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Abstract—A computer vision-based system using images from
an airborne aircraft can increase flight safety by aiding the pilot
to detect obstacles in the flight path so as to avoid mid-air col-
lisions. Such a system fits naturally with the development of an
external vision system proposed by NASA for use in high-speed
civil transport aircraft with limited cockpit visibility. The detection
techniques should provide high detection probability for obstacles
that can vary from subpixels to a few pixels in size, while main-
taining a low false alarm probability in the presence of noise and
severe background clutter. Furthermore, the detection algorithms
must be able to report such obstacles in a timely fashion, imposing
severe constraints on their execution time. For this purpose, we
have implemented a number of algorithms to detect airborne ob-
stacles using image sequences obtained from a camera mounted on
an aircraft. This paper describes the methodology used for char-
acterizing the performance of the dynamic programming obstacle
detection algorithm and its special cases. The experimental results
were obtained using several types of image sequences, with simu-
lated and real backgrounds. The approximate performance of the
algorithm is also theoretically derived using principles of statistical
analysis in terms of the signal-to-noise ration (SNR) required for
the probabilities of false alarms and misdetections to be lower than
prespecified values. The theoretical and experimental performance
are compared in terms of the required SNR.

Index Terms—Autonomous navigation, dynamic programming,
obstacle detection, performance characterization, target detection,
.

I. INTRODUCTION

CONTINUED advances in the fields of image processing
and computer vision have raised interest in their suitability

to aid pilots to detect possible obstacles in their flight paths. For
the last few years, NASA has been exploring the use of image
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sequences for detecting obstacles in the flight path of an aircraft.
In the design of a high-speed civil transport (HSCT) aircraft
with a limited cockpit visibility, NASA has proposed an external
visibility system (XVS) in which high-resolution video images
would be obtained using cameras mounted on the aircraft. These
images can be used to detect obstacles in the flight path to warn
the pilots and avoid collisions.

Algorithms for the detection of airborne objects from images
are abundant in the published literature. Nishiguchi et al. [10]
proposed the use of a recursive algorithm to integrate multiple
frames while accounting for small object motion. A dynamic
programming approach was used by Barniv [2] and Arnold et al.
[1] to detect moving objects of small size.

Although the algorithms claim good performance, most of
them have been tested only under very restrictive image input
sets. A common problem that researchers in computer vision
must face is that algorithms often fail to perform as required
when they are presented with inputs different from the ones that
had been previously tested with. Most researchers circumvent
this problem by tuning up parameters in some ad-hoc manner
or by designing yet another algorithm tailored for the particular
application. Unfortunately, this approach requires a very expen-
sive trial and error process that needs to be repeated whenever
the problem specifications or the inputs change.

In this paper, we present the methodology we have used for
systematic characterization of the performance and limitations
of obstacle detection algorithms [4], [9]. In particular, we have
characterized the performance of the dynamic programming
target detection algorithm [1], [2] and compared its performance
with temporal averaging and single frame thresholding, which
can be expressed as special cases of the dynamic programming
algorithm. The performance is characterized experimentally by
modeling the image degradation and applying the algorithms to
simulated and real image sequences. A methodology adapted
from psychology literature is used as in [8] to condense the
information obtained from the performance characterization
curves. Using statistical methods as in [11], the theoretical
performance of the detection algorithms is derived in terms of
the signal-to-noise ration (SNR) required to limit the rate of
false alarms and misdetections.

II. PERFORMANCE CHARACTERIZATION METHODOLOGY

Consider a detection algorithm that must report whether a
given image has a target or not. Typically, the algorithm would
compute some measure of evidence of target presence and com-
pare it to some given threshold value. Whenever the evidence
measure is greater than the given threshold, a target would be
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Fig. 1. Steps for performance characterization. (a) Step 1: Obtain the
frequency distributions of the evidence measure for images with and without
target. (b) Step 2: Obtain the ROC. (c) Step 3: Determine the optimal operating
point using either the expected cost or the probability of detection given the
probability of false alarm. (d) Step 4: Plot the threshold value corresponding to
the optimal operating point versus a variable of interest.

reported. The performance of the algorithm is usually character-
ized by the “receiver operating curve” (ROC), where the prob-
ability of misdetection is plotted versus the probability of false
alarm as some tuning parameter is changed. The performance of
the algorithm is affected by several factors, such as image con-
trast, target size, complexity of the background, etc. The effect
of variations of these variables on the overall performance can
be measured through the use of equivalent effects of some crit-
ical signal variable by following the methodology proposed by
Kanungo et al. [8] as summarized in the four steps described as
follows.

