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Abstract 
This paper proposes a method for obstacle detection 

on a runway for autonomous navigation and landing 
of an aircraft. Detection is done in presence of ex- 
traneous features such as tire-marks. Suitable features 
are extracted from the image and warping using ap- 
proximately known camera and plane parameters is 
performed in order to compensate ego-motion as far 
as possible. Residual disparity after warping is esti- 
mated using an optical p o w  algorithm. Features are 
tracked from frame to frame so as t o  obtain more reli- 
able estimates of their motion. Corrections are made 
to motion parameters with the residual disparities us- 
ing a robust method, and features having large residual 
disparities are signaled as obstacles. Sensitivity analy- 
sis of the procedure is also studied. A Bayesian frame- 
work is used at every stage so that the confidence in 
the estimates can be determined. 

1 Introduction 
The ability of automatically detecting stationary 

and/or moving obstacles is essential for autonomous 
navigation and landing of an aircraft. The existing 
methods for this task can be classified as either feature 
based or optical flow based. 

In the feature based methods, significant features 
are detected in the images and matched from one 
frame to another. An example of this approach is 
the method proposed by Sridhar et al. [6] to  detect 
and track stationary obstacles on a runway. In this 
method, features are matched in adjacent frames us- 
ing normalized correlation. A Kalman filter is then 
used to track the features in subsequent frames and to  
produce the range map used to detect the obstacles. 

In the flow based methods, an optical flow field is 
obtained for the entire image. Using the optical flow 
and the information about the motion of camera, ob- 
stacles are detected. For example, in the method pro- 
posed by Sull et al. [7], the runway is modeled as a pla- 
nar surface and an initial model flow field is computed 
using the data from the inertial navigation unit (INU). 
Two image frames are warped from one to the other 
using the given motion and plane parameters. This 
warping compensates the ego-motion of the features 
which are stationary and are located on the runway 
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plane as far as the accuracy of these parameters per- 
mit. The residual optical flow is estimated and places 
where this is greater than a threshold are considered 
for obstacle detection. The residual optical flow at 
the remaining places is assumed to be due to  inaccu- 
racy of the model flow field, and is used to  improve 
the model accuracy. Using the new model, warping is 
redone, and places where there is significant disparity 
are signaled as obstacles. This procedure is capable 
of detecting stationary obstacles located at a height 
above the runway plane, or moving obstacles. Extra- 
neous features such as tire-marks are also separated. 

In this paper, we present a new method that com- 
bines the advantages of the feature based and the 
flow based methods. The proposed method resembles 
Sull's approach [7] in that warping is used to  compen- 
sate the ego-motion of the camera. However, instead 
of finding optical flow over the entire image, features 
are selected from the image and the optical flow is es- 
timated only at these features. This results in speed 
up of computation and ease of systematic tracking of 
features. Furthermore, a statistical framework is used 
at every step to  obtain not only reliable estimates of 
parameters, but also an estimate of their covariance. 

2 System Overview 
The system block diagram is shown in Fig. 1. The 

input to  the system is a sequence of images cap- 
tured from the camera onboard, position and veloc- 
ity (both linear and angular) of the aircraft obtained 
from sources such as the GPS and INS, referred here 
as the Inertial Navigation Unit (INU), and knowledge 
about the parameters of the runway plane. Using 
these parameters, a transformation to map features 
from one frame to another, known as warping, is ob- 
tained. Significant features are detected in the image 
and warped using this transformation. Optical flow, 
showing the motion of features from frame to frame 
is obtained from the warped features. Due to  warp- 
ing, the ego-motion of the features on the runway is 
compensated as much as possible and residual flow 
is obtained. This makes i t  easier to  detect indepen- 
dently moving obstacles as well as the obstacles with 
height. Once the optical flow is obtained, features are 
tracked from one frame to  the other, and velocities of 
the features are smoothed using moving average filter- 
ing. The smoothed estimate is added to the warped 
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features, so that in the subsequent frames, even this 
flow is compensated. The estimated residual velocity 
can then be thresholded in order to check which fea- 
tures are moving or are at a height above the runway 
plane. Residual velocities of the remaining features 
can be used to  correct the inaccuracies of the warping 
parameters. 

