller. A more comprehensive 
approach to predictive control robustification is found in 
the work of Kouvaritakis et al. [5].  The authors are the 
first to make use of a Youla parametrization to robustify 
the closed loop with respect to unstructured perturbations, 
and use a simple approach to find polynomials or fixed- 
order transfer functions to approximate the unknown 
paramem. 
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This paper presents a systematic procedure for 
robustifying predictive controllers in the presence of 
unstructured modeling uncertainty. The approach consists 
of parametrizing a nominal predictive controller which is 
designed using conventional and well-established 
methods. An important feature is that the parametrization 
technique preserves the servo dynamics of the nominal 
controller. The method is applicable to unconstrained 
predictive control designs that use transfer-function plant 
models corrupted by unstructured uncertainty, and has the 
ability to include an integrator in the robust controller, 
hence guaranteeing steady-state rejection of 
asymptotically constant disturbances. 

2. NOMINAL PREDICTWE CONTROL 
DESIGN 

The design of nominal predictive controllers is vastly 
documented in the literature. In particular, a wealth of 
knowledge is available to resolve crucial design issues 
such as nominal closed-loop stability, and parameter 
tuning. Typically, predictive controllers are deployed by 
executing at every sampling instant an algorithm that 
solves a quadratic optimization problem. For analysis 
purposes, it is desirable to represent the algorithmic 
controller in terms of transfer functions, thus allowing 
the utilization of classical z-domain tools for analyzing 
stability and performance. This section presents a brief 
review of the analysis technique discussed in 161, which 
casts an algorithmic predictive-control law of the GPC 
type into a form involving transfer-function operators. 
The resulting nominal controller is used later as the basis 
for the design of a robust controller. 

Consider the nominal process model 

N z )  Y(Z)  = W z )  u(z) (2.1) 

where y(z) and u(z) are the process output and input 
respectively, and A ( z )  and B(z) are the coprime 
polynomials 

(2.2) A(z )  = z" + a,-,z"-' + ... + a,, 
B(z) = bmtm + bmm1zm-' + ... + bo (2.3) 

of order n and m, respectively, where n>m. The optimal 
control action is obtained by minimizing the following 
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quadratic performance index which includes predicted 
future output errors and a penalization of future control 
moves: 

NY N 
J( t )  = x [ r ( t + i ) - y ( t + # ) r  + A X [ A u ( t + i ) l 2  (2.4) 

i=l i=l 

where {r(t+i))  is the sequence of future values of the set 
point, {y(t+ilt)) is the sequence of predicted future values 
of the output, {A u(t+i)) is the sequence of future control 
increments, A is the movesuppression parameter used to 
penalize excessive control energy, and parameters N and 
Nu are the prediction and control horizons, rapectivefy . 

By definition, a predictive control law is an algorithm 
that at every sampling instant produces the control move 
u(t) that minimizes the functional (2.4) for the prescribed 
set point sequence { r ( t ) ) .  The optimal control move is 
naturally found by differentiating (2.4), equating the result 
to zero, and solving for u(t). Following the development 
in [6] it is possible to write the resulting control law in 
terms of transfer-function operators in the form 

which includes the polynomial operators 

R(z) = Z" + G-,Z"-~ +... + r, 
S(Z) = snz" .t Sn-,Zn-l + ... + So 

T(z) = tNzN + t,-,zN-' + ... + t,z 

(2.6) 

(2.7) 

(2.8) 

R(l) = 0 (2.9) 
T( 1) = S(1) (2.10) 

and where the coefficients of the moving average 
polynomial S(z),  the regressor polynomial R(z), and the 
set-point advancement polynomial T(z) are functions of 
the tuning parameters N,,, Nu. and A, and of the model 
polynomials A(z) and B(z). Note that (2.9) implies that 
the predictive control law (2.5) includes an integrator. A 
block-diagram representation of the predictive control 
structure is shown in Figure la. Further details of the 
derivation can be found in [6]. 

