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An Improved Voronoi-Diagram-Based Neural Net for Pattern Classification

Camillo Gentile and Mario Sznaier

Abstract—in this brief paper, we propose a novel two-layer alization of the proposed method is the fact that if a query point
neural network to answer a point query in’R™ whichiis partitioned  |ies within a nonconvex cluster, it lies within a convex poly-
into polyhedral regions. Such a task solves among others nearestha o defined through the intersection opraper subsef
neighbor clustering. As in previous approaches to the problem, “true’ half iated with the f f the cluster. Thi
our design is based on the use of Voronoi diagrams. However e na spaces_issomae wi € laces OTine CluSier. \Tnis
our approach results in substantial reduction of the number of factallows for using a two-layer neural reten when the clus-
neurons, completely eliminating the second layer, at the price of ters are nonconvexy constructing region-by-region a list of
requiring only two additional clock steps. In addition, the design  constraints rendered redundarintfuced) by each of its sup-
process is also simplified while retaining the main advantage o palfspaces, and using five clock steps as follows: At the
of the approach, namely its ability to furnish precise values for first step the i t ites the t half hich in t
the number of neurons and the connection weights necessitating |_rs S ep € Input exciies _e rue naltspaces, whic |n_urn ex-
neither trial and error type iterations nor ad hocparameters_ cite the |nduced halfspaces n |attel‘ ClOCk Steps. At the f|fth Step
the network performs the intersection of the excited halfspaces
to determine the polyhedral class that contains the query point.

This paper is organized as follows. In Section Il, we intro-
|. INTRODUCTION duce some mathematical preliminaries and precisely state the

roblem. In Section I, we present an algorithm that allows for
grobl In Section 11l t Igorithm that all f

reducing the number of constraints required to represent each

problem has been given renewed attention lately in the cont&l@Ss- In Section IV, we show how to implement these con-
of machine vision applications such as object recognition agd@ints using atwo-layer neural network. These results are illus-
visual feedback [1], [6], [7], [10], [11]. A critical constraint trated in _Sectlon V with a_5|mpl_e e_xample, where the proposed
in these applications is that the problem must be solved Retwork is compared against similar networks proposed in the

real time and the solution must be robust against perturbatid?‘?sSt’ and in Section VI with a practical application arising in the

arising for instance from noise or blurring. In this paper, wEPNtext of object recogpnition. Finally, in Section VII, we sum-

propose a novel two-layer neural network with intralayeﬁ“arize our results and point out directions for further research.
feedback to achieve nearest neighbor clustering. The number

of neurons and the interconnection weights can be exactly Il. PRELIMINARIES

determineda priori from the problem data, eliminating the

need for trial and error type iterations ad hocparameters. A. Notation and Geometrical Background

Moreover, the proposed net compares favorably, both in termsy hyperplanet is a set of pointg € R” which satisfy

of the total number of neurons and layers, and in the overall

complexity of the design algorithm, with similar networks

Index Terms—Pattern classification, Voronoi diagrams.

ANY problems in robust pattern classification can b
reduced to nearest neighbor clustering /ft. This

proposed in the past to solve the same problem. ntl
Given a set of5 sample points iR, the proposed design is Z w;p; =0 1)
=1

based upon constructing the Voronoi cell of each point [2] (i.e.,

the region of space containing those points that are closer, ba\%%rep has coordinategp,, ps pn, 1) andw; through

on some norm, to the given point than. to the other eIementstnH are constants, oweights ¢ divides R” into a positive

the sample) and grouping these cells into clusters represen '%gfspacet* Zn-l—lw‘p‘ > 0 and a negative halfspace
. i=1 e =

each class of patterns. Note that although each individual cgl n+l . :
) ) : 1 w;p; < 0.In the sequel we will use the notation
is convex, convexity may be lost when the cells are grouped =

leading to clusters that are not linearly separable. In previ mtt" ) (t{t7}) to denote the interior of the halfspace

work along these lines, this difficulty was solved by representing ().

