
Hyperborders in the Voronoi-Diagram-Based Neural Net for Pattern Classification

Camillo Gentile Mario Sznaier
Wireless Communications Technologies Group
National Institute of Standards and Technology

Department of Electrical Engineering
The Pennsylvania State University

Universitv Park. PA 16802
< I

msznaier@frodo.ee.psu.edu
Gaithersburg, MD 20899
cgentile@antd.nist.gov

Abstract - We propose a neural network to answer a point query in ‘P
partitioned based on the Voronoi diagram, Our novel design offers the po-
tential to reduce both the number of neurons and connection weights of
previous designs, employing a cost function which enables a tradeoff be-
tween the two to suit a specific implementation. Our simplified structure
requires neither delay weights nor complex neurons, while retaining the
main advantage of previous designs to furnish precise values for the neu-
rons and connection weights, as opposed to trial and error iterations or
ad-hoc parameters.

Keywords - Neural networks, Voronoi diagrams, Pattern classification

I . INTRODUCTION

Many problems in robust pattern classification can be re-
duced to nearest neighbor clustering in R”. This problem has
been given renewed attention lately in the context of machine
vision applications such as object recognition and visual feed-
back [11-[3]. A critical constraint in these applications is that
the problem must be solved in real time and the solution must
be robust against perturbations arising for instance from noise
or blurring. In this paper we propose a novel three-layer neu-
ral network with intralayer feedback to achieve nearest neigh-
bor clustering. The number of neurons and the interconnection
weights can be exactly determined a priori from the problem
data, eliminating the need for trial and error type iterations or
ad-hoc parameters. Moreover, the proposed net compares fa-
vorably, both in terms of the total number of neurons and con-
nection weights, with similar networks proposed in the past to
solve the same problem.

Given a set of S sample points in R”, the proposed design is
based upon constructing the Voronoi cell of each point [4], [5]
(i.e. the region of space containing those points that are closer,
based on some norm, to the given point than to the other el-
ements in the sample) and grouping these cells into clusters
representing each class of patterns. Note that although each
individual cell is convex, convexity may be lost when the cells
are grouped, leading to clusters that are not linearly separa-
ble. In the original work along these lines [6], this difficulty
was solved by representing each cluster as the union of a finite
number of convex regions. While this leads to a feedforward
structure having at most three layers, it artificially inflates the
number of neurons required.

The key realization of a more recent design [7] exploits the
fact that if a query point lies within a non-convex cluster, it also
lies within a convex polyhedron defined through the intersec-
tion of a proper subset of “true” halfspaces associated with the

0-7803-7278-6/02/$10.00 02002 IEEE 2231

faces of the cluster. This allows for using a two-layer neural
network even when the clusters are non-convex, by construct-
ing region-by-region a list of constraints rendered redundant
(“induced”) by each of its support halfspaces in the follow-
ing manner: The input excites the true halfspaces of the first
layer, which in turn excite the induced halfspaces through in-
tralayer feedback. The second layer performs the intersection
of all the excited halfspaces to determine the polyhedral class
which contains the point. The network effectively constructs a
non-convex version of a hyperplane (“hyperborder”) for each
class boundary to determine whether the query point lies in its
positive or negative “halfregion”.

The design proposed in this paper carries the two-layer
structure a step further by disassociating a hyperborder from
the boundary of a class polyhedron, driven by the fact that
two neighboring polyhedra share a common Rather than form
a class boundary independently for both classes, effectively ac-
counting for these common boundaries twice, we form a single
hyperborder for each common boundary of adjacent classes.
Now a class polyhedron can be constructed as the intersec-
tion of the support halfregions of these hyperborders through
a three-layer network with intralayer feedback. This enables a
drastic reduction in the number of connection weights, as well
as bypassing the need for multi-valued delay weights and com-
plex neurons in the implementation.