Where 

Note that the transfer functions operating on u(z) and 
y(z) in the nominal predictive controller (2.5) are of order 
n,  the order of the nominal plant model. It is also 
significant to note that the. set-point advancement 
polynomial T(z) is of degree equal to the prediction 
horizon N. Since N2n is a common tuning prescription 
the order of T(z) exceeds the order of R(z) making the 
control law nonproper (noncausal) with respect to the set- 
point signal. This noncausality is a natural consequence 
of the inclusion of future values of the set point in (2.4). 
Figure la  shows that the advancement polynomial acts on 
the set point to produce the intermediate signal 
w(z)=T(z)r(z), which has the simple time-domain 
repreSentatiOll 

r(t+N-l) + ... + tl r(t+l) (2.11) w(r) = tN r(T+N) + 

It is useful to remark that the nominal model (2.1) and 
the functional (2.4) are simpler versions of more elaborate 
formulations that improve the design performance at the 
expense of added complexity [7]. These design choices 
can be acconnmodated within the framework proposed in 
this paper through obvious modifications. 

Figure l a  illustrates the closed-loop established when 
the nominal predictive controller (2.5) is connected to the 
process (2.1). Note that the servo dynamics of the closed 
loop are fully characterized by the equations 

[A(z)R(z) + B(z)S(Z)] Y ( Z )  = z"B(z)T(z) ~ ( 2 )  (2.12) 

[A(z)R(r) + B(z)S(z)] u(z) = z"A(z)T(z) r(z) (2.13) 

Therefore, the stability of the closed-loop for a given 
nominal predictive controller can be easily established by 
calculating the roots of the characteristic polynomial 
A(z)R(z)+B(z)S(z). Furthermore, due to the presence of 
the integral action (2.9) in the controller and to the gain 
equality (2.10), the closed-loop dynamics described by 
(2.12) are guaranteed to realize zero-offset in the servo 
response. The integrator also guarantees perfect steady- 
state disturbance rejection for all disturbance signals that 
reach a smdy-state. 

d 

I 

d 

I 

Figure 1. (a) Structure of a nominal predictive controller. 
(b) Structure of the parametrized predictive controller 
featuring the Youla parameter Q(z). 

3 .  CONTROLLER ~ A R A ~ E T R I Z A T I O N  

In thii section the nominal predictive controller (2.5) is 
parametrized in terms of a transfer function Q(z) selected 
in the spirit of Wiener-Hopf design. However, a 
modification in the parametrization is introduced to 
achieve two important design requirements: (i) the 
parametrized controller must preserve the servo 
perfcnmance and the steady-state disturbance rejection 
properties of the nominal controller, and (ii) the 
parametrized controller must also be a predictive 
controller. 

Consider a nominal predictive controller (2.5) that 
stabilizes the closed loop system (2.12)-(2.13). Because 
of the stability condition, the nominal closed-loop 
charactens * ticpolynomial 
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A’(z) = A(z)R(z) + B(z)S(z) (3.1) controller (3.1 1) to the nominal predictive controller 
(3.7). 

of degree 2n is Schur. In order to parametrize the 
controller, consider a coprime fractional representation of 
the nominal plant model (2.1) of the form 

(3.2) 

wheaeN(z) andM(z) are proper and stable transfer 
functions that satisfy the Diophantine equation 

N(z) X(Z) + M(z) Y(z) = 1 (3.3) 

for some pair of stable and proper transfer functions X(z) 
and Yfz). A suitable (M(z) ,  N(z) )  pair can be readily 
derived from the nominal characteristic polynomial (3.1). 
The procedure consists of first factoring the closed-loop 
characteristic polynomial in the form A*(z)=AI(z)A2(z), 
where both Al(z) and Az(z) are of degree n, and then 
dividing both sides of (3.1) by the factored characteristic 
polynomial to obtain 

A(z)R(z) + B(z)S(z) =1 (3.4) 
A,(z)A,(z) A,(z)A,(z) 

Finally, stable and proper factorizations that satisfy (3.3) 
are easily obtained by defining 

where X(z) and Y(z) are clearly stable and proper rational 
transfer functions. This result allows writing the 
nominal predictive control law (2.5) in the equivalent 
form 

(3.7) 

(3.8) 

The set of all solutions to (3.3) can be written in 
terms of the transfer functions (3.5)-(3.6) and a proper and 
stable transfer-function Q(z) through the well-known 
relations 

(3.9) X’(2) = X(Z) + M(z)e(z) 
Y’(z)= Y(z) - N(z@(z) (3.10) 

Therefore, the set of all stabilizing controllers with the 
structure (3.7) is parametrized in the form 

[ Y(z)-N(z)Q(z)]u(z) = Z(z)r(z)-[X(z)+M(z)Q~O ]Y(z) 

to yield the control structure shown in Figure lb. 
Clearly, setting Q(z)=O reduces the parametrized predictive 

(3.1 1) 

Note that in contrast to the standard Youla 
parametrization approach, the transfer function 
X(z)+M(z)Q(z) appears in the feedback path of Figure 
1 b, instead of appearing in the control block immediately 
preceding the plant. This deliberate departure from the 
standard approach, in conjunction with the factorizations 
(3.5) and (3.6) that make use of the nominal closed-loop 
polynomial, introduces highly desirable properties in the 
parametrized input-output maps as explained in the 
sequel. 

