
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001 1227

An Improved Voronoi-Diagram-Based Neural Net for Pattern Classification
Camillo Gentile and Mario Sznaier

Abstract—In this brief paper, we propose a novel two-layer
neural network to answer a point query in which is partitioned
into polyhedral regions. Such a task solves among others nearest
neighbor clustering. As in previous approaches to the problem,
our design is based on the use of Voronoi diagrams. However
our approach results in substantial reduction of the number of
neurons, completely eliminating the second layer, at the price of
requiring only two additional clock steps. In addition, the design
process is also simplified while retaining the main advantage
of the approach, namely its ability to furnish precise values for
the number of neurons and the connection weights necessitating
neither trial and error type iterations nor ad hocparameters.

Index Terms—Pattern classification, Voronoi diagrams.

I. INTRODUCTION

M ANY problems in robust pattern classification can be
reduced to nearest neighbor clustering in . This

problem has been given renewed attention lately in the context
of machine vision applications such as object recognition and
visual feedback [1], [6], [7], [10], [11]. A critical constraint
in these applications is that the problem must be solved in
real time and the solution must be robust against perturbations
arising for instance from noise or blurring. In this paper, we
propose a novel two-layer neural network with intralayer
feedback to achieve nearest neighbor clustering. The number
of neurons and the interconnection weights can be exactly
determineda priori from the problem data, eliminating the
need for trial and error type iterations orad hocparameters.
Moreover, the proposed net compares favorably, both in terms
of the total number of neurons and layers, and in the overall
complexity of the design algorithm, with similar networks
proposed in the past to solve the same problem.

Given a set of sample points in , the proposed design is
based upon constructing the Voronoi cell of each point [2] (i.e.,
the region of space containing those points that are closer, based
on some norm, to the given point than to the other elements in
the sample) and grouping these cells into clusters representing
each class of patterns. Note that although each individual cell
is convex, convexity may be lost when the cells are grouped,
leading to clusters that are not linearly separable. In previous
work along these lines, this difficulty was solved by representing
each cluster as the union of a finite number of convex regions.
While this leads to a structure having at most three layers, it
artificially inflates the number of neurons required. The key re-

Manuscript received May 23, 2000; revised March 14, 2001.
C. Gentile is with the Wireless Communications Technologies Group, Na-

tional Institute of Standards and Technology, Gaithersburg, MD 20899 USA
(e-mail: camillo@antd.nist.gov).

M. Sznaier is with the Department of Electrical Engineering, The Pennsyl-
vania State University, University Park, PA 16802 USA (e-mail: msznaier@gan-
dalf.ee.psu.edu).

Publisher Item Identifier S 1045-9227(01)07569-5.

alization of the proposed method is the fact that if a query point
lies within a nonconvex cluster, it lies within a convex poly-
hedron defined through the intersection of aproper subsetof
“ true” halfspacesassociated with the faces of the cluster. This
fact allows for using a two-layer neural neteven when the clus-
ters are nonconvex, by constructing region-by-region a list of
constraints rendered redundant (“induced”) by each of its sup-
port halfspaces, and using five clock steps as follows: At the
first step the input excites the true halfspaces, which in turn ex-
cite the induced halfspaces in latter clock steps. At the fifth step
the network performs the intersection of the excited halfspaces
to determine the polyhedral class that contains the query point.

This paper is organized as follows. In Section II, we intro-
duce some mathematical preliminaries and precisely state the
problem. In Section III, we present an algorithm that allows for
reducing the number of constraints required to represent each
class. In Section IV, we show how to implement these con-
straints using a two-layer neural network. These results are illus-
trated in Section V with a simple example, where the proposed
network is compared against similar networks proposed in the
past, and in Section VI with a practical application arising in the
context of object recognition. Finally, in Section VII, we sum-
marize our results and point out directions for further research.

II. PRELIMINARIES

A. Notation and Geometrical Background

A hyperplane is a set of points which satisfy

(1)

where has coordinates and through
are constants, orweights. divides into a positive

halfspace and a negative halfspace
. In the sequel we will use the notation

() to denote the interior of the halfspace
.

