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Abstract - We propose a neural network to answer a point query in ‘P 
partitioned based on the Voronoi diagram, Our novel design offers the po- 
tential to reduce both the number of neurons and connection weights of 
previous designs, employing a cost function which enables a tradeoff be- 
tween the two to suit a specific implementation. Our simplified structure 
requires neither delay weights nor complex neurons, while retaining the 
main advantage of previous designs to furnish precise values for the neu- 
rons and connection weights, as opposed to trial and error iterations or 
ad-hoc parameters. 
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I .  INTRODUCTION 

Many problems in robust pattern classification can be re- 
duced to nearest neighbor clustering in R”. This problem has 
been given renewed attention lately in the context of machine 
vision applications such as object recognition and visual feed- 
back [ 11-[3]. A critical constraint in these applications is that 
the problem must be solved in real time and the solution must 
be robust against perturbations arising for instance from noise 
or blurring. In this paper we propose a novel three-layer neu- 
ral network with intralayer feedback to achieve nearest neigh- 
bor clustering. The number of neurons and the interconnection 
weights can be exactly determined a priori from the problem 
data, eliminating the need for trial and error type iterations or 
ad-hoc parameters. Moreover, the proposed net compares fa- 
vorably, both in terms of the total number of neurons and con- 
nection weights, with similar networks proposed in the past to 
solve the same problem. 

Given a set of S sample points in R”, the proposed design is 
based upon constructing the Voronoi cell of each point [4], [5] 
(i.e. the region of space containing those points that are closer, 
based on some norm, to the given point than to the other el- 
ements in the sample) and grouping these cells into clusters 
representing each class of patterns. Note that although each 
individual cell is convex, convexity may be lost when the cells 
are grouped, leading to clusters that are not linearly separa- 
ble. In the original work along these lines [6], this difficulty 
was solved by representing each cluster as the union of a finite 
number of convex regions. While this leads to a feedforward 
structure having at most three layers, it artificially inflates the 
number of neurons required. 

The key realization of a more recent design [7] exploits the 
fact that if a query point lies within a non-convex cluster, it also 
lies within a convex polyhedron defined through the intersec- 
tion of a proper subset of “true” halfspaces associated with the 

0-7803-7278-6/02/$10.00 02002 IEEE 2231 

faces of the cluster. This allows for using a two-layer neural 
network even when the clusters are non-convex, by construct- 
ing region-by-region a list of constraints rendered redundant 
(“induced”) by each of its support halfspaces in the follow- 
ing manner: The input excites the true halfspaces of the first 
layer, which in turn excite the induced halfspaces through in- 
tralayer feedback. The second layer performs the intersection 
of all the excited halfspaces to determine the polyhedral class 
which contains the point. The network effectively constructs a 
non-convex version of a hyperplane (“hyperborder”) for each 
class boundary to determine whether the query point lies in its 
positive or negative “halfregion”. 

The design proposed in this paper carries the two-layer 
structure a step further by disassociating a hyperborder from 
the boundary of a class polyhedron, driven by the fact that 
two neighboring polyhedra share a common Rather than form 
a class boundary independently for both classes, effectively ac- 
counting for these common boundaries twice, we form a single 
hyperborder for each common boundary of adjacent classes. 
Now a class polyhedron can be constructed as the intersec- 
tion of the support halfregions of these hyperborders through 
a three-layer network with intralayer feedback. This enables a 
drastic reduction in the number of connection weights, as well 
as bypassing the need for multi-valued delay weights and com- 
plex neurons in the implementation. 

The paper is organized as follows. In Section I1 we intro- 
duce some mathematical preliminaries and precisely state the 
problem. Section 111 reviews the designs of the two competing 
networks briefly mentioned above, and Section 1V describes 
the proposed network in detail. In Section V we discuss the im- 
plementation issues of the three-layer network with intralayer 
feedback. These results are illustrated in Section VI with a sim- 
ple example, where the proposed network is compared against 
the other two. Finally, in Section VI1 we summarize our results 
and point out directions for further research. 