Proposition 3.2. The nominal control loop of 
Figure la  and the parametrized control loop of Figure lb  
have identical servo transfer functions y(z)/r(z) and 
u(z)/r(z). 

Proof: Carry out block-diagram algebra on each figure 
to derive in both cases the servo transfer functions 
y(z)/r(z) and u(z)/r(z) that are immediately obtained after 
a rearrangement of factors in equations (2.12) and (2.13). 

CorolZury 3.2. Given that the nominal controller 
(2.5) is a predictive controller, then the parametrized 
controller (3.1 1) is also a predictive controller. 

The proof of corollary 3.1 is based on the fact that 
both conmllexs produce the same sequence [U(?)}. See [81 
for details. Since any allowable parameter Q(z) yields the 
same servo transfer functions y(z)/r(z) and u(z)/r(z), the 
parametrized controller has the intrinsic capability of 
preserving the nominal servo performance. Also note 
that although the t a m s  containing Q(z) effectively cancel 
out in the servo transfer functions, the transfer function 
e(z)/w, (z)=M(z)[Y(z~-N(z)Q()] in Figure lb  is affine in 
Q(z), as in the standard Youla parametrization method. 
This allows shaping the loop sensitivity while 
simultaneously retaining nominal performance. 

4 .  DESIGN OF ROBUST PREDICTIVE 
CONTROLLERS 

When the nominal model (2.1) is not exact due to the 
presence of modeling errors, the plant transfer function 
g(z) may be written in the form 

gfz) = go fz) + 4 2 )  (4.1) 

where g,(z) =- is the nominal plant model, andS(z) 
is an unstru&@ed perturbation. Without loss of 
generality the developments are specialized for the case of 
additive perturbations, where 

B(z) 

I S(e‘*) I I I W(e’”) I \do (4.2) 

and where the uncertainty weight W(z) is a stable and 
proper msfer  function. The perturbation 4‘2) is assumed 
to be such that g(z) and go(z) have the same number of 
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unstable poles. The case of multiplicative prEurbations, 
as well as other typical unstructured uncertainty 
representations can be treated in an analogous way. 

The objective is to design a robust predictive 
controller that stabilizes the closed loop for all the 
members of the uncertain family of plants (4.1)-(4.2), and 
that in the nominal case where s(z)=O it recovers the 
performance of a nominal predictive controller (2.5) 
which is designed solely on the basis of the nominal 
model g,(z). The stability robustness of the closed loop 
shown in Figure 2, which includes the parametrized 
controller (3.11) and the uncertain family of plants (4.1)- 
(4.2), can be analyzed using If, theory concepts 
summarized in Theorem 3.1 below. The proof follows 
the standard theory (e.$ [9]) and is therefore omitted 

Theorem 3.1. A necessary and sufficient condition 
for the robust stability of the closed-loop system of 
Figure 2 is the inequality condition 

(4.4) 

We propose a systematic procedure for solving the robust 
synthesis problem without resofting to approximations 
for the Youla parameter. A particular challenge to the 
design problem posed is the objective of including an 
integrator in the robustified controller in order to 
guarantee effective disturbance rejection. 

Figure 2. Structure of a robust predictive controllei for a 
plant with an additive uncertainty. 

obust Synthesis 

The details of the robust synthesis technique vary 
depending on whether the nominal plant model is stable 
or unstable, and in the latter case, depending on the 
presence of poles on the unit circle. 

