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Abstract—This paper addresses the problem of robust fault
detection and isolation in dynamical systems using frequency
domain data. Our main result shows that this problem can be
reduced to a convex optimization problem that can be
efficiently solved. The proposed method is put to test on a non-
trivial, practically relevant problem: detecting the presence
and estimating the composition of contaminants in lubrication
and transformer oil.

I. INTRODUCTION

HE problem of fault detection and isolation in systems

has been given considerable attention in recent years.
The main drive for this is the growing need for on-board
diagnostics and prognostics of systems in order to reduce
maintenance costs and down time [1-3] focusing on
condition based maintenance rather than schedule based
maintenance. Many engineering systems such as airplane
control systems, automotive electronic throttle and
transmission systems, power distribution systems (such as
transformers), chemical process control systems, high
performance bearing systems, airborne systems and tanks
equipped with gas turbines, all require the ecarly fault
detection in order to prevent catastrophic failure [3-8]. Some
of the common classes of methods for fault detection and
isolation include: model-based analytical methods, physical
redundancy and model independent methods. Model based
analytical approaches are popular due to their cost
effectiveness. Many have studied this category using
different mathematical models for the failure prediction [9-
15]. However, the major challenge with the model-based
approach is that it requires detailed knowledge of the
physics of the system. Even in cases where a detailed model
of the system is available, it may be difficult to exactly
determine the values of all parameters involved, and any
mismatch between the assumed and actual dynamics can
lead to incorrectly concluding that faults are present. To
address this difficulty, many researches have focused on
robust FDI [12, 16-23]. This reduces the potential problem
with model mismatch because it accounts for model
uncertainty and measurement noise. To date, many of the
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work along these lines is based on the use of time-domain
experimental data. However, in the case of the practical
problem driving this paper, the experimental data available
consists of measurements of the frequency response of the
specimen, ¢.g. steady state values of the amplitude and
phase shifts of sinusoidal inputs applied at scveral
frequencies, and thus these methods are not exactly
applicable. Motivated by this problem, in this paper we
propose a frequency-domain counterpart of the time-domain
robust FDI framework introduced in [22]. In principle this
formulation leads a non-convex, computationally hard
problem. However, as we show in the paper, a tight convex
relaxation of the problem is readily available. These results
are illustrated with a non-trivial practical problem arising in
many industrial applications: identification and classification
of contaminants in lubricating and transformer oils. The
need for the close monitoring of lubricating / transformer oil
conditions, in order to avoid the high cost of both preventive
and corrective maintenance, has become more apparent
recently. Small quantities of oil contaminants can cause
serious system malfunctions and possibly hazardous
situations. For example, glycol-water mixtures can
hydrolyze the zinc dialkyldithiophosphate (ZDP) anti-wear
additive [24] and if a significant amount of ZDP is so
affected, anti-wear protection will be lost and catastrophic
camshaft and valve lifter wear results. Similarly, a small
amount electrolytic substance in transformer oils can lead to
short circuit causing catastrophic malfunction of the
transformer resulting in power interruptions and even worst
fire hazard. Different researchers have proposed different
methods of determining the condition of the oil. Some have
used impedance methods along with equivalent circuit
element representation of the electrochemical process [24-
26], while others have used oil conductivity as the measure
of the oil condition [27]. The drawbacks of the above
techniques are: 1) parametric fit is generally non-unique, for
example there are many equivalent circuit-element-
combinations that give the same impedance curve, 2)
uncertainty and measurement noise/disturbance are not
addressed. Both effects make hard establishing that indeed
contamination has taken place, and to ascertain the extent
and composition of the contaminant. On the other hand, the
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technique proposed here can efficiently answer these
questions.

The remainder of this paper is organized as follows: In
Section II, we introduce the notation used in the paper. In
section Il we give a precise formulation of the problem
under consideration, analyze its complexity and reduce it to
a convex, Linear Matrix Inequality (LMI) optimization
form. In Section IV, we illustrate these results with two
examples, one academic and one practical. Finally, section
V contains some conclusions and points out to directions for
further research.

II. PRELIMINARIES

For case of reference, next we summarize the notation
used in this paper.

G(A) Maximum singular value of A .

A>(>)0 A 1is positive (semi) definite.