1) Obtain evidence distributions: The first step consists
on estimating distributions of evidence measures, one
for images with target and another for images without
target, as illustrated in Fig. 1(a). This estimation is done
nonparametrically by randomly presenting the algorithm
with images of both types and recording the frequency of
the evidence measure values reported by the algorithm,
using a histogram.

2) Obtain ROCs: The second step consists on constructing
an ROC as the one shown in Fig. 1(b) by varying the
threshold used by the algorithm to compare against the
computed evidence measure. False alarms occur when a
pixel in the given image does not contain a target, but
the evidence measure is greater than the threshold being
used. Misdetections occur when the given image con-
tains a target, but the evidence measure is less than the
threshold. The probabilities of false alarms and misde-
tections can be approximated by their frequency ratios

-

where and denote the hypotheses corresponding
to the absence and presence of a target, respectively.

3) Determining the optimal operating point: The optimal
operating point (or its corresponding threshold value) can
be specified in different ways, depending on how much
prior knowledge is available. If the prior probabilities and
costs are known, the optimal operating point can be de-
fined as the one minimizing the expected cost. Let ,

, , and be the costs of a false alarm, a mis-
detection, a correct detection, and a correct rejection, re-
spectively. The expected cost is then given by

(1)

The optimal operating point is found by minimizing
with respect to the threshold to be used by the al-

gorithm. In the most likely case when the costs are diffi-
cult to set, an alternative way to define the required oper-
ating point is to use the Neyman–Pearson criterion—i.e.,
to maximize the probability of detection for a given prob-
ability of false alarm.

Independently of which definition is used, the optimal
operating point depends on the SNR in the input image.
For example, increasing the target contrast results in an
increase of the SNR and, hopefully, in an improvement
of the algorithm performance for a given threshold value.
The optimal operating points for different SNRs can be
found by repeating steps 1 and 2 for the corresponding
SNR values and determining the optimal point for each of
the resulting ROCs. Once this is done, a graph of the ex-
pected cost or the probability of detection versus SNR can
be plotted, depending on which definition of operating
point is being used. This is illustrated in Fig. 1(c). Finally,
let and be the SNR and the associated threshold
values for the optimal operating point for a given level
of performance, as shown in the figure. The level of per-
formance is specified by either a desired expected cost
of classification or a desired probability of misdetection,
again, depending on which optimal criterion is used.

4) Analysis with respect to variables of interest: Besides
SNR, other factors affect the algorithm performance
and merit study. Examples are the size of the target,
the amount of target motion on the images, and the
amount and nature of image clutter. In order to study
these effects, steps 1)–3) are repeated for different values
of variables representing these variations. These results
are then summarized in a graph where the threshold
determined in step 3 is plotted against the value of the
variable of interest, as shown in Fig. 1(d). A fairly flat
plot indicates that the effect of the variable being consid-
ered on the optimal operating point of the algorithm is
negligible. On the other hand, a steep plot indicates that
the variable has a high impact on the performance.

It should be noted that a smaller SNR threshold implies
better performance, since weaker targets can be detected with
the same given rates of false alarms and misdetections. Mea-
suring the performance in terms of the SNR threshold makes it
easier to measure and compare the performance of different al-
gorithms, or the same algorithm with different parameters. This
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is because the variables, such as the false alarm and misdetec-
tion rates are eliminated from the curves, making place for other
parameters.

III. DYNAMIC PROGRAMMING ALGORITHM

In the following sections, the performance of the dynamic
programming algorithm will be characterized using the above
methodology. This algorithm performs temporal integration of
the signal strength over a number of image frames, thus in-
creasing the effective SNR.

Before the dynamic programming algorithm can be applied,
preprocessing should be performed on the input images to sup-
press the background. In the case of an image with little or no
clutter, a low-stop filter subtracting from every pixel, the local
average of the neighborhood of that pixel, can be used to this
effect. However, if the background has significant clutter, the
low-stop filter is not as effective removing it. A morphological
filter implemented by subtracting the morphological opening
from the morphological closing of the image is more effective
in removing clutter [3]. A simple measure of clutter that could
be used to decide which filter to apply is the pixel variance in
the neighborhood of each pixel.