4.1.1 Base Case for Robust Design - Unstable Plant 
with no Boles on the Unit Circle. 

Consider the robust predictive controller design 
problem for the case where the nommal plant model g,(z) 
is unstable but has no poles on the unit circle. The 
synthesis problem is attacked by rewriting the robust 

Inequality (4.6), which is affine in the unknown 
parameter Q(z), is obtained by substituting equations 
(4.4) and (4.5) into inequality (4.3). The model-matching 
problem is commonly approached in the context of H, 
control theory using the 'y-iteration process, where (4.6) 
is substituted by the almative inequality 

where y is a positive scalar parameter selected by the 
designer. A robust design is obtained if Q(z) is found for 
a specified y c  1. The key is then to be able to 
synthesize a Youla parameter with a reliable algorithm. 
We advocate the use of a z-domain technique proposed by 
Rotstein and Sideris [lo]. The algorithm solves the 
Nehari extension problem, which consists of 
approxionating a stable transfer function R(z) with an 
antistable (all poles outside the unit circle) transfer 
function Q;(Z), where the tilde superscript denotes the 
conjugate operation Q;(z):=Q,(l/z). Specifically, the 
problem calls for finding a functton &(z) such that 

(4.10) 

The only inputs required are the transfer function R(z) and 
the scalar y. A necessary condition for the existence of a 
solution is that y must be greater than the Hankel norm 
of R(z),  Le., y > 1 R(z)llH. One solution of particular 
significance is the central controller, denoted Q, , ( z ) ,  
because the set of all the solutions can then be easily 
found as an explicit function of the central controller. 
The model-matching problem (4.9) can be written in the 
form (4.10) through a series of norm-preserving 
opt ions .  The procedure consists in f i t  factoring Tz(z) 
in the form 

where TBp(z) is an all-pass function and Tw(z) is a stable 
minimum-phase function, and then finding Tq(z)= 
T,(l/z) and carrying out the ~ ~ m ~ s i t i o n  

Gp(z)Tl(z) = Ra(z) + Rs(d (4.12) 

where R,(z) and R,(z) are an antistable and a stable transfer 
function, respectively. The ~ s f ~ - f u n c t i o n  input to the 
algorithm is 

R(z) = R;(z) (4.13) 

Then the algorithm produces the central controller 
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QR (z), and a solution to the original model-matching 
pro'&lem (4.6) is simply recovered as 

Q(z) = T&z) ( R ~ ( z )  + QR,Jz)) (4.14) 

The final robust predictive controller design for the 
base case is obtained by substitutin in the structure 
r.11) the Youla parameter (4.14) antthe factorizations 

4.1.2 Robust Design for the Case of an Unstable Plant 

3.5)-(3.6). 

with Poles on the Unit Circle 

When the nominal plant model go(z) has poles on the 
unit circle, the standard H, control theory is no longer 
applicable. In addition, the factorization (4.11) is no 
longer possible because no minimum-phase stable 
transfer function can possibly satisfy the equality. This 
difficulty is circumvented by introducing a change of 
variable that maps unit-circle poles to a circle of larger 
radius. Let z=p& where p >1 is a scalar, and &fine the 
operators 

T'(C)=T(zlp)  (4.15) 
")= T , ( Z I P )  (4.16) 

Then the base-case design problem (4.9) can be posed in 
terms of the transformed variable rin the form 

and can be solved for Q'( 8 using the base-case algorithm 
as described in Section 4.1.1. The z-domain Youla 
parameter is simply recovered by transforming the result 
back to the original space, i.e., 

Q(4 = Q Y P U  (4.18) 

The final robust predictive controller design for this 
case is obtained by substituting in the structure (3.11) the 
Youla parameter (4.18) and the factorizations (3.5)-(3.6). 
Using the Maximum Modulus Theorem, it follows that 
the transformed design problem (4.17) is related to the 
original problem (4.6) through the inequality 

Therefore, the transformed design represents only a 
sufficient condition for stability. If no Q'(Q can be 
found that satisfies (4.17), then a smaller value for p 
should be adopted and the design is repeated. 

4.1.3 Robust Design for the Case of a Stable Pkant 

When the nominal plant model go(z) is stable the 
robust design is straightforward. In the normal case 
where the weight W(z) is minimum phase (i.e., it does 
not have zeros on or outside the unit circle), a solution to 
the robust synthesis problem (4.6) is obtained by setting 

l;(z)-&(z)Q(r)= TJz), where T&) is a user- 
specifkd stable biproper transfer function that satisfies the 
contraction condition i q ( z a  c 1. Solving for the 
unknown parameter as a function of T,(z) yields the 
design equation 

where Q(z} is clearly a stable transfer function because 
T2(z) is minimum phase. In the altemative case where 
the weight W(z) is nonminimum phase, the design 
equation usedis 

Q(z} = T;'(z)(T, (z) - W(Z)T, (2)) * (4.21 1 

which is obtained by setting T,(z) - T,(z )Q(z)  = 
W(z)T,(z), where T,(z) is a user-specified stable biproper 
transfer function satisfying 
robust predictive controller 
in the structure (3.11) the Youla parameter (4.20) or 
(4.21), along with the factorizations (3.5)-(3.6). 

