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Segmentation for Robust Tracking
in the Presence of Severe Occlusion

Camillo Gentile, Octavia Camps, and Mario Sznaier

Abstract—Tracking an object in a sequence of images can fail
due to partial occlusion or clutter. Robustness to occlusion can be
increased by tracking the object as a set of “parts” such that not
all of these are occluded at the same time. However, successful
implementation of this idea hinges upon finding a suitable set of
parts. In this paper we propose a novel segmentation, specifically
designed to improve robustness against occlusion in the context of
tracking. The main result shows that tracking the parts resulting
from this segmentation outperforms both tracking parts obtained
through traditional segmentations, and tracking the entire target.
Additional results include a statistical analysis of the correlation
between features of a part and tracking error, and identifying a cost
function that exhibits a high degree of correlation with the tracking
error.

Index Terms—Active contours, robust tracking, segmentation.

I. INTRODUCTION

TRACKING a known object in a sequence of frames can
fail due to occlusion or the presence of clutter. Robustness

against these effects can be increased by using robust estimators
[1], [8], [18], [23] that treat occlusion pixels as outliers. How-
ever, while successful for moderate occlusion, these estimators
usually break down at above a 30% occlusion level [2]. This is
illustrated in Fig. 1,1 where an affine transformation combined
with a robust estimator was used to track a bus in a traffic se-
quence. As shown there, the algorithm begins to lose track of
the target in Frame 14.

This effect can be traced to the fact that robust estimators treat
occluding pixels as uniformly distributed outliers, neglecting
the fact that occlusion tends to be clustered in small regions.
Thus, intuitively one would expect that resiliency to occlusion
could be improved by dividing the object into pieces which are
tracked separately, along with the entire object, to find multiple
transformations. The best global transformation is then selected
by voting [6]. However, homogeneous pieces are more difficult
to track than regions with distinctive properties such as texture
or shape.2 Thus, standard segmentations (see for instance [12],
[14], [15], [24], [25], and references therein) do not necessarily

Manuscript received June 12, 2001; revised March 12, 2003. This work was
supported in part by the NSF under Grants IRI-9712598 and IIS-0117387. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Thiow Keng Tan.

The authors are with the Department of Electrical Engineering, The Penn-
sylvania State University, University Park, PA 16802 USA (e-mail: camillo@
gandalf.ee.psu.edu; camps@whale.ee.psu.edu; msznaier@gandalf.ee.psu.edu).

Digital Object Identifier 10.1109/TIP.2003.817232

1This sequence of traffic images was provided by Dr. Nagel at the Universitat
Karlsruhe.

2This is closely related to the well known aperture problem.

Fig. 1. Tracking using an affine transformation combined with a robust
estimator. The algorithm begins to lose track of the target in Frame 14 as it
moves outside the field of view.

result in parts leading to good tracking performance. This is il-
lustrated in Fig. 2 where the use of the set of homogeneous parts
(an MDL-based segmentation [12] of the bus) shown in Fig. 2(a)
leads to poor tracking starting in Frame 2. Motivated by this dif-
ficulty, in this paper we address the problem of how to divide the
object into pieces to optimize tracking robustness to occlusion.
Specifically, the contributions of the paper are

• statistical analysis of the correlation between features of a
part and tracking error;

• identifying a cost function that exhibits a higher degree
of correlation with the tracking error than other indicators
previously proposed;

• a segmentation algorithm specifically designed to make
optimal use of the spatial information available to im-
prove tracking robustness. This segmentation is obtained
by combining this new cost function with the standard ac-
tive contours (“snakes”) framework [21], [25].