: - . Given S sample points in R}, to each point we associate
each cluster as the union of a finite number of convex regions. o .
: ; . e set of points iriR™ closer to it than to the other elements of
While this leads to a structure having at most three layers,, i ; ) .
artificially inflates the number of neurons required. The ke réhe sample. This convex set is known as a Voronoi cell, and the
y q ’ Y '¥ollection of cells forms the Voronoi diagram 6f8]. Each cell

hasf faces shared by an adjacent cell. A face is the intersection
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Finally, (M, T,) denotes an interconnection weight be-
tween two neurons, with a time-delay6f time steps.

B. Statement of the Problem

The problem that we address in this paper can be precisely
stated as follows.

Problem 1: Given a sef5 of sample points ifR"™, partitioned
into m classes, each one represented by a subjsefind the
class that contains the nearest neighbor to a given poiats.

_Proceeding as in [2], this problem can be solved by (_:onsigb. 1. Anonconvex polyhedron i
ering the cells”;, formed by the (generally nonconvex) union othe number of hyperplanes.
the Voronoi cells of the points in the claé% and determining
which cell contains the given poiit. Thus the problem reduces
to

Problem 2: Given m polyhedral, not necessarily conve
classes’;, C; N C; = 0, ¢ # j, UC; = R™, and a test point
P € R™, determine which class contaifs

to illustrate the algorithm for reducing

rendergt TRUE. These simple observations, which in practice
,amount to cutting off a nonconvex part of the polyhedron, form
the basis of the proposed procedure.

To illustrate this approach, consider for example the non-
convex polyhedron i® shown in Fig. 1. (Only six faces of the
polyhedron labeledi through ' are shown.) Assume that the
negative halfspaces of the faces form the polyhedron. A pointin

A convex polyhedron can be defined through the intersectigsr (the negative halfspace &) inducesC~ since faceC lies
of a finite number of halfspaces. Thus, in the caseafvex completelyinB*. Faces4, F, andF lie completely inB~ and
cells, Problem 2 can be solved using a two-layer neural néice D lies in bothB— and Bt, thereforeA—, D—, £, and
work, as in [2]. The first layer determines whether a query poit— are notinduced. A point i@~ inducesB~ since faceB lies
lies in the positive or negative halfspace of all the hyperplanesmpletely inC*. Note thatA~ does not need to be induced,
which support the convex region. The second layer performs tiace a point in® N C~ automatically renderd~ TRUE.
intersection olND operation of all the determined halfspaces. Note that a point in the halfspace of a polyhedron can induce
If TRUE, the point lies in the polyhedron. If the cells are nonenly the halfspaces of that polyhedron.
convex, the same approach can be used, by decomposing each
nonconvex cell’; into the union of convex polyhedrong; (see B. Reduction of Induction Weights by Pruning
[2] for details). However, as pointed out earlier, this approach

artificially inflates the number of neurons required, since p%e-rrzzl:]gergbbereoll;rlr?iﬂ:;20nr;,\cﬁggfnioc%nn(jstl?aﬁ?scgz}gll:;ev (s:alilet
tentially many of the constraints defined by the halfspaces s y 9 '

uI?Jdenote the set of induced halfspaces of clagsFor each

porting the regiong’;; are redundant. g
The proposed two-layer neural network has a similar stru%l-emenuf € I we generate a lisTy; of the true halfspaces,

ture, but eliminates the need for redundant constraints, béa/d’ th; halfspace; aF’ Wh'T.h |.nduc§ij. In the pruning step
avoiding decomposing the celts;. The key idea is the fact r T:Eea;; Z\cr)\nztr:rl:tsleatrﬁee'Ir?f]'lr??etenor:g?n. ex regiodihto
that, if a query point lies within a nonconvex polyhedi@n it the left of th bx dp . F! '2' Thi Vex fg' d by th
lies within a convex polyhedro¥;,, defined by the intersection € left ot the boundary in Fig. 2. This region IS formed by the
of a propersubsedf halfspaces associated with the face€’nf positive halfspaces of faces, B, C, D, andE. In the pruning