The paper is organized as follows. In Section I1 we intro-
duce some mathematical preliminaries and precisely state the
problem. Section 111 reviews the designs of the two competing
networks briefly mentioned above, and Section 1V describes
the proposed network in detail. In Section V we discuss the im-
plementation issues of the three-layer network with intralayer
feedback. These results are illustrated in Section VI with a sim-
ple example, where the proposed network is compared against
the other two. Finally, in Section VI1 we summarize our results
and point out directions for further research.

11. PRELIMINARIES

A . Notation and Geometrical Background

A hyperplane t is a set of points p E R” which satisfy the
equation

n+ 1

i=l

mailto:msznaier@frodo.ee.psu.edu
mailto:cgentile@antd.nist.gov

where p has coordinates (p l , p 2 , . . . ,pn, 1) and w1 through
wn+l are constants, or weights. t divides R" into a positive
halfspace t+ : wi . pi 2 0 and a negative halfspace
t- : wi pi < 0. In the sequel we will use the nota-
tion int{t+} (int{t-}) to denote the interior of the halfspace

Given S sample points in Rn, to each point we associate the
set of points in the space closer to it than to the other elements
in the sample. This convex set is known as a Voronoi cell of
dimension n, and the collection of cells forms the Voronoi di-
agram of S [4], [5]. In turn, each cell has f faces of dimension
n - 1 shared by adjacent cells. A face is the intersection of
a halfspace which bounds the polyhedron and the boundary of
the polyhedron. If the positive (negative) halfspace of the cell
is associated with the face of the cell, the negative (positive)
halfspace is associated with the face of the adjacent cell. Sam-
ple points in adjacent cells are said to be neighboring, thus a
sample point has f neighboring points. In turn, each face has
a number of subfaces of dimension n - 2 shared by adjacent
faces, and so forth.

t+ (t-).

B. Statement of the problem

The problem that we address in this paper can be precisely
stated ad:

Problem 1: Given a set S of sample points in R", parti-
tioned into m classes, each one represented by a subset sk,
find the class that contains the nearest neighbor to a query point

Proceeding as in [6], this problem can be solved by considering
the cells ck formed by the the (generally non-convex) union of
the Voronoi cells of the points in the class Ck and determining
which cell contains p. Thus the problem reduces to:

Problem 2: Given m polyhedra, not necessarily convex
classes Ci, Ci n Cj = 0, i # j, U Ci = R", and a query
point p E Rn, determine which class contains p.

P 6 s.

111. PREVIOUS DESIGNS

A. Three-layer feedforward network

A convex polyhedron can be defined through the intersection
of a finite number of halfspaces. Thus, in the case of convex
cells, Problem 2 can be solved using a two-layer neural net-
work as in [6]. The first layer determines whether a query point
lies in the positive or negative halfspace of all the hyperplanes
which support the convex region. The second layer performs
the intersection or AND operation of all the determined halfs-
paces. If TRUE, the point lies in the polyhedron. If the cells
are non-convex, the same approach can be used, by decompos-
ing each non-convex cell Ci into the union or OR operation of
convex polyhedrons Cij in the third layer (see [8] for details).
However, as pointed out earlier, this approach artificially in-
flates the number of neurons required, since potentially many
of the constraints defined by the halfspaces supporting the re-
gions Cij are redundant.

B. Two-layer network with intralayer feedback

The two-layer feedback network in [7] has a similar struc-
ture to the one above, but eliminates the need for redundant
constraints by avoiding decomposing the cells Ci. The key
idea reveals that if a query point lies within a non-convex poly-
hedron Ci, it lies within a convex polyhedron Ci, defined by
the intersection of a proper subset of true halfspaces associ-
ated with the faces of Ci. Therefore a TRUE intersection can
be realized by having this subset induce all the remaining half-
spaces associated with the cell Ci. In the sequel we present a
systematic procedure to accomplish this.