The paper is organized as follows. In Section II, we intro-
duce the notation, briefly review the tracking problem and for-
mally state the segmentation problem of interest. In Section III,
we introduce a cost function that is highly correlated with the
tracking error and we benchmark it against previously proposed
cost functions. Section IV describes a snake architecture em-
ployed to obtain a partitioning of the object that optimizes this
cost function. In Section V we report tracking results on syn-
thetic and real images and we compare the performance of the
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Fig. 2. Tracking using homogeneous parts. (a) Regions of the target obtained using an MDL-based segmentation algorithm. (b) The regions shown in (a) are
tracked in a effort to improve resiliency to occlusion. However, regions lacking distinctive properties such as texture or shape lead to poor tracking performance.

proposed method vis-a-vis other commonly used segmentations
both with synthetic and real images. Finally, in Section VI we
summarize our results.

II. PRELIMINARIES

A. Notation and Mathematical Preliminaries

Definition 1: An affine transformation is a trans-
formation of the form , where

and .

In the sequel we will denote by the coordi-
nates of a pixel; the greyscale intensity at pixel ;
and the corresponding spatial derivatives; and by

the parameters of a given transfor-
mation.

B. Tracking Problem

For simplicity, in this paper we consider a prototype tracking
algorithm based on estimating the transformation that maps the
images of a given object between two consecutive frames in a
sequence. However, our results can also be used in the context of
tracking algorithms that exploit, in addition to spatial, temporal
information [3], [16].

Assuming that there is little distortion, the mapping between
consecutive frames can be considered to be affine [2], [4],
[9]–[11]. This fact can be exploited to efficiently solve the
tracking problem by recasting it into the following optimization
form [2].

Problem 1 (Robust Affine Tracking): Given two image
frames and , and a prototype object represented by
a subset of pixels , find an affine transformation

that minimizes the following objective
function:

(1)

where is a robust estimator [1], [2] that rejects outliers,
controlled by the tuning parameter . For example,

otherwise

In principle Problem 1 can be solved by performing a gradient
descent search to find a (local) minimum of (1). However, as
illustrated in Fig. 1, while this approach works well for moderate
occlusion, the estimator may not prove reliable in the
midst of severe occlusion.

C. Parts Reset Algorithm

Consider the experiment shown in Fig. 3, where severe
occlusion is simulated by synthetically cutting off a portion
of the object Van, pasting it to a cluttered background and
adding zero-mean additive white Gaussian noise with vari-
ance 5. Fig. 3(c) shows the results of the affine transformation
found using gradient descent search combined with a truncated
quadratic robust estimator [1] (in the sequel we will refer to this
algorithm as the Benchmark Algorithm). In order to minimize
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Fig. 3. PRA versus Benchmark Algorithm. (a) The object. (b) A synthetically
generated scene with a portion of the object set among clutter. (c) The
Benchmark Algorithm fails to identify the occluded pixels of the prototype and
minimizes the error norm by compressing the object into the portion visible in
the frame. (d) The Parts Reset Algorithm improves robustness to occlusion by
tracking a set of parts with good tracking properties.

the error norm, the algorithm compresses the object into the por-
tion visible in the frame, since it cannot successfully determine
the occluded pixels of the prototype. Additional sources of error
arise from the nonconvexity of the problem, and from the effects
of cluttered background and noise on the gradient computation.

Since occlusion is a localized effect, robustness against severe
occlusion can be improved by partitioning the prototype into a
number of parts and tracking the parts by estimating can-
didate affine transformations , [6]. A single
transformation may be selected from the candidate transfor-
mations by a voting scheme. Further improvement can be ob-
tained by evaluating the performance of each transformation at
intermediate stages, rather than after the steepest descent proce-
dure has converged. Specifically, at uniform intervals (in number
of iterations), all candidate transformations are applied to
each part , and the corresponding errors are com-
puted using (1). The transformation associated to each part is
then reset to the one yielding the lowest error and the steepest de-
scent search is restarted. Consistent experimental evidence indi-
cates that this approach enables unoccluded parts to set partially
occluded parts on track, thus avoiding local minima of (1). This
effect is illustrated in Fig. 3(d) showing the tracking results for
an algorithm based upon this idea. Note in passing that, since the
total number of points involved is the same for the benchmark
and PRA algorithms, in both cases the total number of opera-
tions required to compute the gradients is the same. Thus, both al-
gorithms have roughly the same computational complexity. The
PRA algorithm requires slightly more overhead, due to the inter-
mediate voting, but, on the other hand, can be easily parallelized.