. +iai + + i
Therefore a TRUE intersection can be realized by having ths|:[sep we find thati™ is induced by bottB™ andD™. Thus if the

%‘&ery point lies in the intersection of~ and the polyhedron,

I1l. PROPOSEDAPPROACH

subset “induce” all the remaining halfspaces associated wi ) .
9 P must be induced by3T or D*. If we examine however

the cellC;. In the sequel we present a systematic procedure:{o ) . o
accomplish this. the region common to the polyhedron aAd we find that it is

completely covered b *. ThusB is sufficient to induced™
and the intralayer weight fro* to AT is redundant and can
be discarded.

Given a pointlying in a halfspaeé of a polyhedron?, faces  |n summary, in the pruning step, for each induced halfspace
that lie completely in the complementidf are redundant, in the i; € I, we group inT%, all the halfspaces that induce it. Among
sense that they do not contribute information about whether@gs group of halfspaces we retain only those whose union com-

not the point lies in the polyhedron. Thus, a “true” halfspate pletely covers the intersection of the polyhedron and the com-
induces another halfspate (“induced” halfspace) of the sameplement halfspace of the induced halfspace.

polyhedron if the corresponding fageof i T lies completely in
the complement halfspace of and the complement halfspace
of «* intersects the polyhedron a#dl, i.e., if f Nint{tT} =0
andP N+t ni~ # (B, wheref=0P N+t anddP denotes the  Inthis section, we show how to exploit the ideas of Section Il
boundary ofP. Note that if the first condition holds true but theto construct a neural network that solves Problem 2. Several
second condition does natt is indeed redundant but it needimplementations are possible. Later, we discuss two in detail
not be induced. This is due to the fact that any poeigt PNt and briefly comment on a third.

A. Reducing the Number of Hyperplanes

IV. THE NEURAL NETWORK



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001 1229

Fig. 2. A nonconvex polyhedron iR? to illustrate the pruning step.

A. The Bounded Input Case

Consider first the case, common in many pattern recognition
applications, where is it knowa priori that the distance from
any admissible query point to any one of the boundary hyper- ®)
p|anes is less than a positive constant In this case Problem Fig. 3. (a) A simple example (b) The corresponding two-layer network.
2 can be solved using a synchronous network that requires five

clock steps to generate the desired output. At the first step th&qach is that a neuron in the first layer can receive both pos-

input excites the true halfspaces, which in turn excite the if}je and negative inputs. For instance, the painin Fig. 3(a)
duced halfspaces in latter clock steps. At the fifth step, the ngtiqers the halfspaces~ and B+ TRUE. SinceB*+ induces

work performs the intersection of the excited halfspaces to dg+ the neurona receives both positive and negative induc-

termine the class of the polyhedron which bounds the quefyns To avoid this situation, positive and negative induction
point. ) ) must occur at separate clock steps. To this end the network em-
~ 1) Inter- and Intra-Layer Weight SelectiorlJpon construc- pjoys two and three-unit delays to excite the positive and neg-
tion of the Voronoi diagram for thé' sample points we need ative induced halfspaces at the third and fourth clock steps, re-
only compile the following lists: spectively:

* the(n + 1) parameters for each boundary hyperplane; At the third clock step, we again presgnas the input to the

« the boundary halfspaces which support the polyhedron fagtwork to excite the true halfspaces. When the neurons in the

each class; first layer fire at the third clock step, there are four possibilities
» the induced halfspaces and the corresponding induciagthe input of a neuron in the first layer:

halfspaces. _ _ _ _ _ 1) The input excites the true positive halfspacel the in-
The network hagn + 1) inputs (including the fixed biases): tralayer feedback excites the induced positive halfspace.
the coordinategps, pz, ..., pn, 1) of the query poinp. The  2) The input excites the true positive halfspace the in-
first layer of the network has one neuron for each boundary hy- tralayer feedback does not excite the induced positive
perplane. We determine the interlayer connection weights be- halfspace.
tween the network inputs and the first-layer neurons as in [2]. 3) The input excites the true negative halfspane the in-
These weights establish the positive and negative halfspaces of tralayer feedback excites the induced positive halfspace.

the hyperplanes. _ __4) The input excites the true negative halfspandthe in-
The intralayer weight in the first layer between the positive  trajayer feedback does not excite the induced positive
(negative) terminal of neurop and the input of neuro& is halfspace.