INU Image Sequence 

Calculate 
Features 

Features 

Warped features 

Estimator 

Estimated Velocity 

~ 

Figure 1: System block diagram. 

3 Feature Detection 
In the areas of the image where the variance is low, 

the spatial gradients are also small, and optical flow 
cannot be computed reliably. Also, due to  the aper- 
ture effect, full optical flow is unreliable not only in 
smooth regions, but also in .regions where the inten- 
sity varies only along one direction. Thus, only fea- 
tures where there is a significant intensity gradient in 
two perpendicular directions are reliable for determi- 
nation of full optical flow. Corners satisfy the above 
condition and are therefore good candidates to use as 
features. The SUSAN Corner detector [5] developed 
by Smith and Brady is used to find corner-like features 
in the image. 

4 Warping 
The features found above are used to  detect ob- 

stacles. However, due to  motion of the camera, even 
extraneous features undergo movement from frame to  
frame. Furthermore, if the range of the feature is un- 
known, the motion that the feature undergoes cannot 
be uniquely defined. Hence, features are first assumed 
to be stationary and on the runway plane, so that their 
range is unique. The corresponding position of the fea- 
ture in another frame can then be calculated using the 
information about the motion of the camera and the 
equation of the runway plane. Moving obstacles and 
obstacles at height do not satisfy this constraint,, and 

therefore will have different disparities from what is 
predicted by this method. 

Assuming the origin at the center of perspectivity, 
the X-axis as the camera axis and the image plane 
parallel to  the Y-Z plane, the perspective projection 
of the point has image coordinates ( U ,  u ) ~  given by 

fY f z  U = -  
2 

where f is the focal length parameter of the camera. 
Consider that the camera undergoes a rotation R 

and a translation s so that the coordinates of a point 
changes from r = (2, y, z ) ~  in the first frame to r’ = 
(z’, y’, in the second frame with 

r ’ =  R r + s  (2) 

(3) 

Let the runway plane be modeled by the equation: 

T n r = n1z + nay + 123% = 1 

where n = ( n l , n ~ , n 3 ) ~  is the normal vector of the 
runway plane in the reference frame of the first posi- 
tion. Then, the mapping of the image features on the 
runway, from the first frame to  the second, is given by 
the warping matrix [7]: 

A = R + s ~ ~  (4) 
Thus, the image coordinates ( u , v )  of a point on the 
runway plane are mapped to  new image coordinates 
(U’, w’) according to  the following equations: 

Using these equations, features on the runway plane 
can be warped from one frame to  another. 

5 Determination of Optical Flow 
Discrimination between obstacles and extraneous 

features on the runway (like tire-marks) can be done 
by computin the optical flow of the features. Bar- 
ron et al. [lf have implemented and evaluated sev- 
eral optical flow algorithms in the literature. Accord- 
ing to their survey, the method by Lucas and Kanade p1 P rovides estimation to  subpixel accuracy and per- 
orms most consistently and reliably over all their test 

images. Due to these reasons, a modification of this 
method by Simoncelli et al. [4] that uses a statisti- 
cal model to  account for noise is used. This method 
not only provides the estimates of optical flow, but 
also their covariance. The algorithm requires at least 
five frames, and optical flow is computed in the cen- 
tral frame. Time and space gradients are found at 
positions of interest and these are used in order to  
estimate the optical flow. 

In our method, local regions around the features 
which are used to  compute the optical flow are warped 
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in all the frames around the center frame. In this 
manner, the ego-motion of the camera is compensated 
as much as possible, only the residual disparities are 
obtained, and warping of the whole image is avoided. 

Consider a point in frame t at pixel w = ( U ,  w). The 
image pixel value at this point is denoted by F(t ,  U ,  U). 
Let w(t) = (u ( t ) , v ( t ) )  be a feature in frame t .  The 
warping of this feature in any frame t’ is denoted by 

w(t’) = (u(t ’) ,  w(t’)) = warp(w(t)) (6) 

The interpolated pixel value at the position w(t’) is 
mapped to  the position w(t) using a bilinear transfor- 
mation, since w(t’) is not an integer in general. Gra- 
dients are computed using these interpolated values. 