To account for the motion of the target, the algorithm dis-
cretizes the velocity space into cells. Temporal integration is
performed separately for each cell, assuming that the target is
moving in that particular direction. Since the velocity of the
target could be arbitrary, the velocity space is discretized
within the range of possible target velocities. A set of inter-
mediate images , each corresponding to a particular velocity

, are created recursively using the following steps.

1) Initialization: For all pixels and all velocities
, set

(2)

2) Recursion: At time , set

(3)

where

3) Termination: At time , take

(4)

where

The maximum operation in the recursion step is performed
using the set , which ensures that the targets with veloci-
ties which do not fall on the grid are not missed. The set of
discretized velocities denoted by determines the range of
target velocities that can be detected by the algorithm. The final
maximum in the termination step combines the targets corre-
sponding to all the velocities. The number of elements in and

are denoted by and , respectively.

In the recursion step, a maximum is taken over pixels. If
these pixels are all noise pixels, they are more likely to give a
false alarm if is large. Thus, the rate of false alarms increases
with . To get better performance, a smallest possible should
be used. The value of has been used in our experiments
corresponding to a 2 2 neighborhood, given by

(5)

This ensures that the targets having fractional velocities are not
missed. The asymmetry in this neighborhood is compensated by
choosing and . For the case
of , and is given by

(6)

The algorithm then detects targets with a maximum velocity of 1
pixel per frame. However, when spatial integration is performed
prior to dynamic programming using image pyramid approach,
targets with larger sizes and velocities can also be detected.

On the other hand, if so that ,
the algorithm reduces to recursive temporal averaging, which
gives the best performance for stationary targets. However,
the performance of temporal averaging sharply degrades if
the target is moving, whereas that of dynamic programming
algorithm does not.

The output of the dynamic programming algorithm is an
image, with large values at positions where the target strength is
high. However, the pixels in the neighborhood of the target will
also have a significantly large value. This can be resolved by
using nonmaximal suppression, where the output is smoothed
using a Gaussian filter of standard deviation 1, and each pixel
which is not a local maximum in its 3 3 region is set to zero.
After this, only the pixels which are local maxima remain.

Fig. 2(a) shows the last image from a sequence of syn-
thetic images containing a single moving target, immersed in
Gaussian noise. Fig. 2(b) shows the target trajectory, with the
blob marking the end. The output of the dynamic program-
ming algorithm before nonmaximal suppression is shown in
Fig. 2(c). It is seen that the target is dilated, i.e., there is a sig-
nificant output not only at the target position, but also around it.
Non-maximal suppression removes this dilation, and the final
output is shown in Fig. 2(d). Notice that there are a number
of potential (false) targets in addition to the actual target, that
might be eliminated by thresholding this image.

IV. EXPERIMENTAL PROTOCOL

In this section, the experimental protocol used to characterize
the performance of the target detection algorithms, is described
in detail. The protocol consists of the following components,
specifying how to

1) generate images of simulated targets;
2) apply the detection algorithm;
3) estimate the rates of false alarms and misdetections

(ROCs) for different sets of parameters;
4) characterize the algorithm performance by condensing

the ROCs into a performance curve.
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Fig. 2. (a) Last image from a sequence of images containing a single moving
target. (b) Trajectory of the target, with the blob marking the end. (c) Output
of the dynamic programming algorithm before nonmaximal suppression. The
target gets dilated. (d) Output of nonmaximal suppression which removes this
dilation. Notice that there are a number of potential (false) targets in addition to
the actual target, that might be eliminated by thresholding this image.

A. Image Generation

In order to characterize the performance of the detection al-
gorithm, it is applied to sequences of synthetic images with and
without targets. While the images with targets are used to esti-
mate the misdetection rate, the images without targets are used
to estimate the false alarm rate. The images can have the fol-
lowing different types of backgrounds.

1) Synthetic noise from camera model: The background is
assumed to have a constant value . The noise is arti-
ficially simulated, using the camera noise model.

2) Real noise from a digital camera: The background im-
ages are taken from a sequence of images obtained from
a digital camera looking at a scene with constant intensity
such as clear sky.