Lo The identity and zero matrices of
compatible dimensions (when
omitted).

D Closed right half plane: {z:Re(z) >0}

oD jo axis

L, Extended Banach space of vector

valued real functions equipped with
1

the nom: [ = ( ["|x(of}
H Space of functions essentially
bounded on the jp» axis, with

bounded analytic continuation inside
the right half plane, equipped with the
norm. ”G”m =esssup, 6 (G(jw)) -

BH Closed unit ball in 77_.

III. FREQUENCY DOMAIN BASED FDI

A. Problem Formulation

Figure 1. Setup for robust FDI with multiplicative uncertainty.

Consider the parameterized frequency domain model
shown in Figure 1. The corresponding equation is given by:

y—d+[[+W(s)A(s)]{Go(s)+Zr:fiG,.(s)}u (D

i=1

where:
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G,(s) is the model of the healthy plant

G,(s) represents the plant models corresponding
to the ;” fault.

f,€l0,1] are fault indicators, ie., f =0 (no
fault), 7 =1.0 (extreme fault).

u(je,), y(jo,) and d represent a known input,
the corresponding frequency domain experimental
output (response) and an unknown but L,

bounded measurement noise, ”d”2 <e,
respectively.
W(s) 1is a known weighting function and

A(s) ec BH, represent the unstructured dynamic
model uncertainty.

Using these definitions, the problem under consideration
here can be precisely stated as: Given the following a priori
information: a model of the plant under normal (healthy)
conditions G (s), a model of the possible failure modes
G,(s), a bound ¢ on the measurement noise, uncertainty
and N A data
{u( jo,), ¥( jwk)}, determine (i) whether a fault has

experimental  input/output pair

occurred, and (ii) in this case, its location and strength. As
we show next, this problem can be transformed to a (non-
convex) optimization form by exploiting the following
boundary Nevanlinna-Pick interpolation result:

Lemma 1: Given ¢, eC" p,eC" and gz edD.
k=1-,N,. there exist a matrix function A e BH_ such
that

g, =AZ)p,. k :L”"Nf
if and only if
lacl. <Ml & =1

Proof: The proof is given in [28].

Direct application of this Lemma leads to the following
result:
Lemma 2: There exists a feasible triplet {A, f, d} such that

equation (1) holds if and only if the following set of
inequalities is feasible:

y,t (Guk +dk)+ (Guk +dk)* Vi —yZyk —(Guk)* (1 —yzW)(Guk)

~d (Gu, ) +(Gu,) d, >0
(G + (G (2)

and

>

d,|< %, k=1,...,N,
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Proof: From Figure 1,
4 =y, —Gu, —d 3)
P =WGu,

From Lemma 1, we have there exists A e A mapping the
input-output sequences ( p, ¢) if and only if

lacll < 7* [l @

For our case the problem is SISO, hence (4) is written as

la.” < 7*|pf ®)
substituting (3) into (5)
la.| <7 |pS
S G4 <V Db ©)

o[y —d, -Gu,] [ -d, -Gu, | <> (WGu,) (WGu,)
S y;: (Guk +d, ) + (Guk +d, )* Ve — J’ZYk

~(Gu) (1= )(Gu) - (d; (Guy )+ (G, )y )2 0
This completes the proof. u

Unfortunately, condition (2) above is bilincar in the
variables { fl_,dk}. It is well known that optimization

problems involving these types of constraints are generically
NP-hard (see for example [29]) and thus computationally
expensive. To avoid this difficulty, in the sequel, motivated
by the work in [22] we propose a convex relaxation of the
problem that leads to computationally efficient solutions. To
this effect, consider the block diagram shown in Figure 2,
where the measurement noise has been moved ahead of the
uncertainty block.

J
—'-—:é” »O—

Figure 2.
uncertainty.

Setup for modified robust FDI with multiplicative

The corresponding equations are now given by
y=[1+W($)AE)] {GO (5)+ Z f,.G,.(s)} "+ d} O
=1

When compared to the original setup in Figure 1, it can be
ecasily seen that the only difference is in the measurement
noise level, since if there exists a triplet {A, f, (1} satisfying
equation (7) with ”&” <z £

SRR N
(A.f,d} with d=(1+AW)d satisfies equation (1). It follows

, then the triplet

that one can attempt to find a solution to the original
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problem of Figure 1 by searching for a solution to the FDI
problem shown in Figure 2, with noise level £. As we show
in the sequel this leads to a convex optimization problem. In
addition, one will expect that if ||WA|| «1 then this

approximation is not too conservative.