.(M’ 2) (|.e.., sca;:alrfvalue Ojf/[ and gltv(\j/o-unltﬁelay') ,'f tueh?os- Note that since the intralayer connection has a weight' cind
itive (negative) halfspace of neurgrinduces thepositivehalfs- the input is always less thald, the first three cases results in

pace of neurort, (M, 3) if the positive (negative) halfspace Ofthe positive terminal of the neuron being excited, with its output

neuron:j mdu_ces thmegatwehalfspac_e of neuro_h, and zero reaching the second layer at the fifth time step. In the fourth
otherwise. Fig. 3 illustrates the design for a simple exampl

. ST . 'Case, the negative terminal of the neurons is excited but has no
Here a sphd weight indicates a one—qnlt delay, a da;hed We'@%nection to the second layer.
a two-unit delay, and a boldfaced weight a three-unit delay.

At the first clock step, we present the query pgings the  The unit delays for induction must be relatively prime numbers so that the
input to the network. The neurons in the first layer fire to excit@ductions do not interfere with each other. Thus, we have selected these delays

h half hi hich i ite th . 1o be two and three units, respectively. As a result all the neurons assume a quiet
the true halfspaces at this step, which in turn excite the positiygie at the second clock step since they receive no input from that of the network

and negative induced halfspaces. A potential problem with thisd they receive no induction from the intralayer feedback.
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TABLE | C. Implementation Considerations
STATUS OF THENEURONS AS AFUNCTION OF TIME FOR THE SIMPLE EXAMPLE

In neural modeling a weight simulates the axon which in-
terconnects neurons. The speed with which a pulse propagates

step | A* | A~ | I};frr%tfrinénf IT c-|1]2 e}long an axon varies greatly [3]. A s?mpljstic hardwarg realiza-
1 01 I T T o 1 Tolo tion models the axon as a transmission line with a resistor and a
2 olololololololo capacitor, the resistance adjusting the weight value and the ca-
3 1 1o 1 olol 11lolo pacitance adjusting the propagation time. Following the work
4 1 0 0 1 1 o lolo by Bose and Garga, we implement our system through a Mc-
5 1 0 1 0 0|0 |1]0 Culloch—Pitts network model [4] assuming a delay of one unit

for a signal to propagate along a weight from its originating ter-
minal to the input of the neuron to which it is connected, and
fire. The additional delays of two and three units are obtained
At the fourth clock step, we presentp as the input to the by simply adding two extra capacitors. Thus these delays do not
network, effectively exciting the true negative halfspace throughcrease the complexity of the system.
the true positive halfspace, thus allowing the same reasoning aghe neurons of the network proposed in [2] employ the
in the third clock step above. In the first three cases, the positiyolar hardlimiter as a transfer function. The neurons in the
terminal of the neuron is excited and reaches the second lagigft and second layers necessitate two terminals: a positive
at the fifth time Step. In the fourth case, the negative terminal @rmina| (the Output of the bipo|ar hard”miter) connected to
the neurons is excited but has no connection to the second layekitive weights and a negative terminal (the negative value
Table | shows the status of the different neurons at each C|ngthe positive terminal) connected to negative weights, thus
step for the simple example used above, when x, . simulating the negative weights in the physical implementation.
The second layer of the network contaimsneurons: one  The neurons of the proposed network employ the unipolar
neuron per class. The interlayer connection weight between {igdlimiter as a transfer function. The neurons in the first layer
positive terminal of neurop in the first layer and the input to 450 necessitate two terminals: a positive terminal (the output
neuronk in the second layer igl, 2) if the positive halfspace of f the unipolar hardlimiter) to excite the halfspaces induced by
neuron; supports the polyhedron of class(1, 1) if the neg-  the true positive halfspaces and a negative terminal (the logic
ative halfspace of neuronsupports the polyhedron of clags  complement of the positive terminal) to excite the halfspaces
and zero otherwise. Since the positive and negative halfspaggf,ced by the true negative halfspaces. We have only positive
are excited at separate clock steps, the positive halfspaces hg¥gjhts connected from the output terminals of the neurons.
an extra delay of one unit with respect to the negative halfspaceﬁina"y’ it is worth emphasizing the fact that since the imple-
in order to synchronize the two such that they reach the secqfidntation of the neural net is not unique, a more suitable imple-
layer at the same fifth step. Each neuron in the second layer gl§gntation may be tailored to the a specific application. For ex-
has a negative bias weight equal to the number of halfspaces §1ap|e yet another implementation uses only one terminal for the