11. PRELIMINARIES 

A .  Notation and Geometrical Background 

A hyperplane t is a set of points p E R” which satisfy the 
equation 

n+ 1 

i=l 
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where p has coordinates ( p l , p 2 , .  . . ,pn, 1) and w1 through 
wn+l are constants, or weights. t divides R" into a positive 
halfspace t+ : wi . pi 2 0 and a negative halfspace 
t- : wi pi < 0.  In the sequel we will use the nota- 
tion int{t+} (int{t-}) to denote the interior of the halfspace 

Given S sample points in Rn, to each point we associate the 
set of points in the space closer to it than to the other elements 
in the sample. This convex set is known as a Voronoi cell of 
dimension n, and the collection of cells forms the Voronoi di- 
agram of S [4], [5]. In turn, each cell has f faces of dimension 
n - 1 shared by adjacent cells. A face is the intersection of 
a halfspace which bounds the polyhedron and the boundary of 
the polyhedron. If the positive (negative) halfspace of the cell 
is associated with the face of the cell, the negative (positive) 
halfspace is associated with the face of the adjacent cell. Sam- 
ple points in adjacent cells are said to be neighboring, thus a 
sample point has f neighboring points. In turn, each face has 
a number of subfaces of dimension n - 2 shared by adjacent 
faces, and so forth. 

t+ (t-). 

B. Statement of the problem 

The problem that we address in this paper can be precisely 
stated ad: 

Problem 1: Given a set S of sample points in R", parti- 
tioned into m classes, each one represented by a subset sk, 
find the class that contains the nearest neighbor to a query point 

Proceeding as in [6], this problem can be solved by considering 
the cells ck formed by the the (generally non-convex) union of 
the Voronoi cells of the points in the class Ck and determining 
which cell contains p. Thus the problem reduces to: 

Problem 2: Given m polyhedra, not necessarily convex 
classes Ci, Ci n Cj  = 0, i # j, U Ci = R", and a query 
point p E Rn, determine which class contains p. 

P 6 s. 

111. PREVIOUS DESIGNS 

A.  Three-layer feedforward network 

A convex polyhedron can be defined through the intersection 
of a finite number of halfspaces. Thus, in the case of convex 
cells, Problem 2 can be solved using a two-layer neural net- 
work as in [6]. The first layer determines whether a query point 
lies in the positive or negative halfspace of all the hyperplanes 
which support the convex region. The second layer performs 
the intersection or AND operation of all the determined halfs- 
paces. If TRUE, the point lies in the polyhedron. If the cells 
are non-convex, the same approach can be used, by decompos- 
ing each non-convex cell Ci into the union or OR operation of 
convex polyhedrons Cij in the third layer (see [8] for details). 
However, as pointed out earlier, this approach artificially in- 
flates the number of neurons required, since potentially many 
of the constraints defined by the halfspaces supporting the re- 
gions Cij are redundant. 

B. Two-layer network with intralayer feedback 

The two-layer feedback network in [7] has a similar struc- 
ture to the one above, but eliminates the need for redundant 
constraints by avoiding decomposing the cells Ci. The key 
idea reveals that if a query point lies within a non-convex poly- 
hedron Ci, it lies within a convex polyhedron Ci, defined by 
the intersection of a proper subset of true halfspaces associ- 
ated with the faces of Ci. Therefore a TRUE intersection can 
be realized by having this subset induce all the remaining half- 
spaces associated with the cell Ci. In the sequel we present a 
systematic procedure to accomplish this. 

Given a point lying in a halfspace t+ of a polyhedron P ,  
faces that lie completely in the complement o f t +  are redun- 
dant, in the sense that they do not contribute information about 
whether or not the point lies in the polyhedron. Thus, a true 
halfspace t+ induces another halfspace i+ (induced halfspace) 
of the same polyhedron if the corresponding face f of a +  lies 
completely in the complement halfspace oft+ and the comple- 
ment halfspace of i+ intersects the polyhedron and t+,  i.e., i f  
f n int{t+} = 0 and P n t+ n i- # 0, where f A aP n i+ 
and 8P denotes the boundary of P. Note that if the first condi- 
tion holds true but the second condition does not, i+ is indeed 
redundant but it need not be induced. This is due to the fact 
that any point p E P fl t+ renders i+ TRUE. These simple 
observations, which in practice amount to cutting off a non- 
convex part of the polyhedron, form the basis of the proposed 
procedure. 