Given a point lying in a halfspace t+ of a polyhedron P ,
faces that lie completely in the complement o f t + are redun-
dant, in the sense that they do not contribute information about
whether or not the point lies in the polyhedron. Thus, a true
halfspace t+ induces another halfspace i+ (induced halfspace)
of the same polyhedron if the corresponding face f of a + lies
completely in the complement halfspace oft+ and the comple-
ment halfspace of i+ intersects the polyhedron and t+, i.e., i f
f n int{t+} = 0 and P n t+ n i- # 0, where f A aP n i+
and 8P denotes the boundary of P. Note that if the first condi-
tion holds true but the second condition does not, i+ is indeed
redundant but it need not be induced. This is due to the fact
that any point p E P fl t+ renders i+ TRUE. These simple
observations, which in practice amount to cutting off a non-
convex part of the polyhedron, form the basis of the proposed
procedure.

To illustrate this approach, consider for example the non-
convex polyhedron in R3 shown in Figure 1. (Only six faces
of the polyhedron labeled a through b are shown.) Assume that
the negative halfspaces of the faces support the polyhedron. A
point in b- (the negative halfspace of b) induces c - since face
c lies completely in b+. Faces a, e, and f lie completely in b-
and face d lies in both b- and b+, therefore a-, d - , e - , and
f - are not induced. A point in c - induces b- since face b lies
completely in c+. Note that a- does not need to be induced,
since a point in P n c- automatically renders a- TRUE, and
also that a point in the halfspace of a polyhedron can induce
only the halfspaces of that polyhedron.

\ I

Figure 1. A non-convex polyhedron in R3 to illustrate true and induced
hyperplanes

The design described in this section actually provides a re-
dundant number of induced halfspaces for each true halfspace
of a halfregion. A procedure to eliminate this redundancy

0-7803-7278-6/0W$10.00 02002 IEEE 2232

is outlined in [7], thereby reducing the number of induction
weights presented here to the minimum necessary.

IV. PROPOSED DESIGN

A. Three-layer network with intralayer feedback

The design in Section III-B, while minimizing the number
of neurons in the network, still inflates the number of con-
nection weights. In forming the non-convex boundaries of the
class polyhedra through induction, it employs both the positive
and negative halfspaces of each boundary hyperplane, neces-
sitating additional weights to excite both halfspaces at differ-
ent time steps. Moreover this implementation requires multi-
valued delay weights and complex neurons with positive and
negative terminals.

This design can be rendered more efficient by realizing that
two neighboring class polyhedra share a non-convex bound-
ary. Rather than form the entire boundary of a class polyhe-
dron as the union of the faces of its support hyperplanes, we
form only the common boundary of the neighboring polyhe-
dra in the same manner1. We denote these boundaries in the
general case as hyperborders, since they divide R" into pos-
itive and negative halfregions2. Now this common boundary
can be accounted in both polyhedra by forming only the pos-
itive halfregion which supports one of them, and whose com-
plement (negative) halfregion supports the other. This enables
a class polyhedron to be represented as the intersection of its
support halfregions. The positive halfregion is defined as the
one of the two which requires less induction weights to realize,
and the weight reduction follows from the absence of induction
weights required to form the negative halfregion.

The three-layer network requires four clock steps to answer
a point query: At the first step, the input excites the true half-
spaces of the network, which in turn excite the induced half-
spaces at the following step. The network excites the halfre-
gions at the third step (i.e. performs the intersection of the ex-
cited halfspaces to determine whether the point lies in the pos-
itive or negative halfregions of the network), and on the fourth
step performs the intersection of the excited halfregions to de-
termine the polyhedral class which contains the query point.

B. Artijcial Hyperplanes

A fundamental hyperborder is one composed solely of the
faces whose support hyperplanes separate two class polyhedra.
We define the sub faces where fundamental hyperborders meet
as the fundamental subfaces of the Voronoi diagram. Figure
2(a) displays the fundamental hyperborders A , B, and C (and
associated fundamental halfregions) which separate the shaded
regions 1, 2, and 3 of a partitioning in R2. The partitioning
contains a single fundamental subface.

'In both cases, faces which share only one subface with other faccs in the

21fthe boundaries are convex (i.e. contain just one facc each), the hyperbor-
union terminate at infinity.

ders reduces to hyperplanes and the halfregions to halfspaces.