3) Real background from an analog camera: The back-
ground images are obtained using a sequence of images
with significant clutter. The sequence1, which was pro-
vided by NASA, was captured using an analog camera
mounted on a flying aircraft. Fig. 3 shows a typical frame
of this sequence.

1) Generation of Image Sequences: To estimate the number
of false alarms, the background images themselves, without any
addition of targets are used directly. The size of these images is

. For estimation of the rate of misdetections, simu-
lated targets are inserted in the background images generated

1Unfortunately, due to the risks involved while flying near other aircrafts, only
limited data of this type is available.

Fig. 3. Sample image from the real background sequence provided by NASA.
The image sequence was taken from an analog camera mounted on an aircraft.

as described below. For each simulation, a target file is cre-
ated having information on the position, velocity, size, ampli-
tude, and each target to be placed in an image. The image size
is taken as . The number of targets to be inserted in
every image is . The target trajectories are generated in
such a way that the detection of one target does not interfere
with the detection of another. This is accomplished by drawing
a window around each target trajectory. The next generated tra-
jectory is valid only if the window around it does not overlap
with the windows around the previously generated targets. Oth-
erwise, the procedure is repeated by generating another trajec-
tory, until the total number of valid trajectories is .

The velocity of the targets is uniformly distributed
so that and . The
position of the targets is specified for the last frame—i.e., when
the detection is completed. The position of the target in other
frames is given by , where is the
time-interval between the given frame and the last frame.

A target can be a point target, or have a specified height and
width. The size of the target is given by . The target
amplitude is given by . For point targets, the amplitude cor-
responds to the contrast of the pixel it occupies, with respect to
the background. However, for an extended target, the contrasts
of all the occupied pixels are given by the product of the target
amplitude and the fraction of the area in the respective pixel that
is covered by the target.

Fig. 4(a) shows the trajectories of simulated targets to be
added to an image, and Fig. 4(b) shows a zoomed part on a
portion of the image. The end of the trajectories are marked by
blobs. The black box around the target denotes the region where
another target cannot be present, to reduce the interference be-
tween the targets.

Once the file describing the targets is created, an image se-
quence of frames is generated. For each frame, the posi-
tion of the targets are calculated, and the targets are inserted ac-
cordingly. For point targets, the amplitude is added to the back-
ground image in the target position pixel. For extended targets
occupying a number of pixels (fully or partially), the product of
the amplitude and the fractional occupancy is added to the back-
ground image at that pixel.

2) Addition of Noise: Two types of camera noise [7], [9],
the fixed-pattern noise (FPN) and the temporal noise, are added
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Fig. 4. Detection using dynamic programming. (a) Simulated targets
trajectories. There are 200 targets, and the image size is 960� 960. The end of
the trajectory is marked by a blob. The targets are separated so that there the
interference between them is reduced. The black box around the target denotes
the region where another target cannot be present. (b) Zoomed part of the target
trajectory image. (c) Dynamic programming output of a typical experiment
(before nonmaximal suppression). (d) Zoomed part of the output. (e) Dynamic
programming output of the same experiment without adding targets—i.e., false
alarms. (f) Zoomed part of the output.

to the sequences created using synthetic backgrounds. FPN has
two components, additive, and multiplicative. The parameters
of this noise change from pixel to pixel, but do not change with
time. The parameter values for each pixel are determined a priori
using the camera, and stored as images. On the other hand, the
temporal noise is completely random, and is generated sepa-
rately for each frame. The temporal noise approximately follows
a Gaussian distribution with a variance

where is the expected gray value of the pixel, and ,
are the parameters of the particular camera. However, since the
background amplitude is constant for the experiments with
simulated noise, and the target amplitude , we have

and is approximately constant,
given by . Using the approach similar
to Healey and Kondepudy [6], the values of the parameters

for the particular camera were estimated [9] as
and . For background , this gives

. The image is then quantized to give the output
in byte format. This adds a quantization noise corresponding to

. Neglecting the cross-correlation the total noise
would have or .

B. Algorithm Application

The target detection algorithm whose performance is to be
characterized is applied to each simulated image sequence. In
the cases of synthetic images, and digital camera sequences,
FPN can be corrected in advance by using precomputed param-
eters of FPN for each pixel. These parameters are perturbed by
a random amount corresponding to their estimated covariance,
to model the error in estimating these values. Experiments are
performed without and with correction of FPN, and the results
are compared.