To illustrate this approach, consider for example the non- 
convex polyhedron in R3 shown in Figure 1. (Only six faces 
of the polyhedron labeled a through b are shown.) Assume that 
the negative halfspaces of the faces support the polyhedron. A 
point in b- (the negative halfspace of b) induces c -  since face 
c lies completely in b+. Faces a, e, and f lie completely in b- 
and face d lies in both b-  and b+, therefore a-, d - , e - ,  and 
f - are not induced. A point in c -  induces b-  since face b lies 
completely in c+.  Note that a- does not need to be induced, 
since a point in P n c- automatically renders a- TRUE, and 
also that a point in the halfspace of a polyhedron can induce 
only the halfspaces of that polyhedron. 

\ I  

Figure 1.  A non-convex polyhedron in R3 to illustrate true and induced 
hyperplanes 

The design described in this section actually provides a re- 
dundant number of induced halfspaces for each true halfspace 
of a halfregion. A procedure to eliminate this redundancy 
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is outlined in [7], thereby reducing the number of induction 
weights presented here to the minimum necessary. 

IV. PROPOSED DESIGN 

A. Three-layer network with intralayer feedback 

The design in Section III-B, while minimizing the number 
of neurons in the network, still inflates the number of con- 
nection weights. In forming the non-convex boundaries of the 
class polyhedra through induction, it employs both the positive 
and negative halfspaces of each boundary hyperplane, neces- 
sitating additional weights to excite both halfspaces at differ- 
ent time steps. Moreover this implementation requires multi- 
valued delay weights and complex neurons with positive and 
negative terminals. 

This design can be rendered more efficient by realizing that 
two neighboring class polyhedra share a non-convex bound- 
ary. Rather than form the entire boundary of a class polyhe- 
dron as the union of the faces of its support hyperplanes, we 
form only the common boundary of the neighboring polyhe- 
dra in the same manner1. We denote these boundaries in the 
general case as hyperborders, since they divide R" into pos- 
itive and negative halfregions2. Now this common boundary 
can be accounted in both polyhedra by forming only the pos- 
itive halfregion which supports one of them, and whose com- 
plement (negative) halfregion supports the other. This enables 
a class polyhedron to be represented as the intersection of its 
support halfregions. The positive halfregion is defined as the 
one of the two which requires less induction weights to realize, 
and the weight reduction follows from the absence of induction 
weights required to form the negative halfregion. 

The three-layer network requires four clock steps to answer 
a point query: At the first step, the input excites the true half- 
spaces of the network, which in turn excite the induced half- 
spaces at the following step. The network excites the halfre- 
gions at the third step (i.e. performs the intersection of the ex- 
cited halfspaces to determine whether the point lies in the pos- 
itive or negative halfregions of the network), and on the fourth 
step performs the intersection of the excited halfregions to de- 
termine the polyhedral class which contains the query point. 

B. Artijcial Hyperplanes 

A fundamental hyperborder is one composed solely of the 
faces whose support hyperplanes separate two class polyhedra. 
We define the sub faces where fundamental hyperborders meet 
as the fundamental subfaces of the Voronoi diagram. Figure 
2(a) displays the fundamental hyperborders A ,  B,  and C (and 
associated fundamental halfregions) which separate the shaded 
regions 1, 2, and 3 of a partitioning in R2. The partitioning 
contains a single fundamental subface. 

'In both cases, faces which share only one subface with other faccs in the 

21fthe boundaries are convex (i.e. contain just one facc each), the hyperbor- 
union terminate at infinity. 

ders reduces to hyperplanes and the halfregions to halfspaces. 

(a) Fundamental hyperborders (b) Extended fundamental hyperborders 

Figure 2. Artificial hyperplanes 

Definition I :  Feasibility condition: A hyperborder which 
separates neighboring class polyhedra cannot intersect any of 
them. 

A class polyhedron can be formed through the intersection 
of the fundamental halfregions which support it, provided that 
they meet the feasibility condition. Hyperborder A,  which sep- 
arates regions 1 and 2, violates this condition by its intersection 
with region 1. Likewise B, which separates regions 1 and 3, re- 
sults infeasible since it intersects region 1. C,  which separates 
regions 2 and 3, does not violate the feasibility condition. 