(a) Fundamental hyperborders (b) Extended fundamental hyperborders

Figure 2. Artificial hyperplanes

Definition I : Feasibility condition: A hyperborder which
separates neighboring class polyhedra cannot intersect any of
them.

A class polyhedron can be formed through the intersection
of the fundamental halfregions which support it, provided that
they meet the feasibility condition. Hyperborder A, which sep-
arates regions 1 and 2, violates this condition by its intersection
with region 1. Likewise B, which separates regions 1 and 3, re-
sults infeasible since it intersects region 1. C, which separates
regions 2 and 3, does not violate the feasibility condition.

Joining additional faces to those faces of an infeasible hy-
perborder which share only one subface with the others in the
union, can render the hyperborder feasible. We denote the cor-
responding hyperplanes of these additional faces as artlJicia1.
The two artificial hyperplanes which appear in region 3 of fig-
ure 2(b) render the extended fundamental hyperborder A feasi-
ble; B requires solely the single artificial hyperplane which ap-
pears in region 2 to render it feasible. Computing the minimum
number of artificial hyperplanes required to establish the feasi-
biity of a hyperborder falls into the realm of visibility problems
[9]. The artificial hyperplanes are not unique, and are chosen
here not to coincide with the boundary hyperplanes. The cited
technique, however, does furnish unique artificial hyperplanes
with minimum cardinality. Now that the three hyperborders in
the network are feasible, region 1 is constructed as A - B-,
region 2 as A+ n C-, and region 3 as B+ n C+.

C. Optimal Network Design

While the class polyhedra can be formed through the inter-
section of the extended fundamental halfregions which support
them, this may not lead to the most efficient design in terms
of neurons. The design lies in the selection of network hy-
perborders which minimize a cost amongst a list of candidate
hyperborder.s, each one bearing an associated cost in the num-
ber of neurons required to form it. A candidate hyperborder is
a feasible hyperborder composed of both boundary and artifi-
cial hyperplanes, each hyperplane contributing one neuron to
the network. Each of these hyperborders, independent of the
hyperplanes which form it, also contributes one neuron to the
network. Section V provides complete details of the network

0-7803-7278-6/02/$10.00 02002 IEEE 2233

structure.

Definition 2: Coverage condition: The union of the hyper-
borders in the network must cover all the fundamental hyper-
borders.

The coverage condition ensures that all the regions of the
pattern classification problem can be uniquely determined
through the intersection of the network hyperborders. We seek
the design which minimizes the number of neurons required in
its implementation, provided that it meets the coverage condi-
tion.

Figure 3. Optimal network design

The network design in figure 2(b) requires a total of 13 neu-
rons for implementation: Hyperborder A require 5 neurons (2
boundary, 2 artificial, plus l), B requires 5 neurons (3 bound-
ary, 1 artificial, plus l), and hyperborder C requires 3 neurons
(2 boundary, 0 artificial, plus 1). Consider the alternative de-
sign in figure 3, where the fundamental hyperborders A and
B are joined into a single hyperborder T. Hyperborder T re-
quires 6 neurons (5 boundary, 0 artificial, plus 1) and hyperbor-
der C again requires 3 neurons. This optimal design requires
only 9 neurons, where region 1 is formed as T -, region 2 as
T+ n C-, and region 3 as T+ n C+.

The optimal network design translates to solving equation
(2) as an integer program, where hyperborder Tj of N candi-
dates has associated cost bj in number of neurons. Candidate
hyperborders consist of a number of simply-connected funda-
mental hyperborders of the network. The hyperborders can
form one loop (i.e. a polyhedron with finite space) originating
at a fundamental subface and terminating at that same subface.
In this case, the positive halfregion is the interior of the poly-
hedron and the negative halfregion is its exterior. Details of
extracting the list of candidate hyperborders for a specific pat-
tern classification problem appear in [101. The complexity of
the algorithm grows as the cube of the number of fundamen-
tal subfaces in the Voronoi diagram, a number which varies
according to the number of classes in the problem, not as a
function of the individual boundary hyperplanes. Therefore the
complexity is essentially independent of the number of sample
points. The objective function of (2) reflects the number of
neurons in the network, and the constraints, equal in number to

the fundamental hyperborders !?i, impose the coverage condi-
tion. The variable aij assumes value 1 if ?j makes up Tj, and
0 otherwise.