III. GOOD FEATURES FOR TRACKING

While the approach described in the previous section has the
potential to handle substantial occlusion, it hinges upon deter-
mining a suitable set of parts to be tracked. Possible options

TABLE I
INDICATORS FOR GOOD TRACKING COMMONLY USED

span a very diverse spectrum from dividing the object image by
using a simple grid, to segmenting the object into homogeneous
regions, to dividing the object into its “functional” parts. While
the first option is the simplest partition and the latter options are
intuitively appealing, they are not necessarily the best partitions
for the application being considered. In this section we analyze
the correlation between different features of a part and tracking
performance. Based on this analysis, we propose a new segmen-
tation, designed to optimize tracking robustness.

A. Performance of Several Indicators

Several ways of assessing the “goodness” (in the sense of
its ability to minimize the tracking error) of a part have been
proposed in the literature, based on spatial derivatives, image
Laplacian or the eigenvalues of the matrix [19]

(2)

Table I summarizes the most commonly used indicators [7],
[17], [19], [20]. Here a higher value of the criterion indicates
a part that is thought to be more suitable for tracking.

To establish the performance of these features as indicators
of good tracking we conducted a set of experiments to find the
correlation between the indicators values and tracking error. To
this effect we considered a set of parts of varying size, shape,
and texture cut from real images and ran a series of tests on each
part. These parts bear interesting features used for comparison,
namely large regions with homogeneous texture (such as the
faces of a box) as well as regions with contrast texture (such as
corners and holes). Each experiment consisted of the following
steps.

1) Create a prototype frame by selecting a part .
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2) Create a second frame by:

a) Selecting a random background with uniform
grayscale distribution between 0 and 255.

b) Transforming the prototype of the part from the
identity pose, , to a test pose

and “paste” it onto background .
c) Corrupting the resulting scene with zero-mean ad-

ditive white Gaussian noise with variance 5.

3) Run the tracking algorithm on the frames and to
compute an estimated pose, .

4) Find the corresponding ground-truth tracking error de-
fined as:

(3)

where denotes the number of pixels of part .

A total of 19 200 experiments were performed using 40 parts,
, pasted onto 10 random backgrounds of size 128 128,

and under the 48 different affine transformations:

where , indicate the eight directions adjacent
to a pixel, , ; , ; ,

; etc, and the values of and are given in Table II.
These values were chosen to cover problems ranging from easy
to challenging.

The overall performance of a part is obtained by summing
over the 48 poses and ten backgrounds to compute the total error,

associated with it

(4)

A potential problem when using (4) to assess the quality of
part is that a few outliers can significantly bias the cumulative
performance of the part. To avoid this situation we proceeded as
follows. Through the use of a Kolmogorov-Smirnov test [13] we
determined that, with probability , the distribution of the
experiments yielding lowest values of the error is an distri-
bution (the ratio of two random variables with distribution)
with parameters and (see Fig. 4). Since for this
distribution, for the error value , all points
above this value were considered outliers and assigned an error
value of 3 . With this saturation the total error of a part
ranges from 0 (perfect matching) to 2784 (poor matching).

The correlation coefficient between the 40-dimensional
vectors of tracking errors and of indicator values is given
by

(5)

3Values about this threshold correspond to cases where there is a large mis-
match between the actual and calculated poses. In this situation, the numerical
value of the error is more a function of the background than of the disparity be-
tween poses.

TABLE II
TEST POSES

Fig. 4. Kolmogorov-Smirnov test to determine the distribution of the error.

TABLE III
CORRELATION BETWEEN INDICATORS AND THE TRACKING ERROR

where and indicate the expected value and standard devia-
tion, respectively.