Joining additional faces to those faces of an infeasible hy- 
perborder which share only one subface with the others in the 
union, can render the hyperborder feasible. We denote the cor- 
responding hyperplanes of these additional faces as artlJicia1. 
The two artificial hyperplanes which appear in region 3 of fig- 
ure 2(b) render the extended fundamental hyperborder A feasi- 
ble; B requires solely the single artificial hyperplane which ap- 
pears in region 2 to render it feasible. Computing the minimum 
number of artificial hyperplanes required to establish the feasi- 
biity of a hyperborder falls into the realm of visibility problems 
[9]. The artificial hyperplanes are not unique, and are chosen 
here not to coincide with the boundary hyperplanes. The cited 
technique, however, does furnish unique artificial hyperplanes 
with minimum cardinality. Now that the three hyperborders in 
the network are feasible, region 1 is constructed as A -  B-, 
region 2 as A+ n C-,  and region 3 as B+ n C+. 

C. Optimal Network Design 

While the class polyhedra can be formed through the inter- 
section of the extended fundamental halfregions which support 
them, this may not lead to the most efficient design in terms 
of neurons. The design lies in the selection of network hy- 
perborders which minimize a cost amongst a list of candidate 
hyperborder.s, each one bearing an associated cost in the num- 
ber of neurons required to form it. A candidate hyperborder is 
a feasible hyperborder composed of both boundary and artifi- 
cial hyperplanes, each hyperplane contributing one neuron to 
the network. Each of these hyperborders, independent of the 
hyperplanes which form it, also contributes one neuron to the 
network. Section V provides complete details of the network 
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structure. 

Definition 2: Coverage condition: The union of the hyper- 
borders in the network must cover all the fundamental hyper- 
borders. 

The coverage condition ensures that all the regions of the 
pattern classification problem can be uniquely determined 
through the intersection of the network hyperborders. We seek 
the design which minimizes the number of neurons required in 
its implementation, provided that it meets the coverage condi- 
tion. 

Figure 3. Optimal network design 

The network design in figure 2(b) requires a total of 13 neu- 
rons for implementation: Hyperborder A require 5 neurons (2 
boundary, 2 artificial, plus l), B requires 5 neurons (3 bound- 
ary, 1 artificial, plus l), and hyperborder C requires 3 neurons 
(2 boundary, 0 artificial, plus 1). Consider the alternative de- 
sign in figure 3, where the fundamental hyperborders A and 
B are joined into a single hyperborder T. Hyperborder T re- 
quires 6 neurons (5 boundary, 0 artificial, plus 1) and hyperbor- 
der C again requires 3 neurons. This optimal design requires 
only 9 neurons, where region 1 is formed as T -, region 2 as 
T+ n C-,  and region 3 as T+ n C+. 

The optimal network design translates to solving equation 
(2) as an integer program, where hyperborder Tj  of N candi- 
dates has associated cost bj in number of neurons. Candidate 
hyperborders consist of a number of simply-connected funda- 
mental hyperborders of the network. The hyperborders can 
form one loop (i.e. a polyhedron with finite space) originating 
at a fundamental subface and terminating at that same subface. 
In this case, the positive halfregion is the interior of the poly- 
hedron and the negative halfregion is its exterior. Details of 
extracting the list of candidate hyperborders for a specific pat- 
tern classification problem appear in [ 101. The complexity of 
the algorithm grows as the cube of the number of fundamen- 
tal subfaces in the Voronoi diagram, a number which varies 
according to the number of classes in the problem, not as a 
function of the individual boundary hyperplanes. Therefore the 
complexity is essentially independent of the number of sample 
points. The objective function of (2) reflects the number of 
neurons in the network, and the constraints, equal in number to 

the fundamental hyperborders !?i, impose the coverage condi- 
tion. The variable aij assumes value 1 if ?j makes up Tj, and 
0 otherwise. 

N 

j=1 
N 

j=1  

minimize bj  . Tj 

(2) subject to aij . Tj 2 1, V pi 
Tj 2 0 

Rather than engaging the primary problem of (2), we can 
efficiently solve its dual problem as a linear program. Details 
are provided in [ 1 11. The dual linear program yields the hyper- 
borders of the network which incur the least cost in terms of 
the neurons required to implement it. Up to this point we have 
considered only reducing the number of neurons for network 
realization independent of the required weights, however the 
objective function of (2) could be easily altered to minimize 
the number of weights instead, or in the more general case a 
weighted sum of the two parameters. 