N

j=1
N

j=1

minimize bj . Tj

(2) subject to aij . Tj 2 1, V pi
Tj 2 0

Rather than engaging the primary problem of (2), we can
efficiently solve its dual problem as a linear program. Details
are provided in [1 11. The dual linear program yields the hyper-
borders of the network which incur the least cost in terms of
the neurons required to implement it. Up to this point we have
considered only reducing the number of neurons for network
realization independent of the required weights, however the
objective function of (2) could be easily altered to minimize
the number of weights instead, or in the more general case a
weighted sum of the two parameters.

Note that we need only consider the fundamental hyperbor-
ders as the building blocks of the candidate hyperborders in the
network design, as opposed to the individual boundary hyper-
planes. By contradiction, if we select a single boundary hyper-
plane as a hyperborder, feasibilty can be guaranteed only by
joining to it the remaining hyperplanes of the common bound-
ary between the two class polyhedra as artificial hyperplanes,
such that the hyperborder does not terminate in either of the
two classes, in essence creating a fundamental hyperborder
anyway.

The total complexity of the optimal design, both in generat-
ing the candidate hyperborders and solving the linear program,
may be prohibitive for applications which require discrimina-
tion amongst a very large number of classes. Here we outline
briefly a hierarchical approach to reduce this complexity, how-
ever yielding a sub-optimal solution: The first step groups the
classes of Problem 2 into a number of disjoint superclasses,
and determines the optimal set of inter-superclass hyperborders
by solving the integer program (2) with only the hyperborders
which separate the superclasses as candidates. The second step
determines the optimal set of intra-superclass hyperborders for
each superclass by solving the integer program with only the
hyperborders which separate the classes within the superclass
as candidates.

V. THE NEURAL NETWORK

This section details the implementation of the proposed
three-layer network with intralayer feedback. As in the pre-
vious designs, we employ the McCulloch-Pitts network model
[12], [13] which assumes a delay of one unit for a signal to
propagate along a weight from its originating terminal to the
input of the neuron to which it is connected, and fire. We con-
sider here the bounded input case, common in many pattern
classification problems, where it is known a priori that the dis-
tance from any admissible query point to any one of the bound-
ary hyperplanes is less than a positive constant M . Details of

0-7803-7278-6/02/$10.00 02002 IEEE 2234

the unbounded input case can be found in [7].
The synchronous network accepts the coordinates of the

query point p as the input with n + 1 terminals. The first layer
contains one neuron for each hyperplane (both boundary and
artificial) which forms the hyperborders of the network3, The
interlayer connection weights from the input to the first layer
establish the halfspaces of the hyperplanes which support the
positive halfregions of the network. These weights are deter-
mined as in [6] up to one degree of freedom, and we choose the
support halfspaces as positive4. The input excites the true half-
spaces of the network at the first clock step, and they in turn
excite their associated halfspaces at the second step through
intruluyer weights. If the input p is again applied at the sec-
ond step, exciting the same true halfspaces as at the previous
step, all the halfspaces which support the positive halfregions
in which the point lies will be excited at the second step, in
conjunction with the induced halfspaces. The neurons in the
first layer employ the unipolar hardlimiter as a transfer func-
tion, yielding the value 1 if the point lies in its positive halfs-
pace (i.e. excited) and 0 otherwise. The intralayer weight from
a true halfspace to the induced halfspace is M: a value large
enough to ovemde that from the input through the intercon-
nection weights in the case where the induced halfspace is not
also a true halfspace.