The correlation coefficients for the indicators defined in
Table I are given in the top portion of Table III. Unfortunately,
all of them have small absolute value, indicating that the
performance of these indicators as predictors of good tracking
properties is rather poor.
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B. Performance Oriented Indicator

To find an indicator more correlated with tracking perfor-
mance we begin by examining the gradient with respect to the
affine transformation parameters of (1) used to perform the
search for the affine parameters (see (6) at the bottom of the

page) where , and

for .
Equation (6) shows that, as expected, parts that have large

spatial derivatives and as well as large momenta , ,
, and result in larger gradient of the objective function

in (1) and thus in a faster convergence toward the optimum set
of affine parameters. Thus, one would expect that linear combi-
nation of these terms, such as

would exhibit a large inverse correlation4 with the tracking error.
However, consistent numerical experience indicates that this is
not the case. Roughly speaking, performance does not improve
once each component of exceeds a certain threshold. Thus, a
better result is achieved by saturating the energy of each term,
once it exceeds this threshold. As we show in the sequel, this
leads to parts with more regular shape, where the individual
terms in tend to have comparable energy. Based on these con-
siderations we propose to use as an indicator of good tracking
properties the energy of a part , defined as

(7)

where

if
if

(8)

4i.e., high values of e correspond to low values of the error.

Fig. 5. Initial snake segmentation. (a) Object Cylinder. (b) A snake in the form
of a square grid is placed on the object as an initial segmentation.

where , , and are used to center the momenta to
render the energy coordinate independent.

The parameters , , and are additional degrees of
freedom that can be used to optimize the correlation between
the tracking error and the energy . For the set of 19 200
experiments described at the begining of the section, numerical
optimization of led to the parameter values: ,

, and respectively. The corresponding
indicator is highly correlated with the tracking error, with
correlation coefficient 5 . Note that its absolute
value is substantially larger than the ones of the other entries in
Table III.

IV. OBJECT SEGMENTATION FOR TRACKING

In the last section we proposed to use the energy of a part
as a predictor of its expected performance in a gradient-based
tracking algorithm. The fact that the correlation between en-
ergy and expected performance is negative- larger values of the
energy lead to smaller values of tracking error-suggests that
tracking performance can be improved by finding a partition of
the object having parts with large energy values. In this section
we describe how to accomplish this by incorporating the energy
(7) of a part into a deformable model or snake framework [21].

A. Snake Description

A snake is an ordered set of points that
can form either open or closed contours. A snake segmentation

5Computing the median rather than the average over all experiments for a part
P in (4) also yields a high coefficient � = �0:7954.

(6)
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Fig. 6. Segmentation stages of Cylinder as � varies.

Fig. 7. Cylinder segmentation. The final segmentation distributes most of the
texture and gradient content of the object, which is concentrated on its upper
part, amongst three regions.

algorithm moves the snake on the image grid seeking to mini-
mize an energy function

(9)

where the internal force imposes continuity and smooth-
ness constraints to avoid oscillations of the contours, and the
external force attracts the snake to salient image features.

Let be a point on the snake, be the subset of points on
the snake adjacent to , and be the set of parts defined by the
snake that have as a contour point. Then, the internal energy
at the point , , is defined as

(10)

where the first term ensures that points on the snake do not get
too far from each other, the second term penalizes high curva-
ture contours, and and control the relative influence of the
corresponding terms.

As discussed in the previous section, for a tracking applica-
tion, the external force at the point , , should attract the

Fig. 8. Block Segmentation: (a) Object. (b) The proposed algorithm distributes
the high gradient content region of the object between Part 1 and Part 2. The two
parts have similar energy values and are localized and compact. (c) MDL-based
segmentation.

snake toward enclosing parts with high energy values. Thus, the
external force is defined as

(11)

where is the trackability indicator for part as
defined in (7)6 and the negative sign reflects the fact that the

6For a correct implementation of the segmentation method, the contribution
of each energy term must be normalized by dividing the term by the largest value
in the neighborhood where the snake point can move: E(s)=max E(t),
where N (s) is the set of pixels in a neighborhood of s.
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Fig. 9. Box: Segmentation (a) Object. (b) The proposed segmentation distributes the hole of the object between Part 1 and Part 3, with the bulk of it in Part 1,
allowing the former to grow smaller than the other two parts. (c) MDL-based segmentation.