support its class. Coupled with a unipolar hardlimiter transfgiyrons in the first layer (thus eliminating the logic inverters),
function, each neuron in the second layer realizes the AND oggwever necessitating eight clock steps.

eration of the halfspaces which support its class. We emphasize
that there are no connections between the negative terminals of
the neurons in the first layer and the inputs to the neurons in the
second layer.

V. A SIMPLE EXAMPLE

Consider the Voronoi diagram used as an example in [5],
shown in Fig. 4. This diagram was generated from 15 random
B. The Unbounded Input Case sample points, clustered into three classes. The solid lines show
the 16 boundary faces labeletithrough P and the plus and

When the input cannot be boundagbriori, a similar effect minus signs indicate their corresponding positive and negative
can be accomplished by using feedback weights (rather tHagifspaces.
continuous excitation) to excite the true positive (negative) half- Using the rules provided in Section lI-A, we compile a list
spaces in the third (fourth) clock step. As a result we present tbletrue halfspaces and corresponding induced halfspaces for a
query pointp as the input to the network only at the first clockeach class in Table Il, sorted according to the true halfspaces.
step. Each neuron in the first layer has a feedback weigt) We resort Table Il in Table Il according to the induced half-
connected to its input from its positive terminal and a feedbaskaces. The boldface indicates the pruned induced halfspaces
weight(1, 3) connected to its input from its negative terminalusing the rules provided in Section I1I-B.
The intralayer weight in the first layer between the positive (neg- Finally, we again resort Table Il in Table IV according to the
ative) terminal of neurogi and the input of neurohis (1, 2) if  true halfspaces, however without the pruned induced halfspaces,
the positive (negative) halfspace of neugidnduces theositive  thus providing the minimum set of induced halfspaces for each
halfspace of neuroh, (1, 3) if the positive (negative) halfspaceclass.
of neuronyj induces theegativehalfspace of neurok, and zero For this example, the proposed network requires 19 neurons,
otherwise. 123 weights, and two layers as opposed to the network in [5]
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Fig. 4. Voronoi diagram for the simple example.

TABLE I
ORIGINAL INDUCED HALFSPACESVERSUSTRUE HALFSPACES

Class 1 Class 2 Class 3

At > A-=B,C ,D ,E ,F- G =

Bt = C+ B~ = A~ ,E~,0", P~ H =1 ,K-,L-,N-
Cct = Bt C- =D ,E",F- I-=G ,H™

D+ = E+ F+ D~ = A-,B~,C~,P~ J =K ,L-,M~,N-
E* = B¥ C+, D+ F*+ E- = P~ K- =G ,H ,I-,J"
F+ = B+, Dt E+ G* F~ = L™= M- ,N-

Gt = HY It Jt, M+ 0~ = P~ M-=L",N-

H* = Gt P-= A-,B~,C°,D"E-,F-,O" |N- =G ,H,J-,K~,L-,M~
It = J+, M+ ot =

Jt =Gt It Pt =

K+ =Lt Mt

L+ = B*, D+, E+,G+,I*, K+

Mt = G+, It

Nt =

which requires 28 neurons, 98 weights (taking into account thg eliminating this second layer, thus allowing for a more effi-
constant bias weights), and three layers. Thus, in this case oignt implementation of the network.
approach yields a 47% decrease in the number of neurons, at the
price of a 20% increase in the number of weights. In addition, i