According to the type of background used, preprocessing in
the form of a low-stop filter or a morphological filter are per-
formed before applying dynamic programming. After dynamic
programming is applied, nonmaximal suppression is performed
to ensure correct counting of false alarms and misdetections.
The outputs of a typical experiment with 200 targets is shown
in Fig. 4(c)–(f).

C. Estimation of False Alarms and Misdetections

The algorithm to be characterized is applied on the image se-
quences with as well as without targets. The sequences without
targets are used to estimate the false alarm rate, whereas the se-
quences with targets are used to estimate the misdetection rate.

For the false alarm rate, the histogram of the output image is
obtained. Using this histogram, the false alarm rates for different
thresholds can be obtained. For the misdetection rate, only the
pixels in a specified window of 5 5 pixels around the speci-
fied target position are checked. For each such window corre-
sponding to a single target, the maximum value of the algo-
rithm output is taken. A histogram of these maximum values
is formed, and processed to obtain the misdetection rates for
different thresholds. The false alarm and misdetection rates are
averaged over a number of simulations and , respec-
tively.

The number of simulations to test can be specified so that the
standard deviation in the estimate of the false alarm or misdetec-
tion rate is below a given value. This can be seen by observing
that the occurrence of an event such as a false alarm or a mis-
detection can be modeled as a Poisson process, and, therefore,
the variance of the total number of events is equal to the mean.
Thus, if events are observed, the standard deviation of the ab-
solute error in the number of events is , and that of the rel-
ative error is . For example, for events, the error
standard deviation is 3.2, or 32% of the number of events. This
error estimate can be confirmed by measuring the variance of
these rates across the simulations.

D. Performance Characterization

Using the estimated false alarm and misdetection rates, the
ROC can be plotted showing the rate of misdetection against
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TABLE I
PARAMETERS USED FOR THE EXPERIMENTS WITH THE FOLLOWING IMAGE

CATEGORIES: (1) SYNTHETIC NOISE FROM CAMERA MODEL, (2) REAL

NOISE FROM A DIGITAL CAMERA, AND (3) REAL BACKGROUND

FROM AN ANALOG CAMERA

the rate of false alarms. The misdetection rate for a specified
false alarm rate is noted from the curve. The simulations
are repeated for a number of signal amplitudes . The ratio
of this amplitude to noise level corresponds to the SNR.
The value of the signal amplitude for a specified misdetection
rate , and the above false alarm rate is obtained. This is
considered as the threshold signal value . The number of
simulations used is at least in the case of false
alarms and in the case of misdetections, so
that for the rates and , an average of at least ten events
would be observed, giving an error of at most 32%. Due to
constraints on the execution time, larger number of experiments
were not used, although they would be desirable for reducing
this error.

Other parameters, such as the size of the target, can be varied
one at a time, and the variation of can be plotted against the
respective parameter to determine the effect of the parameter on
the algorithm performance.

V. EXPERIMENTAL RESULTS

The target detection algorithm was tested on three categories
of images, as described in the protocol, using the parameter
values listed in Table I. The results are shown and compared
in the following section.

A. Synthetic Noise From Camera Model

In this case, the noise was synthetically generated using the
noise model of the Kodak Megaplus ES 1.0 digital camera. Tar-
gets of varying size were added for misdetection analysis. Ex-
periments without and with correction of FPN were performed.

Fig. 5(a) and (b) shows the plots of the false alarm and mis-
detection rates, respectively, against the threshold value, for ex-
periments without FPN correction. The misdetection rates are
shown for a number of signal amplitudes for 1 1 targets. The
misdetection rate is measured as the ratio of the average number
of misdetections, to the total number of targets in a simulation.
However, the false alarm rate is measured as the average number
of false alarms per simulation, instead of the ratio of the number

Fig. 5. Results for camera noise model without FPN correction. (a) Plot of
FA rate (average number per simulation) against threshold. (b) Plot of MD
rate against threshold, for a number of signal amplitudes (higher amplitudes
toward right) for 1� 1 targets. (c) Plot of MD rate against FA rate (for marked
amplitude). The data points are marked as crosses. The MD rate when FA rate
is FA = 0:02 per simulation is interpolated, and plotted as circle. (d) Plot
of MD rate against amplitude for FA rate of FA = 0:02 per simulation. The
value amplitude when MD rate is MD = 0:001 per target is interpolated and
marked as a circle.

of false alarms to the total number of pixels. This is done to give
a better idea of the algorithm performance.