Fig. 10. Van segmentation: (a) Object. (b) Proposed segmentation. Even though this object is about the same size in number of pixels as the other examples, the
segmentation results in six parts. This is due to the energy being concentrated in several small regions. Part 2 grows larger than the others, to achieve comparable
energy. (c) MDL-based segmentation.

snake segmentation algorithm seeks to minimize the global
energy.

B. Snake Initialization

A snake in the form of a square grid placed on the object
performs the initial segmentation, dividing it into a number of
parts. (Other grids could serve as well, triangular, etc.) Fig. 5(b)

displays the initial segmentation of object Cylinder in Fig. 5(a)
into 12 parts (each part shown with a different gray value).

Next, a minimum of the energy is found through a greedy
search. The search resembles the segmentation algorithm de-
scribed in [25] through region competition and merging based
on snakes which guarantee closed parts, employing statistics
inside the region rather than just information along the region
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TABLE IV
COMPARISON BETWEEN THE TRACKING ALGORITHMS

boundary, and global optimization techniques based on an en-
ergy function.

C. Minimization of the Snake Energy

The experimental results shown in Section III-B indicate
that a “good” segmentation for tracking should have parts with
high values of “energy” as defined in (7) and hence a low
value for the external force (11) term contributing to the snake
energy function (9). However, simply minimizing the snake
energy function (9) may lead to a segmentation composed of
just a few large parts, or, in extreme cases, to a trivial solution
with just one part. Clearly these solutions are undesirable in
terms of robustness to occlusion. Moreover, as was the case
in Section III-B, consistent experience shows that once the
energy components of a part rise above a given threshold, little
improvement in tracking performance is obtained by increasing
them even further. Rather, performance can be improved by
attempting to increase the energy components of the remaining
parts above that threshold, leading to a segmentation that has
more parts, with comparable energy, rather than one having a
bimodal energy distribution, with a few high energy parts and
several low energy ones.

Finally, note that since the snake energy function (9) is non-
convex, a minimization algorithm may get trapped in a local
minimum. To take these effects into account, the external force

(11) will be redefined by introducing a filtered version of the
energy of the parts

(12)

where

(13)

and

(14)

The parameter controls the shape of the filter. At the
beginning of the optimization, is set to 0 to allow “weaker”
(low trackability index) parts to grow rather than to merge with
“stronger” (high trackability) ones. After the snake reaches
an equilibrium point, is increased and the process repeated,
achieving an effect similar to simulated annealing [5], that
minimizes the probability of converging to a local minimum. In
the limit as , the resulting parts have an energy above

(since for ). This process is
illustrated in Fig. 6, showing several stages of the segmentation
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Fig. 11. (a) Parts for the bus shown in Figs. 1 using the proposed segmentation algorithm. (b) Tracking the bus using the parts shown in (a).

Fig. 12. Compact sequence: (a) Frame 0 of the sequence. (b) Parts obtained with the proposed segmentation algorithm. (c) The benchmark algorithm is not
affected by the mild occlusion caused by a traffic sign but it starts losing track of the car by Frame 17 when about 30% of the car is out of the field of view.
(c) Tracking with homogeneous parts leads to poor results by Frame 8 due to mild occlusion by a traffic sign. (d) Tracking the parts shown in (b) is successful
throughout the entire sequence until the car is last visible in Frame 28 with about 90% of it out of the field of view.

algorithm. Here we used the values , giving
equal weight to the eight energy components.