- . . VI. A PRACTICAL APPLICATION: OBJECTRECOGNITION
the proposed design process requires solely the computation of
the Voronoi diagram, as opposed to the approach in [5] that alsaThe computational complexity entailed in recognizing ob-
requires computing the Delaunay tessellation and the conjegts from a cluttered scene can be substantially reduced by
hull of each polyhedron. When the nonconvex boundary of thising eigenspace decomposition techniques [7], [11]. The main
polyhedron becomes complicated, the number of neurons in tlea of the method is to use principal component analysis to
second layer of the network proposed in [2] may become inempress images of objects contained in a precomputed data-
creasingly large. Our approach avoids this problem completdigse to just a fewn) components which exhibit the largest
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TABLE 1l

TRUE HALFSPACESVERSUSORIGINAL INDUCED HALFSPACES

Class 1 Class 2 Class 3

At < A~ < B~,D",P~ G- «I,K~ ,N-
B+ « C*+ E+ F+ L+ B~ < A-,D-,P- H- <1 K- N-
C* <« BT EY C~ <« A ,D",P~ I"«<H" K~

Dt « Et F+L* D- <« A, C P J <« K- ,N~-

Et « Dt F+ L+
F+ & Dt E+

Gt « F+, H* J+ L+ M+

Ht « Gt
It « G+, J*, L+, M+

E- < A-,B-,C-,P-
F~ < A-,C-,P-
O- «B-,P-

P~ <B-,D-,E-,0-

K- «H,J",N~
L-<H,J",M~,N-
M- «<J,L~,N~
N-«H",J-,L-, M~
ot «

JT«GH It
Kt«Lt
Lt « Kt

Mt < G It K™

Nt &«

Pt =

TABLE IV

eigenvectors corresponding to just the- 4 largest eigenvalues
proved sufficient for reliable discrimination between the objects
in the database in the presence of noise.

Class 1 Class 2 Class 3 The corresponding neural network contaifis= 1824 neu-

AT = A=B,C7,D7,E |G = rons in the first layer (one for each of the bounding hyperplanes)
Br=0" | Bo=A H™ =17 d16 in th dl for each of the object
C+ = B+ - > D- - = H- an neurons in the second layer (one_ or each of the objec
D* = E*,F* | D- = A-,B~,C- J- = K- classes). The number of feedforward weights to the first layer
Et = D+,Fi B = K= =G ,H",I",J" is 9120 (X - (n + 1)), the number of feedforward weights to

g: = f;E g_ g ;_Zﬂg_’x_ the second layer is 3664(- 2 + 16), and the number of in-

Ht = Gt P~ = F-,0- N-= L~ M- tralayer weights is 5467. The numb(_er of neurons and weights
It = g+ ot = required by the VONNET proposed in [2], [5] depends on the
J++=> 1++ . Pt = number of subclasses required to cover the nonconvex classes.
f+ :é;M Proposition 1 in [5] yields 36 subclasses per class, for a total
Mt = of 576 neurons in the second layer, and assuming an average
Nt = of four faces/subclass (since we are workingfif, compact