Fig. 5(c) shows the plot of misdetection rate against false
alarm rate for different amplitude values for 1 1 targets. The
point of threshold false alarm rate is set to 0.02 false alarms
per simulation, which corresponds to a total of ten false alarms
for simulations. Fig. 5(d) shows the plot of mis-
detection rate against the amplitude values for the above rate
of false alarms. The for the threshold misdetection rate of

is interpolated, and marked as a circle. The is set
to a probability of 0.001 per target, which corresponds to an av-
erage of 0.2 misdetections per simulation for a simulation with
200 targets, or a total of ten misdetections for simu-
lations. The corresponding graphs for the case where fixed pat-
tern noise compensation was applied are shown in Fig. 6.

The above experiments are repeated for other sizes of targets,
and the calculated from these is plotted against the size of
the target. Resulting plots for the experiments without FPN cor-
rection are shown in Fig. 7(a) for square targets (size )
and in Fig. 7(b) for rectangular targets (size ). The cor-
responding results for the experiments with FPN correction are
shown in Fig. 7(c) and (d). The threshold amplitudes for various
sizes are tabulated in Table II. It is seen that larger targets require
smaller signal amplitudes for detection implying better perfor-
mance. Similarly, the signal amplitudes required when FPN cor-
rection isappliedaremuchsmaller than thosewhen thecorrection
is not applied, implying better performance in the former case.

B. Real Noise From a Digital Camera

In this case, instead of synthetically generating the noise,
background images captured using the Kodak Megaplus ES 1.0
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Fig. 6. Results for camera noise model with FPN correction. (a) Plot of FA rate
(average number per simulation) against threshold. (b) Plot of MD rate against
threshold, for a number of signal amplitudes (higher amplitudes toward right)
for 1� 1 targets. (c) Plot of MD rate against FA rate (for marked amplitude). The
data points are marked as crosses. The MD rate when FA rate is FA = 0:02
per simulation is interpolated, and plotted as circle. (d) Plot of MD rate against
amplitude for FA rate of FA = 0:02 per simulation. The value amplitude
when MD rate is MD = 0:001 per target is interpolated and marked as a
circle.

Fig. 7. Performance curves for simulated targets. (a) Plot of amplitude against
the target size (x�x) for experiments without FPN correction. The data points
are marked as crosses. (b) Plot of amplitude against the target size (1 � x).
(c) and (d) Corresponding plots for experiments with FPN correction.

digital camera looking at the sky were used. Targets of size 2 2
pixels were synthetically added for the misdetection analysis.
Experiments without and with correction of FPN were also per-
formed. The false alarm threshold was set per sim-
ulation, resulting in a total of ten false alarms for
simulation. The misdetection threshold was set to
per target, corresponding to 20 misdetections for
simulations with targets. As shown in Section VI,

TABLE II
RESULTS OF DYNAMIC PROGRAMMING ALGORITHM ON SIMULATED IMAGE

SEQUENCES WITHOUT AND WITH FPN CORRECTION. THRESHOLD

AMPLITUDES ARE SHOWN FOR FALSE ALARM RATE OF 0.02 PER

SIMULATION AND MIS-DETECTION RATE OF 0.001 PER TARGET

Fig. 8. Results for real noise from camera for 2� 2 targets. (a) Plot of MD
rate against FA rate (for marked amplitude) for images without FPN correction.
The data points are marked as crosses. The MD rate when FA rate is FA = 10
per simulation is interpolated, and plotted as circle. (b) Plot of MD rate against
amplitude for FA rate of FA = 10 per simulation. The data points are marked
as crosses. The value of A where MD rate is MD = 0:01 per target is
interpolated and marked as a circle. (c) and (d) Corresponding plots for FPN
corrected images.

theoretical analysis suggests that the performance at lower rates
of false alarms and misdetections can be extrapolated. Further-
more, due to the normal distribution of noise, even a small in-
crease in the threshold reduces the false alarm and misdetection
rates dramatically. Hence, a somewhat higher target amplitude
can be expected to reduce these rates to an acceptable level.