The final segmentation is shown in Fig. 7. Since most of the
texture content is concentrated in the upper portion of the object,
the segmentation distributes this portion amongst the three parts.
Although Part 3 grows much larger than Part 2, as far as energy
is concerned, they have about the same amount since the upper
portion of the object is divided about evenly between them. The
lack of texture and gradient content on the lower portion of the
object forces the two parts which share it to be elongated. An al-
ternative partition might have created an additional bottom part
taken from Part 2 and Part 3 (for a total of four). However, this
part would have virtually no energy, thus creating a bad tracking
part. As we will show in Section V, an abundance of bad parts
proves as detrimental to the PRA as a lack of good parts.

D. Segmentation Results

Figs. 8–10 illustrate the use of the proposed segmentation
with three toy objects, selected to exhibit both large regions with
homogeneous texture as well as regions with contrast texture.
For comparison purposes we also include the results of an MDL-
based segmentation [12].

It is worth noticing that in all cases the proposed segmentation
leads to parts that are more compact than those resulting from

the homogeneous one. In addition, in those cases were the en-
ergy is evenly distributed through the object, it results in fewer
parts.

V. TRACKING RESULTS

In this section we present a series of experiments comparing
tracking using the proposed parts against homogeneous parts
obtained using a Mininum Description Length based algorithm
[12]. For comparison purposes, we also include the results ob-
tained using the Benchmark Algorithm to track the object as a
whole.

These experiments were performed using six toy objects, sup-
plemented with ten objects taken from real tracking sequences.
As in Section III, for each of the 16 test objects we performed
480 tests:

1) 16 “challenging” poses of Table II;
2) five cluttered backgrounds (similar to Fig. 3(b), con-

taining objects with similar texture to the test objects,
and the scene corrupted by zero-mean additive white
Gaussian noise with variance 5);

3) six translations of 50% occlusion (measured in the
number of prototype pixels).

The resulting scores, ranging from zero to 2784, are shown in
Table IV.
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Fig. 13. Cadillac sequence: (a) Frame 0. (b) Parts obtained with the proposed segmentation algorithm. (c) The benchmark algorithm begins to lose track of the
object in Frame 3, as the target starts moving out of the field of view. (d) Tracking with homogeneous parts loses track by Frame 2, due to a bad part. (e) Tracking
the parts shown in (a) the PRA is able to track the object through Frame 10, in spite of the large perspective distortion and lighting changes.

Fig. 14. Car sequence: (a) Frame 0. (b) Set of parts obtained with the proposed segmentation algorithm. (c) The robust estimator used by the benchmark algorithm
is effective in determining occluding pixels. (d) Tracking using homogeneous parts fails after Frame 2. (e) Tracking using the segmentation shown in (b) is successful
until the object is last visible in Frame 20.
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Fig. 15. Car_2 sequence: (a) Frame 0. (b) Proposed segmentation of the target. (c) Tracking with the benchmark algorithm looses track of the target by Frame 15 at
50% occlusion. (d) Tracking using homogeneous parts starts to fail at Frame 17 due to severe occlusion. (e) Tracking using the proposed segmentation is successful
throught the entire sequence until Frame 18 with 90% occlusion.

The PRA with the proposed parts (c) outperforms both the
Benchmark algorithm (a) and the PRA with homogeneous parts
(b) for each of the test objects.

• (c) outperforms (a) by up to 208% (Cadillac), and on av-
erage by 101%.

• (c) outperforms (b) by up 172% (Car_3), and on average
by 72%.

It is worth noticing that (a) outperforms (b) in some occasions,
illustrating again that using an homogenous segmentation can
lead to worse results than not using parts at all.

Fig. 11(a) shows the proposed segmentation for the bus in
the sequence of Figs. 1 and 11(b) shows the tracking results
using this segmentation. In this case the algorithm is able to
successfully track the target throughout the entire sequence until
the film ends at about 60% occlusion.

Finally, Figs. 12–16 show experimental results obtained with
other sequences7 . In all cases, (c), (d), and (e) denote tracking
the whole object using the Benchmark Algorithm, tracking
using homogenous parts, and tracking using the proposed
segmentation, respectively.