Note that we need only consider the fundamental hyperbor- 
ders as the building blocks of the candidate hyperborders in the 
network design, as opposed to the individual boundary hyper- 
planes. By contradiction, if we select a single boundary hyper- 
plane as a hyperborder, feasibilty can be guaranteed only by 
joining to it the remaining hyperplanes of the common bound- 
ary between the two class polyhedra as artificial hyperplanes, 
such that the hyperborder does not terminate in either of the 
two classes, in essence creating a fundamental hyperborder 
anyway. 

The total complexity of the optimal design, both in generat- 
ing the candidate hyperborders and solving the linear program, 
may be prohibitive for applications which require discrimina- 
tion amongst a very large number of classes. Here we outline 
briefly a hierarchical approach to reduce this complexity, how- 
ever yielding a sub-optimal solution: The first step groups the 
classes of Problem 2 into a number of disjoint superclasses, 
and determines the optimal set of inter-superclass hyperborders 
by solving the integer program (2) with only the hyperborders 
which separate the superclasses as candidates. The second step 
determines the optimal set of intra-superclass hyperborders for 
each superclass by solving the integer program with only the 
hyperborders which separate the classes within the superclass 
as candidates. 

V. THE NEURAL NETWORK 

This section details the implementation of the proposed 
three-layer network with intralayer feedback. As in the pre- 
vious designs, we employ the McCulloch-Pitts network model 
[12], [13] which assumes a delay of one unit for a signal to 
propagate along a weight from its originating terminal to the 
input of the neuron to which it is connected, and fire. We con- 
sider here the bounded input case, common in many pattern 
classification problems, where it is known a priori that the dis- 
tance from any admissible query point to any one of the bound- 
ary hyperplanes is less than a positive constant M .  Details of 
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the unbounded input case can be found in [7]. 
The synchronous network accepts the coordinates of the 

query point p as the input with n + 1 terminals. The first layer 
contains one neuron for each hyperplane (both boundary and 
artificial) which forms the hyperborders of the network3, The 
interlayer connection weights from the input to the first layer 
establish the halfspaces of the hyperplanes which support the 
positive halfregions of the network. These weights are deter- 
mined as in [6] up to one degree of freedom, and we choose the 
support halfspaces as positive4. The input excites the true half- 
spaces of the network at the first clock step, and they in turn 
excite their associated halfspaces at the second step through 
intruluyer weights. If the input p is again applied at the sec- 
ond step, exciting the same true halfspaces as at the previous 
step, all the halfspaces which support the positive halfregions 
in which the point lies will be excited at the second step, in 
conjunction with the induced halfspaces. The neurons in the 
first layer employ the unipolar hardlimiter as a transfer func- 
tion, yielding the value 1 if the point lies in its positive halfs- 
pace (i.e. excited) and 0 otherwise. The intralayer weight from 
a true halfspace to the induced halfspace is M: a value large 
enough to ovemde that from the input through the intercon- 
nection weights in the case where the induced halfspace is not 
also a true halfspace. 

The second layer contains one neuron for each hyperborder 
in the network, to determine whether the query point lies in its 
positive or negative halfregion by performing the intersection 
of the excited halfspaces of the first layer which support it. If 
the intersection is TRUE, the neuron yields the value 1 indicat- 
ing the positive halfregion, and - 1 otherwise. The connection 
weight from the first layer is 1 if the halfspace supports the hal- 
fiegion and no connection otherwise. The neurons in the sec- 
ond layer employ the bipolar hardlimiter as a transfer function 
and their bias weights reflect the number of halfspaces which 
support the halfiegion. 

The third layer determines the class polyhedron in which 
the query point lies, and so contains one neuron for each class. 
The connection weight from the second layer is 1 if the pos- 
itive halfregion supports the class polyhedra, -1 if the nega- 
tive halfspace supports it, and no connection otherwise. The 
neurons in the third layer employ the unipolar hardlimiter as 
a transfer function. Their bias weight reflects the number of 
halfregions which support the polyhedra, effectively perform- 
ing their intersection, yielding a 1 if the point lies in it and 0 
otherwise. 