Given sample points in { }, to each point we associate
the set of points in closer to it than to the other elements of
the sample. This convex set is known as a Voronoi cell, and the
collection of cells forms the Voronoi diagram of[8]. Each cell
has faces, shared by an adjacent cell. A face is the intersection
of a halfspace which bounds the polyhedron and the boundary
of the polyhedron. If the positive (negative) halfspace of the cell
is associated with the face of the cell, the negative (positive)
halfspace is associated with the face of the adjacent cell. Sample
points in adjacent cells are said to beneighboring, thus a sample
point has neighboring points.

1045–9227/01$10.00 © 2001 IEEE

1228 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

Finally, denotes an interconnection weight be-
tween two neurons, with a time-delay of time steps.

B. Statement of the Problem

The problem that we address in this paper can be precisely
stated as follows.

Problem 1: Given a set of sample points in , partitioned
into classes, each one represented by a subset, find the
class that contains the nearest neighbor to a given point .

Proceeding as in [2], this problem can be solved by consid-
ering the cells formed by the (generally nonconvex) union of
the Voronoi cells of the points in the class and determining
which cell contains the given point. Thus the problem reduces
to

Problem 2: Given polyhedral, not necessarily convex
classes , , , and a test point

, determine which class contains.

III. PROPOSEDAPPROACH

A convex polyhedron can be defined through the intersection
of a finite number of halfspaces. Thus, in the case ofconvex
cells, Problem 2 can be solved using a two-layer neural net-
work, as in [2]. The first layer determines whether a query point
lies in the positive or negative halfspace of all the hyperplanes
which support the convex region. The second layer performs the
intersection orAND operation of all the determined halfspaces.
If TRUE, the point lies in the polyhedron. If the cells are non-
convex, the same approach can be used, by decomposing each
nonconvex cell into the union of convex polyhedrons (see
[2] for details). However, as pointed out earlier, this approach
artificially inflates the number of neurons required, since po-
tentially many of the constraints defined by the halfspaces sup-
porting the regions are redundant.

The proposed two-layer neural network has a similar struc-
ture, but eliminates the need for redundant constraints, by
avoiding decomposing the cells . The key idea is the fact
that, if a query point lies within a nonconvex polyhedron, it
lies within a convex polyhedron defined by the intersection
of a propersubsetof halfspaces associated with the faces of.
Therefore a TRUE intersection can be realized by having this
subset “induce” all the remaining halfspaces associated with
the cell . In the sequel we present a systematic procedure to
accomplish this.

A. Reducing the Number of Hyperplanes

Given a point lying in a halfspace of a polyhedron , faces
that lie completely in the complement of are redundant, in the
sense that they do not contribute information about whether or
not the point lies in the polyhedron. Thus, a “true” halfspace
induces another halfspace (“induced” halfspace) of the same
polyhedron if the corresponding faceof lies completely in
the complement halfspace of and the complement halfspace
of intersects the polyhedron and, i.e., if
and , where and denotes the
boundary of . Note that if the first condition holds true but the
second condition does not, is indeed redundant but it need
not be induced. This is due to the fact that any point

Fig. 1. A nonconvex polyhedron inR to illustrate the algorithm for reducing
the number of hyperplanes.

renders TRUE. These simple observations, which in practice
amount to cutting off a nonconvex part of the polyhedron, form
the basis of the proposed procedure.

To illustrate this approach, consider for example the non-
convex polyhedron in shown in Fig. 1. (Only six faces of the
polyhedron labeled through are shown.) Assume that the
negative halfspaces of the faces form the polyhedron. A point in

(the negative halfspace of) induces since face lies
completely in . Faces , and lie completely in and
face lies in both and , therefore , and

are not induced. A point in induces since face lies
completely in . Note that does not need to be induced,
since a point in automatically renders TRUE.

Note that a point in the halfspace of a polyhedron can induce
only the halfspaces of that polyhedron.

B. Reduction of Induction Weights by Pruning

The number of induction weights found in Section III-A can
be reduced by eliminating redundant constraints as follows. Let

denote the set of induced halfspaces of class. For each
element we generate a list of the true halfspaces,
i.e., the halfspaces of which induce . In the pruning step
redundant constraints are eliminated from.

Take as an example the infinite nonconvex region into
the left of the boundary in Fig. 2. This region is formed by the
positive halfspaces of faces , and . In the pruning
step we find that is induced by both and . Thus if the
query point lies in the intersection of and the polyhedron,

must be induced by or . If we examine however
the region common to the polyhedron and we find that it is
completely covered by . Thus is sufficient to induce
and the intralayer weight from to is redundant and can
be discarded.