4.2 Steady-State Disturbance Rejection 

In process control applications the controller is often 
required to deliver effective disturbance-rejection 
performance. In order to introduce integral action in the 
robustified controllers designed in the previous sections, 
it must be ensured that the parameter Q(z} has a zero 
gain, i.e., Q(l}=O. Details of the robust design technique 
that guarantees steady-state disturbance rejection are given 
in [8 1. 

5. EXAMPLE 

Consider the unstable second-order nominal plant 
model 

2 + 0.2 
g,(z) = z2 -0.62-1.12 

and the uncertainty weight - -  
0.632 + 0.6174 

w(z) = 2 + 0.5 
Three controllers are designed: (i) a nominal predictive 

controller (NPC), (ii) a robust predictive controller 
(RPC), and (iii) a robust predictive controller with 
integral action (RPCI). The nominal predictive controller 
is of form (2.5), and is realized using the design 
parameters Ny=4, N,=2, and L=O, to arrive at the 
polynomials 

R(z) = Z' - 0.80392 - 0.1961 
S(Z)  = 0.86392' - 1 S 7 9 ~  + 1.0984 
T(z) = 0 . 2 9 1 4 ~ ~  - 0 . 0 1 5 6 ~ ~  -t 0 . 3 6 6 ~ ~  + 0.3243~ 

which leads to a controller that stabilizes the closed loop 
when the uncertainty is neglected. However, the NPC 
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controller is not robustly stabilizing because it violates 
the robust stability condition (4.3), i . e .  As a final remark, note that all the controllers 
IIw(z)c(z)$(z)n =2.9 >1, where C(z) and SLz) are anticipate the occurrence of set-point change at t=50, as 
calculated using &(z)=O in (4.4) and (4.5). This implies evidenced by the early adjustments in control action that 
that the nominal predictive controller will fail to stabilize take place starting at instant t=46, as shown in Figure 
the closed loop for some plants belonging to the family 3b. This anticipatory behavior is a characteristic of 
of uncertain plants. predictive controllers. Since the prediction horizon N,, 

The RPC design is of the form (3.11). Since the 
unstable nominal plant has no poles on the unit circle, 
the design proceeds as discussed in the base case (Section 
4.1.1). The transfer functions T1(z) and T2(z) are formed 
as prescribed in (4.7) and (4.8), using A2(z)= z2. To 
solve the Nehari extension problem we use r=0.99, 

has been selected equal to four samples, the controllers 
naturally initiate adjustments at instant t=46 when the 
prediction horizon fust permits detection of the upcoming 
set-point change. This observation verifies that the 
robustified control designs can legitimately be classified 
as predictive controllers, as claimed in Corollary 3.1. 

which is acceptable since it exceeds the limiting Hankel 

the base-case afgorithm leads to a parameter 
Q(z)=N (z)/D (z) of order 8. The RPC transfer 

9 in their minimal forms. The controller is robustly 
stabilizing because 11 W(z)C(z)$(z) ]_=0.35<1. 

norm value 1 R(z) 11 . The central controller found using 2 5  

h functions?(z)-N(?)Q(z), and X(z)+M(z)Q(z), are of order E, 1.5 

k Finally, the design of the RPCI is carried out using 
again the specification y=0.99 and p =1.12. The 
procedure leads to Q(z)= (z-l)NQ(z)/(zD (z) ) of or&r 9. 

X(z)+M(z)Q(z) are of order 10 in their minimal forms, 
-0.5 

I The resulting RFCI transfer functions Y&)-N(z)Q(z), and 0 20 40 60 80 100 
'Rue, t ' and Q(l)=O, as desired. The RPCI controller is robustly 

stabilizing because 11 w(z)~(z)$(z) 1_=0.49<1. 2.5 ' . . . I , ' . . l ' . ' . I . . . . I . . . . I . ' . ' I . . . . I  " " , . " ' ~  - 1 . .  