7Additional experiments, omitted for space reasons, can be obtained con-
tacting the authors.

A. Compact Sequence

Using homogeneous parts leads to poor tracking after
Frame 8: the mild occlusion caused by the traffic sign com-
presses a “bad” part into its unoccluded portion in order to
minimize the error norm, and the object follows. The part
continues to compress the object in the subsequent frames and
eventually loses track of it completely. The traffic sign does not
affect (c) and (e) at all, however by Frame 17, at about 30%
occlusion, (d) has begun to lose track of the object, while (e)
successfully tracks the object throughout the entire sequence
until it is last visible in Frame 28 at about 90% occlusion.

B. Cadillac Sequence

(c) begins to lose track of the object in Frame 3 as occlusion
sets in. (d) begins to lose track of the object in Frame 2 due to a
bad part, while (e) tracks the object through Frame 10, in spite
of the large perspective distortion and lighting changes from the
prototype in Frame 0.

C. Car Sequence

(d) begins to track poorly in Frame 2: one of its parts corre-
sponding to the lower side of the object (the dark strip) contains
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Fig. 16. Wagon_2 sequence: sequence: (a) Frame 0. (b) Proposed segmentation of the target. (c) Tracking with the benchmark algorithm begins to fail by Frame 3
as the target leaves the field of view. (d) Tracking using homogeneous parts starts to fail at Frame 6 at about 40% occlusion. (e) Tracking using the parts shown in
(b) successfully tracks the target throughout the sequence until Frame 15 at about 90% occlusion.

virtually no gradient content. As the object advances through the
sequence, the part cannot provide information on which direc-
tion to move. By remaining static it finds a deceptively low error
norm in a local minimum: the static, compressed strip looks the
same as the tail portion of the dynamic strip. The strip lures the
other parts into its transformation and continues to compress the
object in the subsequent frames and eventually loses track of it
completely. This demonstrates that the presence of “bad” parts
negatively influences a segmentation as much as the absence of
good parts. (c) and (e) however track the object throughout the
entire sequence until it is last visible in Frame 20 as it disappears
into the trees at about 80% occlusion. The robust estimator in (c)
reliably determines the occluded pixels.

D. Car_2 Sequence

(c) has already lost track of the object by Frame 15 at about
50% occlusion. (d) tracks the object through Frame 17, but
loses it due to severe occlusion. (e) however tracks the object
throughout the entire sequence until it is last visible in Frame
18 at about 90% occlusion. In addition (e) offers a higher
quality of match than (d), as evident in Frame 3 and Frame 15,
and especially in Frame 8.

E. Wagon_2 Sequence

By Frame 6 at about 40% occlusion (d) is beginning to lose
track of the object while (c) has already lost it. (d) loses the
object completely in Frame 8. On the other hand, (e) tracks the
object throughout the entire sequence until it is last visible in
Frame 15 at about 90% occlusion, despite the large perspective
distortion and lighting changes from the prototype in Frame 0.

VI. CONCLUSIONS

Many tracking algorithms used widely in the computer vi-
sion community deal with occlusion through a robust estimator.
Such estimators fare well with moderate occlusion, but break
down at above 30% occlusion level. To expand this range, in
[6] we have proposed to track, in addition to the object, a set of
parts. Intuitively, this idea exploits the fact that occlusion tends
to be localized, and thus reliable tracking can be accomplished
as long as a few of these parts exhibit less than 30% occlusion.
However, as illustrated with several examples, successful ap-
plication of this idea requires a suitable object segmentation.
In this paper we have identified desirable properties (from a
robust tracking standpoint) for the parts and proposed an en-
ergy function to obtain these parts by solving an optimization
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problem. Experimental results with both synthetic and real im-
ages show that, when used in a context of a tracking algorithm,
these parts outperform those obtained using traditional segmen-
tation methods.
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