In summary, in the pruning step, for each induced halfspace
we group in all the halfspaces that induce it. Among

this group of halfspaces we retain only those whose union com-
pletely covers the intersection of the polyhedron and the com-
plement halfspace of the induced halfspace.

IV. THE NEURAL NETWORK

In this section, we show how to exploit the ideas of Section III
to construct a neural network that solves Problem 2. Several
implementations are possible. Later, we discuss two in detail
and briefly comment on a third.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001 1229

Fig. 2. A nonconvex polyhedron inR to illustrate the pruning step.

A. The Bounded Input Case

Consider first the case, common in many pattern recognition
applications, where is it knowna priori that the distance from
any admissible query point to any one of the boundary hyper-
planes is less than a positive constant. In this case Problem
2 can be solved using a synchronous network that requires five
clock steps to generate the desired output. At the first step the
input excites the true halfspaces, which in turn excite the in-
duced halfspaces in latter clock steps. At the fifth step, the net-
work performs the intersection of the excited halfspaces to de-
termine the class of the polyhedron which bounds the query
point.

1) Inter- and Intra-Layer Weight Selection:Upon construc-
tion of the Voronoi diagram for the sample points we need
only compile the following lists:

• the parameters for each boundary hyperplane;
• the boundary halfspaces which support the polyhedron for

each class;
• the induced halfspaces and the corresponding inducing

halfspaces.
The network has inputs (including the fixed biases):

the coordinates of the query point . The
first layer of the network has one neuron for each boundary hy-
perplane. We determine the interlayer connection weights be-
tween the network inputs and the first-layer neurons as in [2].
These weights establish the positive and negative halfspaces of
the hyperplanes.

The intralayer weight in the first layer between the positive
(negative) terminal of neuron and the input of neuron is

(i.e., scalar value of and a two-unit delay) if the pos-
itive (negative) halfspace of neuroninduces thepositivehalfs-
pace of neuron , if the positive (negative) halfspace of
neuron induces thenegativehalfspace of neuron, and zero
otherwise. Fig. 3 illustrates the design for a simple example.
Here a solid weight indicates a one-unit delay, a dashed weight
a two-unit delay, and a boldfaced weight a three-unit delay.

At the first clock step, we present the query pointas the
input to the network. The neurons in the first layer fire to excite
the true halfspaces at this step, which in turn excite the positive
and negative induced halfspaces. A potential problem with this

(a)

(b)

Fig. 3. (a) A simple example (b) The corresponding two-layer network.

approach is that a neuron in the first layer can receive both pos-
itive and negative inputs. For instance, the pointin Fig. 3(a)
renders the halfspaces and TRUE. Since induces

, the neuron receives both positive and negative induc-
tions. To avoid this situation, positive and negative induction
must occur at separate clock steps. To this end the network em-
ploys two and three-unit delays to excite the positive and neg-
ative induced halfspaces at the third and fourth clock steps, re-
spectively.1

At the third clock step, we again presentas the input to the
network to excite the true halfspaces. When the neurons in the
first layer fire at the third clock step, there are four possibilities
at the input of a neuron in the first layer:

1) The input excites the true positive halfspaceand the in-
tralayer feedback excites the induced positive halfspace.

2) The input excites the true positive halfspaceand the in-
tralayer feedback does not excite the induced positive
halfspace.

3) The input excites the true negative halfspaceand the in-
tralayer feedback excites the induced positive halfspace.

4) The input excites the true negative halfspaceand the in-
tralayer feedback does not excite the induced positive
halfspace.

Note that since the intralayer connection has a weight ofand
the input is always less than , the first three cases results in
the positive terminal of the neuron being excited, with its output
reaching the second layer at the fifth time step. In the fourth
case, the negative terminal of the neurons is excited but has no
connection to the second layer.

1The unit delays for induction must be relatively prime numbers so that the
inductions do not interfere with each other. Thus, we have selected these delays
to be two and three units, respectively. As a result all the neurons assume a quiet
state at the second clock step since they receive no input from that of the network
and they receive no induction from the intralayer feedback.

1230 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

TABLE I
STATUS OF THENEURONS AS AFUNCTION OFTIME FOR THESIMPLE EXAMPLE

At the fourth clock step, we present as the input to the
network, effectively exciting the true negative halfspace through
the true positive halfspace, thus allowing the same reasoning as
in the third clock step above. In the first three cases, the positive
terminal of the neuron is excited and reaches the second layer
at the fifth time step. In the fourth case, the negative terminal of
the neurons is excited but has no connection to the second layer.
Table I shows the status of the different neurons at each clock
step for the simple example used above, when .