I 

Figure 3 shows the results of a closed-loop simulation 
test carried out to evaluate the nominal servo and 
regulation performances of the three control designs. The 
process is assumed to match exactly with the nominal 
model, i.e.,6(z)=O. A unit-step disturbance d(t)is injected 
at t=12. Figure 3a shows that during the first 12 
samples, where d(t)=O, all three controllers display 
identical dynamics. This is the expected result since 
Proposition 3.1 guarantees that the nominal prkdictive 
controller and the robustified controllers have identical 
servo transfer functions, independent of the value of Q(z). 
Also as expected, the control-output trajectories shown in 
Figure 3b are also identical during this interval. 

The three controllers differ however in their regulation 
behavior. When the disturbance is introduced at t=12, the 
Npc rejects the disturbance, quickly returning the output 
to the set point, as shown in Figure 3a. In marked 
contrast, the RPC fails to reject the effect of the 
disturbance, and displays steady-state offset. The RPCI, 
on the other hand, succeeds in rejecting the disturbance, 
albeit with slower dynamics than the nominal controller. 
Figure 3b shows that the NPC achieves the disturbance 
rejection at the expense of fairly energetic control actions 
that follow the onset of the disturbance. On the other 
hand, the RPCI prescribes more conservative input 
adjustments, typical of robust controllers. In many 
practical situations, the smoother dynamics of the RPCI 
design may be highly preferable over the more aggressive 
behavior of the NPC. 

1.5 
h 
f 

a 3 0.5 

-0.5 
! 

-1.5 
0 20 40 60 80 100 

1Imq t 

Figure 3. Comparison of the performance of the nominal 
predictive controller (NPC), the robust predictive controller 
(Rpc), and the robust predictive controller with integral 
action (RPCI) designed for a plant with no uncertainty. The 
set point changes at instants t=O and t=50. A unit-step 
disturbance d(t) is introduced at f=12. 

6. CONCLUSIONS 

A systematic method for robustifying predictive 
controllers has been proposed. The technique succeeds in 
preserving nominal servo performance due to the 
unconventional feedback configuration adopted for the 
parametrized controller, and also to a coprime 
factorization that makes use of the characteristic 
polynomial of the nominal closed loop. A significant 
feature of the proposed method is its applicability to both 
stable and unstable plants. Another advantage of the 
robust synthesis technique is that it pennits the 
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incorporation of integral action in the robustified 
controllers, making the resulting controllers more useful 
for practical applications. 
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8. APPENDIX 

This section presents specific design equations used to 
synthesize a nominal predictive controller following the 
approach in [6]. The design equations for polynomials 
(2.6)-(2.8) that appear in the predictive control law (2.5) 
are: 

R(Z) = Zn[1+ z - lxzk i r i ( z - l ) ]  (A.1) 

S(z) = Z"[Xl,k, FJz-')] 64.2) 

T(z) = x2 kizi (A.3) 

where the design operators Fi(z-') and ri(z-l)  and the 
coefficients ki, i=l, 2, . . . , Ny are determined from the 
process model according the following procedure. First 
rewrite the nominal plant model (2.1)-(2.3) in the 
equivalent form 

A, (z-') y ( z )  = t-' B, (z-* ) u(z) (A.4) 

involving inverse powers of z, where A,(z-l) and Bl(z-l) 
are related to (2.2) and (2.3) in an obvious manner and are 

of the form 

A,(z-') = 1 + u,,z-' + U,~Z-* + ... + u,~*z-"' 64.5) 

( A 4  

To obtain the design operators F,(z-*), which are 
polynomials of degree n (the order of the plant (2.1)), 
solve the set of Diophantine equations 

B,(z-') = bl,o + bl,rt-' + ... + b,,n6~-n' 

E,(Z-~)A(Z-~)A,(Z-~) + z - ~  ~ ( z - I )  = I ,  
i = 1, 2, ..., NY (A.7) 

which also yields the intermediate polynomials E,(z-l) of 
degree i-1. The design operators, r l z - l )  are of degree n, 
and are obtained by decomposing the product E,(z-')B(z 
1) in the form 

where the polynomials Gi(z-') of degree i-1, known as the 
dynamic polynomials, are characterized by the fact that 
their coefficients are the sampled values of the step- 
response of the plant (A.4). In turn, the coefficients of 
the dynamic polynomials are used to define the nonzero 
elements of the Toeplitz matrix G, known as the 
truncated dynamic matrix, which condns Nu columns. 
and N rows. Finally, the coefficients k, i=l, 2, ..., Ny 
are o&.ained as the components of the gain vector 
kT=[k! k, ... kNy], which is calculated from the 
expression 
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