Remark 1: Note that in general, due to the presence of
uncertainty and noise, there may exist more than one set
{ AT, d} that explains the experimental input/output data. In

that case, to avoid ambiguities, we will select among all
possible solutions, the one corresponding to the minimum
value of ||f||2 This choice minimizes the number of false

alarms, since it tries to explain, whenever possible, the
experimental data as being produced by the normal (non-
failure) dynamics, possibly affected by dynamic uncertainty
and measurement noise.

With this choice, the modified FDI problem can be recast
into the following optimization form:

Problem I Given the a priori information G,(s), W (s), &

and the experimental data w and y find:
min|f],
subject _to: )
AeBH,.|d|, <&,

y= [[ + W(s)A(s)]{GO )+ Zr:fiGi(s)}u +d}

If f=0 then no fault is present. Otherwise, the fault
location/strength is identified by the elements of f .

Theorem 1: Problem 1 is equivalent to the following LMI
optimization problem:

min |f],
subject to:
4,(d,.1)=
yk(Guk+Jk)+(Guk+~k)yk ViV (Guk+6?k) 0
(G, +d) (=)' |
- &2 d
B"(")_t?; 1" >0, k=1..,N,
©)
Proof: From Figure 2,
G =W (Guk""C?) (10)

substituting (10) into (5)
. <7*|pf
S 49 <V PPy
= |:J’k - (Guk +d~k ):| |:J’k - (G”k + d~k ):|
. .

<y [w(Guy+d,)| [ (Gu, +d,)]
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A y;: (G”k +C?k)+(G”k +C?k) Vi _J’ZYk
—(Guk +a~7k)* (1—7/2W)(Guk +a7k) >0
Using Schur complements the last inequality yields the first
LMI in (9). The second LMI is just a restatement of
d | <&

This completes the proof. u

IV. EXAMPLES: ANALYTICAL & EXPERIMENTAL

In this section we test the proposed technique using two
FDI problems: one academic and one practical.

Example 1 — Analytical Example: The analytical example
selected for testing the current technique is a system and its
three fault dynamics all subject to uncertainty, equation (11),
where the healthy and faulty dynamic models are given by
equation (12).

3
y= (1+AW)[G0(S)+Zf,G,.(s)ju +d an
i=1
'~ 4755~ 2,485 ~1.195-0.56
* st +1.925°+161s+083s+0.16
4 2
5.07s" +3.915> +0.94 12)

1

5" +2.555° +3.765 +4.165+3.18
~ 31.755> +1.8s
5" 42,555 +3.765> +4.165+3.18
~ 75.755% +65
5" +2.555° +3.765> + 4.165+3.18

2

3

The frequency data was generated using the models and
an assumed uncertainty and noise models. The magnitude
plot of the models and the frequency data is shown in Fig. 3.

TTTITT
—_— Go 1
=== (1+A)Go + noise |
—_ 1 I
=== (1+A)G1 + noise :f
— G2 |
=== (1+A)G2 + noise ||
I
|

—_— G3

Magnitude

o [Hz]
Fig. 3. Dynamic models with and without uncertainty and noise.

Table T shows the results of several experiments with
simulated faults of different types and levels. The different
simulated fault results show that the proposed technique
correctly identified the type. It also provided a good estimate
of level of the faults in each case.

WeB15.6

TABLEI
RESULTS OF THE ANALYTICAL MODEL
Fault Mode Detected Fault Strength
0.0 0.0 0.0 0.0008  0.0008  0.0006
0.0 0.0 1.0 0.0012  0.0007  0.8542
0.0 1.0 0.0 0.0047  0.8404  0.0001
0.0 1.0 1.0 0.0000  0.8453  0.8545
1.0 0.0 0.0 0.8152  0.0027  0.0000
1.0 0.0 1.0 0.7797  0.0003  0.8559
1.0 1.0 0.0 0.7789  0.8415  0.0000
1.0 1.0 1.0 0.7814  0.8455  0.8552
0.2 0.7 0.9 0.1173  0.5852  0.7716
0.01 0.95 0.42 0.0000  0.8007  0.3708
0.48 0.56 0.67 03510  0.4765  0.5804
0.1 0.3 0.2 0.0527  0.2588  0.1864
0.37 0.66 0.84 0.2584  0.5564  0.7216
0.33 0.33 0.33 0.2271  0.2887  0.2964
0.85 0.75 0.95 0.6577  0.6364  0.8142