The second layer of the network containsneurons: one
neuron per class. The interlayer connection weight between the
positive terminal of neuron in the first layer and the input to
neuron in the second layer is if the positive halfspace of
neuron supports the polyhedron of class, if the neg-
ative halfspace of neuronsupports the polyhedron of class,
and zero otherwise. Since the positive and negative halfspaces
are excited at separate clock steps, the positive halfspaces have
an extra delay of one unit with respect to the negative halfspaces
in order to synchronize the two such that they reach the second
layer at the same fifth step. Each neuron in the second layer also
has a negative bias weight equal to the number of halfspaces that
support its class. Coupled with a unipolar hardlimiter transfer
function, each neuron in the second layer realizes the AND op-
eration of the halfspaces which support its class. We emphasize
that there are no connections between the negative terminals of
the neurons in the first layer and the inputs to the neurons in the
second layer.

B. The Unbounded Input Case

When the input cannot be boundeda priori, a similar effect
can be accomplished by using feedback weights (rather than
continuous excitation) to excite the true positive (negative) half-
spaces in the third (fourth) clock step. As a result we present the
query point as the input to the network only at the first clock
step. Each neuron in the first layer has a feedback weight
connected to its input from its positive terminal and a feedback
weight connected to its input from its negative terminal.
The intralayer weight in the first layer between the positive (neg-
ative) terminal of neuron and the input of neuron is if
the positive (negative) halfspace of neuroninduces thepositive
halfspace of neuron, if the positive (negative) halfspace
of neuron induces thenegativehalfspace of neuron, and zero
otherwise.

C. Implementation Considerations

In neural modeling a weight simulates the axon which in-
terconnects neurons. The speed with which a pulse propagates
along an axon varies greatly [3]. A simplistic hardware realiza-
tion models the axon as a transmission line with a resistor and a
capacitor, the resistance adjusting the weight value and the ca-
pacitance adjusting the propagation time. Following the work
by Bose and Garga, we implement our system through a Mc-
Culloch–Pitts network model [4] assuming a delay of one unit
for a signal to propagate along a weight from its originating ter-
minal to the input of the neuron to which it is connected, and
fire. The additional delays of two and three units are obtained
by simply adding two extra capacitors. Thus these delays do not
increase the complexity of the system.

The neurons of the network proposed in [2] employ the
bipolar hardlimiter as a transfer function. The neurons in the
first and second layers necessitate two terminals: a positive
terminal (the output of the bipolar hardlimiter) connected to
positive weights and a negative terminal (the negative value
of the positive terminal) connected to negative weights, thus
simulating the negative weights in the physical implementation.

The neurons of the proposed network employ the unipolar
hardlimiter as a transfer function. The neurons in the first layer
also necessitate two terminals: a positive terminal (the output
of the unipolar hardlimiter) to excite the halfspaces induced by
the true positive halfspaces and a negative terminal (the logic
complement of the positive terminal) to excite the halfspaces
induced by the true negative halfspaces. We have only positive
weights connected from the output terminals of the neurons.

Finally, it is worth emphasizing the fact that since the imple-
mentation of the neural net is not unique, a more suitable imple-
mentation may be tailored to the a specific application. For ex-
ample yet another implementation uses only one terminal for the
neurons in the first layer (thus eliminating the logic inverters),
however necessitating eight clock steps.

V. A SIMPLE EXAMPLE

Consider the Voronoi diagram used as an example in [5],
shown in Fig. 4. This diagram was generated from 15 random
sample points, clustered into three classes. The solid lines show
the 16 boundary faces labeledthrough and the plus and
minus signs indicate their corresponding positive and negative
halfspaces.

Using the rules provided in Section III-A, we compile a list
of true halfspaces and corresponding induced halfspaces for a
each class in Table II, sorted according to the true halfspaces.

We resort Table II in Table III according to the induced half-
spaces. The boldface indicates the pruned induced halfspaces
using the rules provided in Section III-B.

Finally, we again resort Table III in Table IV according to the
true halfspaces, however without the pruned induced halfspaces,
thus providing the minimum set of induced halfspaces for each
class.