The second layer contains one neuron for each hyperborder
in the network, to determine whether the query point lies in its
positive or negative halfregion by performing the intersection
of the excited halfspaces of the first layer which support it. If
the intersection is TRUE, the neuron yields the value 1 indicat-
ing the positive halfregion, and - 1 otherwise. The connection
weight from the first layer is 1 if the halfspace supports the hal-
fiegion and no connection otherwise. The neurons in the sec-
ond layer employ the bipolar hardlimiter as a transfer function
and their bias weights reflect the number of halfspaces which
support the halfiegion.

The third layer determines the class polyhedron in which
the query point lies, and so contains one neuron for each class.
The connection weight from the second layer is 1 if the pos-
itive halfregion supports the class polyhedra, -1 if the nega-
tive halfspace supports it, and no connection otherwise. The
neurons in the third layer employ the unipolar hardlimiter as
a transfer function. Their bias weight reflects the number of
halfregions which support the polyhedra, effectively perform-
ing their intersection, yielding a 1 if the point lies in it and 0
otherwise.

Figure 4 illustrates the network realization of the optimal de-
sign of Figure 3: tl through t 5 indicate the hyperplanes of T
from left to right, and c1 through c2 indicate those of C from
top to bottom. The intralayer weights of the first layer iden-
tify the mutual inductions between t$ and t$ and between t z
and tt. Note that since the halfregion 2'- supports the entire
boundary of class 1, the corresponding neuron in the second
layer serves as the class discriminator as well, requiring one

3Certain hyperplanes may contribute to more than one hyperborder, and each

4The negative halfspaces have no application in the network.
should have one neuron in the first layer.

less neuron in the third layer and as a result two less weights:
the connection weight from the second layer to the neuron in
the third layer, and its associated bias weight.

Figure 4. Network realization of the optimal design in Figure 3

VI. A SIMPLE EXAMPLE
Consider the Voronoi diagram shown in Figure 5 used as an

example in both Garga & Bose 1994 [8] and Gentile & Sz-
naier 2001 [7], constructed from 15 random sample points and
clustered into three classes. The figure shows the three fun-
damental hyperborders A, B, and C terminating at the single
fundamental subface to avoid clutter. Note that none of them
require artificial hyperplanes.

Table I contains the costs, both in terms of neurons (b y) and
weights (by), that each hyperborder adds to the network. The
initial simplex table for the example using the neuron costs
appears in Table 11.

TABLE I
CANDIDATE HYPERBORDERS A N D ASSOCIATED COSTS

TABLE 11
INITIAL SIMPLEX TABLE

B l O 1 0 1 0 1 1 1
c10 0 1 0 1 1 1 1

1 7 9 3 14 8 101

Since the three solutions [TI T2 T3 T4 T5 Te]= [l 0 0 0 0 11,
[0 1 0 0 1 01, and [0 0 1 1 0 01 all yield the minimum neuron
cost of 17, we use the weight cost as a discriminant. The final
solution [0 0 1 1 0 01 gives the structure with the minimum
weight cost of 845. See [7] for details on the induction weights

ciated bias weights in the third layer.
5These costs do not account for the additional three neurons and three asso-

0-7803-7278-6/02/$10.00 02002 IEEE 2235

Figure 5. Voronoi diagram for the simple example

8
8

8
%

8
8
\
\
\

for this example.
Table I11 compares the proposed network to the ones de-

scribed in Section I11 both in terms of neurons and weights
required for implementation. Our network incurs a 40% de-
crease in neurons and a 13% decrease in weights over Garga
and Bose 1994, and a 42% decrease in weights at the expense
ofjust one neuron over Gentile and Sznaier 2001. In addition
our network necessitates neither delay weights nor complex
neurons, and answers a point query in one less clock step.

TABLE Ill
COMPARING NETWORK DESIGNS

neurons weights
Garga & Bose 1994
Gentile & Sznaier 2001
Gentile & Sznaier 2002 20 87

VII. CONCLUSION

The problem of designing a classifier capable of fast, robust
pattern classification has received renewed interest lately in the
context of active vision applications. Reducing the size of a
network proves critical in real-world applications, where the
number of sample points in an image database can easily reach
into the millions [7].