Example 2 — Experimental Example: In this example
actual oil experimental data is used. The experimental
frequency response data is obtained by interrogating oil
samples using a small sinusoidal signal and measuring the
steady state amplitude and phase. The experiment was
conducted for 1) pure oil, 2) oil with contaminant-A, and 3)
Oil with contaminant-B. A scaled magnitude plot of the data
is shown in Figure 3. The dynamic models of the healthy
plant and each failure mode were obtained using a least-
squares fitting of the corresponding frequency response.
These models, for the healthy as well as the faulty dynamics
are given by equation (13).

0

LS o o g ! B D N AN B T T T T
— _I_JZ L L L0 0| == Healthy
—— + + +I- H| —— Contaminant A |q
-t AmimEAst == — Contaminant B |7
bo— 4 — 4 —l——id p
T T 1]
N U R R
R T N 1 AR D D B U S N BN DU B R
§ | R | |
= R [ I
5 il e Bl bl el B I ol et Bl B =1
©
= IR i
3
s R [ RN
SO e e e ol e ) el ) B e s el (ERH
£ L e n od s ol sl L ld DD o o sl L L L ol Ll o e Lo o ol T LI
S CC_ -1 CJid_ - JZCIrrnoJoD--ZC-WNJZJ1r1d
O I A A B S Y I I M A
R T
T T T r T Tnn [
- =t =4l FiA it — = == ==+ + 1t -
[N o [
il St fad i I o At Rl Al il o i roraaT
[T o RN
L L L
10° 107 10" 10°

Normalized frquency [Hz/Hz]

0.01435% +23.615+125.4
T 574394254193
0015257 +23.555+181.2
' §7455.805+394.8

 0.01445% +23.695+106.9
> §2431.76s+1313

(13)

G
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The proposed technique was tested using the models (13)
and additional experimental data, not used in the
identification. The results of applying the proposed FDI
method to this new data are summarized in Table II. These
results indicate that the developed method has effectively
identified the fault types. The estimated fault levels are also
generally good. In cases of single fault modes, the fault level
was estimated to about 78-87% of the actual fault level.

TABLEII
RESULTS OF THE EXPERIMENTAL AND ANALYTICATL MODELS OF OIL

Fault Mode Detected Fault Strength
0.0 0.0 0.0194 0.0382
0.0 1.0 0.0000 0.7727
1.0 0.0 0.8016 0.0000
1.0 1.0 0.1131 0.0000
0.2 0.7 0.0023 0.3417
0.01 0.95 0.0018 0.7992
0.48 0.56 0.0536 0.0505
0.1 0.3 0.0037 0.1047
0.33 0.33 0.0807 0.0466
0.85 0.75 0.3471 0.1411

When simultancous fault modes are present the estimation is
lower than the single mode cases. This is because multiple
contaminants do not necessarily have the same effect as the
sum of the individual contaminants. Therefore, experiments
should be performed for combination of multiple
contaminants that are of practical interest. The response of
such combination can be used along with the developed
algorithm to identify the combination of the fault. Improving
this estimation is practically significant because in most
applications multiple contaminants (all at the same time) are
more likely to exist than individual contaminants.

V. CONCLUSION

In this paper we introduced a new robust FDI method
based on frequency domain data. In principle this
formulation leads to non-convex, generically NP hard
problem. To circumvent this difficulty, we proposed a (tight)
convex relaxation that allows for recasting the problem into
an LMI optimization form. These results were illustrated
with an academic example and a practical one, identifying
the presence and composition of contaminants in oil. As
shown in the paper, in both cases the proposed method was
able to correctly identify faults, in the presence of model
uncertainty and measurement noise. Research is currently
under way to improve the estimation of the fault levels, by
exploiting mixed time/frequency domain data, and to
integrate the technique with robust model identification.
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