Let the space gradient vector be denoted by Fs = 
(F,, Fti)T, the time gradient by Ft and the optical flow 
vector by d = (d,,d,)*. Assuming that the inten- 
sity of a point remains approximately constant for the 
short duration of few frames, the time and space gra- 
dients satisfy the gradient constraint equation: 

FFd+ Ft = 0 (7) 

However, in order to account for inaccuracies, the 
following probabilistic model is used to  estimate the 
optical flow. [4]: 

FF(d - 771) + Ft = vz (8) 

where and i72 are independent zero mean Gaussian 
noises with covariances given by u:I2 and 6;. The 
noise accounts for errors due to the violation of 
planarity assumptions and the noise q, accounts for 
errors in the derivative computations. 

The full optical flow is determined making the as- 
sumption that the flow d is locally constant over a 
small region around the feature. The time and space 
gradients are then determined in a window around the 
feature point. 

The maximum likelihood estimate of the optical 
flow is given by its mean ,ud and covariance E d  as 
follows: 

(9) 

where 

M = F,(U’, w1)u--2(u’, 0’)Fs(U/, w’)T 
U1,ti’ 

b = F,(u’, w’)u-’(u’, d ) F t ( d ,  w’) 
u ’ , v ‘  

6 2  = ‘T1211Fs(U’, 4112 + 0; (10) 

E, is the prior covariance of the flow and (U’, 0’) lies 
in the neighborhood of ( U ,  w). 

6 Tracking 
Once the features are detected in the initial frame, 

they are tracked over frames. The estimated resid- 
ual flow is first added to  the feature in order to  ob- 
tain the expected position of the feature in the next 

frame. Its location is then warped on to  the next 
frame. Hence, if the location of a feature in frame 
t is w(t) = ( ~ ( t ) ,  the tracked location is given 
by: 

w(t + 1) = warp(w(t) + d ( t ) )  (11) 
However, instead of using the raw values of optical 

flow, a moving average of the residual flow is taken. At 
each frame, the computed residual flow is integrated 
with the moving average. If d 8 ( t )  is the smoothed 
estimate of flow in frame t and d ( t  + 1) is the raw flow 
in frame t + 1, the smoothed flow in frame t + 1 is 
given by: 

ds(t + 1) = ds(t )  + h(t)(d(t + 1) - d s ( t ) )  
1 

min(t, 5) 
k ( t )  = 

In this manner, a smoothed estimate of residual flow 
is obtained. This estimate is added to the warped 
features, so that in the subsequent frames, even this 
flow can be compensated. 

7 Obstacle Detection 
The residual flow nearly compensates the ego- 

motion for the points on the runway plane and can 
be used to  detect moving obstacles, as well as ob- 
stacles which are located above or below the runway 
plane. However, the accuracy of the parameters used 
for warping is limited by the accuracy with which 
the rotation, translation and plane parameters are ob- 
tained. Taking this into consideration, two approaches 
can be taken: 

1. 

2. 

7.1 

Calculate the sensitivity of the warping to  the ac- 
curacy of the INS and plane parameters. When- 
ever the residual flow is above the expected devi- 
ation, signal an obstacle. 

Use the residual flow in order to  improve the esti- 
mate of the warping matrix A. However, a robust 
method must be used so as to reject the outliers 
in estimating the parameters. 

Sensitivity Analysis 
In order to  relate small perturbations in one vec- 

tor variable to  corresponding perturbations in an- 
other variable, one can use the Jacobian matrix. Let 
y = flz) be an arbitrary vector function of a vector 
variab e x. The Jacobian of y w.r.t. x is denoted 
here by J,I.. Element ( i ,  j )  of this matrix is 8yi/8xJ. 
The chain rule of derivatives can be easily applied to 
Jacobians using matrix product. 

The warping matrix A depends on the camera 
translation s, rotation R and the plane normal n. In- 
cremental changes in these can be expressed as the 
linear displacement vector As = (Asl ,  ASZ, Asg)T, 
angular displacement vector A$ = (Ad,, A&, 
and change in normal vector An = (Anl, An,, A r ~ 3 ) ~ .  
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Let these parameters be stacked into a single vector 
Ap given by: 

Ap = ( % )  An (14) 

and let the matrix A be flattened to  give a column 
vector 

U = ( Ai1 A12 ... A33 )T (15) 

Let the standard deviation in each of the parameters 
in Ap be given. The covariance matrix formed by 
these is denoted by C . Then, the covariance of d is 
given, in terms of E,, %y the equation : 

A translating object on the ground is equivalent to  
a translation of the camera in the opposite direction. 
Hence, the residual disparity induced by the move- 
ment can be estimated by: 

d = J d l p A p  (18) 

d = J d l s S b  (19) 

Since only translation is considered, we can write: 

where sb = (sbl, S b 2 ,  Sb3)T is the displacement of the 
moving obstacle in one frame. 