In this paper, we propose to solve this problem by using a
three-layer neural network with intralayer feedback motivated
by computational methods, to answer a point query in Rn par-
titioned based on the Voronoi diagram. The paper outlines the
design of our novel network which offers the potential to re-
duce both the number of neurons and connection weights of
previous designs, as demonstrated in Section VI, employing a
cost function which enables a tradeoff between the two param-
eters to suit a specific implementation. Our simplified structure
requires neither delay weights nor complex neurons, while re-
taining the main advantage of the previous designs to f in i sh
precise values for the neurons and connection weights, as o p
posed to trial and error iterations or ad-hoc parameters.

The design in Section 111-B generates a structure with the
minimum number of neurons required for implementation,
while the designs in Sections III-A and IV-A generate networks
with less connection weights at the price of increased neurons.
We are presently studying methods to compute the minimum
number of weights required for implementation. This study
takes a closer look at generating the artificial hyperplanes in
Section IV-B that currently only guarantees minimum cardinal-
ity of the additional neurons, but not of the additional induction
weights, which proves a much more challenging problem. In
addition we would like to perform a study of the hierarchical
approach outlined in section IV-C to quantify the loss in op-
timality when applied in terms of the number of superclasses,
and their structure.

REFERENCES
M. Turk and A. Pentland, “Eigenfaces for Recognition,” Journal of Cog-
nitive Neuroscience, Vol. 3: 1, pp. 71 -86, 199 1.
C.Y. Huang, 0.1. Camps, T. Kanungo, “Object Recognition Using
Appearance-Based Parts and Relations”, IEEE Conference on Computer
Ksion and Pattem Recognition, pp. 877-883, 1997.
M.J. Black and A.D. Jepson. “Eigentracking: Robust Matching and
Tracking of Articulated Objects Using a View-Based Representation,”
European Conference on Computer Vision, Vol. 1064, pp. 329-358,
1996.
K. Mulmuley, “Computational Geometry: An Introduction Through
Randomized Algorithms,” Prentice Hall, 1994.
F.P. Preparata and M.I. Shamos. “Computational Geometry,” Springer-
Verlag New York, Inc., 1985.
N.K. Bose and A.K. Garga, “Neural Network Design Using Voronoi
Diagrams,” IEEE Transactions on Neural Networks, Vol. 4:5, pp. 778-
787,1993.
C. Gentile and M. Sznaier, “An Improved Voronoi-Diagram-Based Neu-
ral Net for Pattern Classification,” IEEE Transactions on Neural Net-
works, Vol. 125, pp. 1227-1234,2001.
A.K. Garga and N.K. Bose, “Structure Training of Neural Networks,”
IEEE International Conference on Neural Networks, pp. 239-244,1994.
C.L. Shih, T.T. Lee, and W.A. Gruver, “Motion Planning with Time-
Varying Polyhedral Obstacles Based on Graph Search and Mathematical
Programming,” Robotics and Automation, Vol. 1, pp. 331-337, 1990.
M. A. Samad, “An Efficient Method for Terminal and Multiterminal
Pathset Enumeration,” Microelechonics and Reliabilify, Vol. 27:3, pp.
443-446, 1987.
D. DeVleeschauwer, “An Intensity-Based, Coarse-to-Fine Approach to
Reliablv Measure Binocular Disparity,” CVGIP: Image Understanding, ~-
Vol. 57!2, pp. 204-218, 1992.
W.S. McCulloch and W.A. Pitts. “A Logical Calculus of The Ideas Im-

-

manent in Neural Nets,” Bull. Math. B&hysics, Vol. 5 , pp. 1 15-133,
1943.
N.K. Bose and P. Liang, “Neural Network Fundamentals,” McGraw-
Hill, Inc., 1996.

0-7803-7278-6/02/$10.00 02002 IEEE 2236