For this example, the proposed network requires 19 neurons,
123 weights, and two layers as opposed to the network in [5]

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001 1231

Fig. 4. Voronoi diagram for the simple example.

TABLE II
ORIGINAL INDUCED HALFSPACESVERSUSTRUE HALFSPACES

which requires 28 neurons, 98 weights (taking into account the
constant bias weights), and three layers. Thus, in this case our
approach yields a 47% decrease in the number of neurons, at the
price of a 20% increase in the number of weights. In addition,
the proposed design process requires solely the computation of
the Voronoi diagram, as opposed to the approach in [5] that also
requires computing the Delaunay tessellation and the convex
hull of each polyhedron. When the nonconvex boundary of the
polyhedron becomes complicated, the number of neurons in the
second layer of the network proposed in [2] may become in-
creasingly large. Our approach avoids this problem completely

by eliminating this second layer, thus allowing for a more effi-
cient implementation of the network.

VI. A PRACTICAL APPLICATION: OBJECTRECOGNITION

The computational complexity entailed in recognizing ob-
jects from a cluttered scene can be substantially reduced by
using eigenspace decomposition techniques [7], [11]. The main
idea of the method is to use principal component analysis to
compress images of objects contained in a precomputed data-
base to just a few () components which exhibit the largest

1232 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

TABLE III
TRUE HALFSPACESVERSUSORIGINAL INDUCED HALFSPACES

TABLE IV
PRUNED INDUCED HALFSPACESVERSUSTRUE HALFSPACES

eigenvalues. Thus, it eliminates redundancy among the images
while preserving their essential features.

Fig. 5 displays five example objects from the database
COIL-20 [9]. Since each of these objects may appear at any
angle in the test scene, as shown for instance in Fig. 6, the
database consists of a representative number of appearances
for each object, rather than just the object at a single angle, and
each of these appearances maps to a single point in theth-di-
mensional search space. Object recognition is accomplished
by performing,in real time, a nearest neighbor search, to find
the closest match among the objects in the database. Since this
search can be performed by the proposed neural network in five
clock steps, it has the potential to perform object recognition
at a frame rate (30 Hz or higher), a task that usually cannot be
accomplished using serial point query.

For this application, the proposed network can be constructed
by considering the Voronoi diagram of all the points in the data-
base and grouping the cells corresponding to each appearance of
the same object to create a (generically nonconvex) objectclass.
Our example database contains 16 objects and 36 appearances
(every 10) for each object. In this particular case, keeping the

eigenvectors corresponding to just the largest eigenvalues
proved sufficient for reliable discrimination between the objects
in the database in the presence of noise.

The corresponding neural network contains neu-
rons in the first layer (one for each of the bounding hyperplanes)
and 16 neurons in the second layer (one for each of the object
classes). The number of feedforward weights to the first layer
is 9120 (), the number of feedforward weights to
the second layer is 3664 (), and the number of in-
tralayer weights is 5467. The number of neurons and weights
required by the VONNET proposed in [2], [5] depends on the
number of subclasses required to cover the nonconvex classes.
Proposition 1 in [5] yields 36 subclasses per class, for a total
of 576 neurons in the second layer, and assuming an average
of four faces/subclass (since we are working in, compact
polytopes have at least five faces), 2880 weights, including the
576 bias weights required by the neurons. Thus, in this example
the VONNET requires 2416 neurons and on the order of 13 170
weights (9120, 2880, and 1170 for the first, second, and third
layers, respectively). Hence our approach leads to a reduction
of approximately 30% in the number of neurons at the price of
a 38% increase in the number of weights.

Finally, note in passing that the same approach can be used
to deal with occlusion by usingpartsof the object rather than
the object itself [6]. The main idea is that, even if a large por-
tion of the object displays occlusion in the scene, it can still be
recovered through its visible parts.Adjacency relationsenhance
the reliability of the system, thus taking into account the detec-
tion of neighboring parts originating from the same object. Now
the database consists of the appearances of parts rather than the
appearances of objects. In the implementation in [6], a segmen-
tation algorithm based on homogeneous texture seeks to parti-
tion an object into its physical parts. Such a partitioning maps
the same parts at different appearances close to each other in
the eigenspace, allowing compact nearest neighbor clustering.
However, since each part contains homogeneous texture, they
tend to be less distinctive than the original objects. This char-
acteristic coupled with the fact that the part database contains

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001 1233

Fig. 5. Five example objects in the database.