Consider for example, an obstacle crossing the run- 
way. Then, s b l ,  sb3 are nearly zero and the disparity 
in this case is given by: 

In fact, the disparity will mostly be in the horizontal 
(U) direction. Hence, comparing E,, (element ( 1 , l )  of 
E) with d:, one can get the threshold velocity which 
can be detected at a given position in the image, 

7.2 Improvement of plane parameters 
Since the obtained optical flows are the residual 

flows after warping using the given A parameters, they 
represent the error in the flow caused by the error in 
the A parameters. A Bayesian method can be used 
to improve the accuracy of A by applying an iterated 
least squared algorithm. 

First note that in equation (5 the warping does not 

A actually has 8 instead of 9 independent parameters. 
Hence, in order to  avoid singularities in the covariance 
matrices, one can scale U by setting its first element to 
1 and scaling the rest of the elements appropriately. 
The resulting vector can be denoted by: 

change if the matrix A is scale h by a constant. Thus, 

1 
A11 

U =  -( A12 A13 ... A33 )T (22) 

The Jacobian of the flow w.r.t. this vector is given 
by J d l d .  Since d is invariant to  the scaling of a, the Ja- 
cobian can be found by extracting the columns of Jdla 
except for the first one, corresponding to A l l .  The U 
vector can then be improved by adding an increment 
of 

AU = (J$&CilJdl& + C;:)-lJT dlB C-ld (23) 
where E d  is the covariance of the flow d and Cao is the 
prior covariance of a, given by: 

A new disparity can be found using the modified 
A and the procedure can be repeated until a satis- 
factory accuracy is obtained. Also, the inverse of the 
a-posteriori covariance of A is given by: 

= J z , C d J d l a  + (25) 

8 Constraint Region Filtering to Sep- 
arate Moving Objects 

The above method detects two kinds of obstacles: 
moving obstacles as well as stationary obstacles at a 
height above the ground. In order to  distinguish be- 
tween the two, we use the approach proposed in Tang 
and Kasturi [8] based on the Nelson's constraint [3]. 
The main idea in this approach is that in a rigid en- 
vironment, the projected 3-D velocity of any point in 
the image is constrained to  lie on a 1-D locus in the 
optical flow space depending only on the camera mo- 
tion, if the optical flow is exact, or in a region around 
this locus if the optical flow and/or camera motion 
parameters are inaccurate. 

In order to  apply the constraint, the residual flow is 
taken and the deviation Ad from the constraint locus 
is found. The covariance E d  of the flow is taken as 
the sum of the covariances due to  the error in estima- 
tion, and the covariance due to  error in the camera 
parameters. Then, the weighted Mahalanobis norm 
Adz& is thresholded in order to locate potential 
moving obstacles. 

The minimum velocity of the moving object can be 
determined by solving the following equations 

where s b  is the velocity vector of the object moving 
on the ground, perpendicular to  the normal vector. 
Note that the actual velocity could be greater than 
this value, since we have only found the minimum 
deviation from the constraint, but the actual object 
could be at a different range. 

Also, it should be noted that only the obstacles 
which have a cross component of velocity can be de- 
tected. Moving obstacles moving in the same direction 
as the aircraft, i.e. parallel to the runway cannot be 
distinguished from a stationary obstacle at a height, 
due to the inherent ambiguity in monocular image se- 
quences. 
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9 Observations and results (a) (b) - _. ~ 

The method described above was applied to video 
image sequences captured from a helicopter, and sup- 
plied by NASA. Optical flow estimation was first 
done using the minimum number (five) of frames. In 
Fig. 2(a), frame number 50 of the image sequence of a 
truck crossing the runway is shown. It is seen that the 
image contains numerous extraneous features such as 
tire-marks in addition to the moving truck, making the 
task more difficult. The raw feature flows are shown 
in Fig. 2(b). The plane parameters were estimated us- 
ing these flows and the flows were corrected using the 
improved parameters. The resulting flows are shown 
in Fig. 2(c). In both figures, the estimated covariance 
ellipses are also shown, magnified 5 times for clarity 
while the flow vectors are magnified 25 times. The 
feature flows were then thresholded using the Maha- 
lanobis norm w.r.t their covariances. The truck was 
easily detected as shown in Fig. 2(d). 