Figure 4 illustrates the network realization of the optimal de- 
sign of Figure 3: tl through t 5  indicate the hyperplanes of T 
from left to right, and c1 through c2 indicate those of C from 
top to bottom. The intralayer weights of the first layer iden- 
tify the mutual inductions between t$ and t$ and between t z  
and tt. Note that since the halfregion 2'- supports the entire 
boundary of class 1, the corresponding neuron in the second 
layer serves as the class discriminator as well, requiring one 

3Certain hyperplanes may contribute to more than one hyperborder, and each 

4The negative halfspaces have no application in the network. 
should have one neuron in the first layer. 

less neuron in the third layer and as a result two less weights: 
the connection weight from the second layer to the neuron in 
the third layer, and its associated bias weight. 

Figure 4. Network realization of the optimal design in Figure 3 

VI. A SIMPLE EXAMPLE 
Consider the Voronoi diagram shown in Figure 5 used as an 

example in both Garga & Bose 1994 [8] and Gentile & Sz- 
naier 2001 [7], constructed from 15 random sample points and 
clustered into three classes. The figure shows the three fun- 
damental hyperborders A, B, and C terminating at the single 
fundamental subface to avoid clutter. Note that none of them 
require artificial hyperplanes. 

Table I contains the costs, both in terms of neurons ( b y )  and 
weights (by), that each hyperborder adds to the network. The 
initial simplex table for the example using the neuron costs 
appears in Table 11. 

TABLE I 
CANDIDATE HYPERBORDERS A N D  ASSOCIATED COSTS 

TABLE 11 
INITIAL SIMPLEX TABLE 

B l O  1 0 1 0 1 1 1  
c10 0 1 0 1 1 1 1  

1 7  9 3 14 8 101 

Since the three solutions [TI T2 T3 T4 T5 Te]= [l 0 0 0 0 11, 
[0 1 0 0 1 01, and [0 0 1 1 0 01 all yield the minimum neuron 
cost of 17, we use the weight cost as a discriminant. The final 
solution [0 0 1 1 0 01 gives the structure with the minimum 
weight cost of 845. See [7] for details on the induction weights 

ciated bias weights in the third layer. 
5These costs do not account for the additional three neurons and three asso- 
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Figure 5. Voronoi diagram for the simple example 
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for this example. 
Table I11 compares the proposed network to the ones de- 

scribed in Section I11 both in terms of neurons and weights 
required for implementation. Our network incurs a 40% de- 
crease in neurons and a 13% decrease in weights over Garga 
and Bose 1994, and a 42% decrease in weights at the expense 
ofjust one neuron over Gentile and Sznaier 2001. In addition 
our network necessitates neither delay weights nor complex 
neurons, and answers a point query in one less clock step. 

TABLE Ill 
COMPARING NETWORK DESIGNS 

neurons weights 
Garga & Bose 1994 
Gentile & Sznaier 2001 
Gentile & Sznaier 2002 20 87 

VII. CONCLUSION 

The problem of designing a classifier capable of fast, robust 
pattern classification has received renewed interest lately in the 
context of active vision applications. Reducing the size of a 
network proves critical in real-world applications, where the 
number of sample points in an image database can easily reach 
into the millions [7]. 

In this paper, we propose to solve this problem by using a 
three-layer neural network with intralayer feedback motivated 
by computational methods, to answer a point query in Rn par- 
titioned based on the Voronoi diagram. The paper outlines the 
design of our novel network which offers the potential to re- 
duce both the number of neurons and connection weights of 
previous designs, as demonstrated in Section VI, employing a 
cost function which enables a tradeoff between the two param- 
eters to suit a specific implementation. Our simplified structure 
requires neither delay weights nor complex neurons, while re- 
taining the main advantage of the previous designs to f in i sh  
precise values for the neurons and connection weights, as o p  
posed to trial and error iterations or ad-hoc parameters. 

The design in Section 111-B generates a structure with the 
minimum number of neurons required for implementation, 
while the designs in Sections III-A and IV-A generate networks 
with less connection weights at the price of increased neurons. 
We are presently studying methods to compute the minimum 
number of weights required for implementation. This study 
takes a closer look at generating the artificial hyperplanes in 
Section IV-B that currently only guarantees minimum cardinal- 
ity of the additional neurons, but not of the additional induction 
weights, which proves a much more challenging problem. In 
addition we would like to perform a study of the hierarchical 
approach outlined in section IV-C to quantify the loss in op- 
timality when applied in terms of the number of superclasses, 
and their structure. 
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