Fig. 6. Duckappearances.

many more items than the object database2 requires a signifi-
cantly higher number of eigenvalues for reliable discrimination,
on the order of 100. Thus a part database for 100 objects and
36 appearances for each part in may contain 18 000
points for a total of 18 000 000 coordinates in a nearest neighbor
search. The number of generated boundary hyperplanes in this
case proves quite high, so reducing the number of neurons in the
hardware implementation becomes an important issue.

VII. CONCLUSIONS ANDFURTHER WORK

The problem of designing a classifier capable of fast, robust
pattern classification has received renewed interest lately in the
context of active vision applications. In this paper, we proposed
to solve this problem using a novel neural network motivated by
computational geometry methods. This net shares all the advan-
tages of similar nets proposed in the past (namely its structure,
number of neurons, and interconnection weights can be deter-
mineda priori from the problem data), while using substantially
less neurons, at the price of potentially increasing the number of
weights. However, as illustrated with both the simple example
and the practical application, the number of intralayer weights
and feedforward weights to the second layer dwindles with re-
spect to that of the feedforward weights to the first layer. Specif-
ically, in a problem with inputs in , classes and an average
number of faces/class, the total number of weights required
by our approach is given by

(2)
where is the average number of hyperplanes induced per
face. While this number is application dependent,3 it typically
increases with at a much lower rate than linear. Note that the
last term in (2) also appears when computing the number of
weights in [2]. The latter necessitates additional weights from/to

2The segmentation generates on average five parts from each object appear-
ance.

3Cases where the cells are highly nonconvex yield larger values ofp.

the second and third layers as well (absent in our approach),
leading to the following estimate for the number of weights:

(3)

where denotes the average number of subclasses per class,
and where we have assumed an average offaces per subclass.
Note that the first and second terms in (2) and (3) have the same
order of magnitude, and that in higher dimensional applications
these terms are usually dominated by the third. It follows that in
these cases both networks require roughly the same number of
weights.

We are currently working on a network which exhibits the
same induction principle of boundary halfspaces to represent
nonconvex polyhedra, but requires no delay weights and drasti-
cally reduces the number of interconnection weights involved.

ACKNOWLEDGMENT

The authors are indebted to Prof. N. K. Bose and Dr. A.
Garga for discussions on using computational geometry and
graph theory to design neural nets for pattern classification, and
to N. Pande for providing the data for the practical application.

REFERENCES

[1] M. J. Black and A. D. Jepson, “Eigentracking: Robust matching and
tracking of articulated objects using a view-based representation,” in
Proc. Europ. Conf. Comput. Vision, vol. 1064, 1996, pp. 329–358.

[2] N. K. Bose and A. K. Garga, “Neural network design using Voronoi
diagrams,”IEEE Trans. Neural Networks, vol. 4, pp. 778–787, Sept.
1993.

[3] N. K. Bose and P. Liang,Neural Network Fundamentals. New York:
McGraw-Hill, 1996.

[4] W. S. McCulloch and W. A. Pitts, “A logical calculus of the ideas im-
manent in neural nets,”Bull. Math. Biophys., vol. 5, pp. 115–133, 1943.

[5] A. K. Garga and N. K. Bose, “Structure training of neural networks,” in
IEEE Int. Conf. Neural Networks, 1994, pp. 239–244.

1234 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

[6] C. Y. Huang, O. I. Camps, and T. Kanungo, “Object recognition using
appearance-based parts and relations,” inProc. IEEE Conf. Comput. Vi-
sion Pattern Recognition, 1997, pp. 877–883.

[7] A. Leonardis and H. Bischof, “Dealing with occlusion in the eigenspace
approach,” inProc. IEEE Conf. Comput. Vision. Pattern Recognition,
1996, pp. 453–458.

[8] K. Mulmuley, Computational Geometry: An Introduction Through Ran-
domized Algorithms. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[9] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia object image library
(COIL-20),”, Tech. Rep. CUCS-005-96, Feb. 1996.

[10] F. de la Torre, S. Gang, and S. McKenna, “View-based adaptive affine
tracking,”Lecture Notes Comput. Sci., vol. 1406, pp. 828–842, 1998.

[11] M. Turk and A. Pentland, “Eigenfaces for recognition,”J. Cognitive
Neurosci., vol. 3, no. 1, pp. 71–86, 1991.