To verify the tracking of features, fifteen frames 
were used, with frame 50 as the center frame. A 
zoomed part of the original image is shown in Fig. 3(a). 
The tracked features and their smoothed velocity es- 
timates are shown in Fig. 3(b) and Fig. 3(c), respec- 
tively. The covariance ellipses are also shown and the 
magnifications are the same as in the previous case. 
The results after thresholding in a similar manner are 
shown in Fig. 3(d). 

Figure 2: Detection of obstacle using minimum num- 
ber of frames: (a) Original image (b) Estimates of 
residual optical flows (unsmoothed) with covariance 
ellipses. (c Estimates after improving warping pa- 
rameters (d 1 Detection of moving truck. 

Nelson’s constraint was applied on the smoothed 
velocity estimates of Fig. 3. The shortest distance 
measure Ad, which show the deviation from Nelson’s 

(c> (4 
Figure 3: Detection and tracking of obstacles us- 
in large number of frames: (a) Original image 
(b7 aacked  features in the sequence of images (c) Esti- 
mate of residual feature velocities (smoothed) (d) De- 
tection of moving truck. 

- 
constraint are shown in Fig. 4(a), along with the co- 
variance ellipses. Thresholding was done on these 
showing the detected truck in Fig. 4(b). 

A study of the propagation of uncertainty from mc- 
tion and plane parameters to the optical flow was also 
performed. In our experiments, it was observed that 
the range of points on the runway plane changed more 
significantly in the vertical (w) direction in the image. 
The uncertainty of the optical flow is plotted against 
the row value, (with column value constant U = 256) 
in Fig. 5(a>. For comparison purposes, the theoretical 
flow induced by a moving obstacle is also plotted. The 
obstacle can move in the cross direction] or parallel di- 
rection. The flow induced by each of these movements 
at the rate of 1 f t l f rame is also plotted against the 
row value in in Fig. 5(b) and (c). 

10 Summary and Future Work 
In this paper, we proposed a method for detection 

and tracking of obstacles on a runway for autonomous 
navigation and landing of aircrafts. Significant fea- 
tures were detected on the runway and residual op- 
tical flow was obtained. Warping was performed so 
that the ego-motion of the features was compensated 
ils much as possible. However, due to the inaccuracy of 
the given parameters] full compensation was not pos- 
sible. Hence, a sensitivity analysis of the warping to 
the variation of the given parameters was studied. A 
method to improve the accuracy of the warping using 
the residual disparities was also proposed. Applica- 
tion of this method to a runway image sequence was 
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Figure 4: Application of Nelson's constraint : (a) 
Shortest distance measure Ad along with estimated 

straint. (b) Thresholding of the shortest distance. 
2;o 300 350 4wl 450 500 

col covariance showing the deviation from Nelson's con- 

Truck is detected, but there are false alarms. (4 
moviwobiaflowd-ufor v _ x . v y . v ~ ~  = 1 Wlrame 

demonstrated and it was shown that obstacles can be 
separated from numerous extraneous features such as 
tire-marks. 

Future work includes improvement and testing of 
each of the above stages for different image sequences 
under various conditions. Also, sensor fusion meth- 
ods to combine the information available from differ- 
ent sources such as the GPS, the INS, and landmarks 
like lines and beacons on the runway, to obtain better 
estimates are being explored. 
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Figure 5 :  Sensitivity Analysis of flow to  camera and 
object motion Parameters: (a) Plot of standard devia- 
tion of error in U and v directions against the v values 
for U = 256. (b),(c) Plots of the optical flow in U 
and v directions induced by the movement of obstacle 
in 2, U, 2 directions 21 flow. (d) Plot of threshold ve- 
locity of an Object against the V image coordinate for 
different values of the uncertainty in flow 

173 