polytopes have at least five faces), 2880 weights, including the
576 bias weights required by the neurons. Thus, in this example
eigenvalues. Thus, it eliminates redundancy among the imadfa& VONNET requires 2416 neurons and on the order of 13170
while preserving their essential features. weights (9120, 2880, and 1170 for the first, second, and third
Fig. 5 displays five example objects from the databad@Yers. respectively). Hence our approach leads to a reduction
COIL-20 [9]. Since each of these objects may appear at a@f/2pproximately 30% in the number of neurons at the price of
angle in the test scene, as shown for instance in Fig. 6, &8% increase in the number of weights.
database consists of a representative number of appearanc&$ally, note in passing that the same approach can be used
for each object, rather than just the object at a single angle, dadeal with occlusion by usingarts of the object rather than
each of these appearances maps to a single point intkhdi- the object itself [6]. The main idea is that, even if a large por-
mensional search space. Object recognition is accomplistiah of the object displays occlusion in the scene, it can still be
by performing,in real time a nearest neighbor search, to findecovered through its visible parfsdjacency relationgnhance
the closest match among the objects in the database. Since tigsreliability of the system, thus taking into account the detec-
search can be performed by the proposed neural network in fiien of neighboring parts originating from the same object. Now
clock steps, it has the potential to perform object recognitidhe database consists of the appearances of parts rather than the
at a frame rate (30 Hz or higher), a task that usually cannot &ppearances of objects. In the implementation in [6], a segmen-
accomplished using serial point query. tation algorithm based on homogeneous texture seeks to parti-
For this application, the proposed network can be constructigoh an object into its physical parts. Such a partitioning maps
by considering the Voronoi diagram of all the points in the datéhe same parts at different appearances close to each other in
base and grouping the cells corresponding to each appearandb@feigenspace, allowing compact nearest neighbor clustering.
the same object to create a (generically nonconvex) oblgss However, since each part contains homogeneous texture, they
Our example database contains 16 objects and 36 appearatees to be less distinctive than the original objects. This char-
(every 10) for each object. In this particular case, keeping thacteristic coupled with the fact that the part database contains
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Anacm

(a) Dheck (bl Puggy () Ferrars (d) Anacin ) Chesse

Fig. 5. Five example objects in the database.

{a) GO° {b) 120° (d) 240° {e) 300°

Fig. 6. Duckappearances.

many more items than the object datalBassuires a signifi- the second and third layers as well (absent in our approach),
cantly higher number of eigenvalues for reliable discriminatiotgading to the following estimate for the number of weights:

on the order of 100. Thus a part database for 100 objects and

36 appearances for each partiin= 100 may contain 18 000 ) Y

points for a total of 18 000 000 coordinates in a nearest neighbor Nyonner = C#s(C) + s(C)x(n+1)=C
search. The number of generated boundary hyperplanes in this —
case proves quite high, so reducing the number of neurons in the

second to third layer weights

output weights

hardware implementation becomes an important issue. +(14n)+f= ¢ (3)
2
SN— ———
VIl. CONCLUSIONS AND FURTHER WORK input weights

The problem of designing a classifier capable of fast, robUgheres(C) denotes the average number of subclasses per class,
pattern classification has received renewed interest lately in they \vhere we have assumed an averagefates per subclass.
context of active vision applications. In this paper, we proposgghie that the first and second terms in (2) and (3) have the same
to solve this problem using a novel neural network motivated Ryqer of magnitude, and that in higher dimensional applications
computational geometry methods. This net shares all the advgfisse terms are usually dominated by the third. It follows that in

tages of similar nets proposed in the past (namely its structUjigase cases both networks require roughly the same number of
number of neurons, and interconnection weights can be deR%‘ights.

mineda priori from the problem data), while using substantially \yie gre currently working on a network which exhibits the

less neurons, at the price of potentially increasing the numbergfme induction principle of boundary halfspaces to represent
weights. However, as illustrated with both the simple examplgnconvex polyhedra, but requires no delay weights and drasti-

and the practical application, the number of intralayer weightsy reduces the number of interconnection weights involved.
and feedforward weights to the second layer dwindles with re-

spect to that of the feedforward weights to the first layer. Specif-
ically, in a problem with inputs iR, C classes and an average
numberf of faces/class, the total number of weights required The authors are indebted to Prof. N. K. Bose and Dr. A.
by our approach is given by Garga for discussions on using computational geometry and
graph theory to design neural nets for pattern classification, and
to N. Pande for providing the data for the practical application.
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