In the case of the experiments without FPN correction, the
plot of misdetection rate against false alarm rate for different
levels of target amplitude is shown in Fig. 8(a). The plot of mis-
detection rate against SNR for false alarm rate of per
simulation is shown in Fig. 8(b). The corresponding plots for
the experiments with FPN correction are shown in Fig. 8(c) and
(d). The target strength required for detection at the specified
rates of false alarms and misdetections are marked by circles in
Fig. 8(b) and (d). It can be seen that the target strength required
when FPN is not corrected is higher than that re-
quired when FPN correction is applied , implying
better performance in the latter case.

C. Real Background From an Analog Camera

In this case, a real aerial background, obtained from an
analog camera used during a flight test was employed. Targets
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of size 2 2 pixels were synthetically added for misdetection
analysis. In order to suppress the background, low-stop, and
morphological preprocessing were separately applied, and the
results compared. Since the background was cluttered, a much
higher signal was required for satisfactory detection. Even then,
the false alarm rate does not reduce sufficiently, thus showing
that more postprocessing would be required after applying the
algorithm. However, since the number of false alarms (plus
true candidates) would be small after this processing, the time
complexity of subsequent algorithms would be reduced signifi-
cantly. The techniques described in [5] can be used to separate
the remaining background clutter from the genuine targets.
These techniques utilize the difference in the image translation
and expansion between an object on a collision course, and the
background clutter.

The false alarm threshold was set per simulation
resulting in a total of ten false alarms for simulation.
The misdetection threshold was per target, corre-
sponding to ten misdetections for simulations with

targets. Unfortunately, lower rates for false alarm
and misdetection cannot be reliably estimated due to the limited
number of background images available.

The results for the morphological filter and the low-stop
filter are shown in Fig. 9. It can be seen that the target strength
required when the morphological filter is used
is much lower than that required when the low-stop filter

is used. The morphological filter is, thus, better,
and the reason for this is that the morphological filter reduces
clutter corresponding to large features, whereas the low-stop
filter does not do this effectively. However, both result in much
poorer performance than that obtained with a digital camera
with clear background.

D. Comparison With Other Methods

The performance of the dynamic programming algorithm was
compared with other methods such as simple thresholding on
a single frame, and temporal averaging on the same number
of frames. The comparison was made using FPN correction
on images with simulated camera noise. The algorithms used
were: dynamic programming algorithm, simple thresholding on
a single frame, and temporal averaging on image sequences with
moving and stationary targets. Table III shows the comparison
for these algorithms using various target sizes. The plots of the
threshold amplitudes against target sizes are shown in Fig. 10.
Again, smaller threshold amplitudes imply better performance
as explained before.

It can be seen that the performance of single frame thresh-
olding, as well as temporal averaging are much poorer than that
of the dynamic programming. However, if stationary targets are
used instead of moving targets, the performance of temporal av-
eraging is slightly better than that of dynamic programming,
showing that temporal averaging is the best choice when the tar-
gets are stationary.

VI. THEORETICAL PERFORMANCE CHARACTERIZATION

This section theoretically derives the approximate perfor-
mance of the dynamic programming algorithm, based on the

Fig. 9. Results for real cluttered background for 2� 2 targets using low stop
filter. (a) Plot of MD rate against FA rate (for marked amplitude). The data points
are marked as crosses. The MD rate when FA rate is FA = 10 per simulation
is interpolated, and plotted as circle. (b) Plot of MD rate against amplitude for
FA rate of FA = 10 per simulation. The data points are marked as crosses.
The value of A where MD rate is MD = 0:01 per target is interpolated and
marked as a circle. Corresponding results using morphological preprocessing
are shown in (c) and (d).

Fig. 10. Performance comparison of several algorithms: Plot of amplitude
against the target size (x � x) for experiments without FPN correction
using (a) dynamic programming, (b) thresholding single frame, (c) temporal
averaging (moving targets), and (d) temporal averaging (stationary targets).

paper by Tonissen and Evans [11]. Temporal averaging and
single frame thresholding are taken as special cases of dynamic
programming. It should be noted that for theoretical analysis,
the recursion step in the dynamic programming algorithm is
replaced by

(7)
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TABLE III
RESULTS OF TARGET DETECTION ALGORITHMS ON SIMULATED IMAGE

SEQUENCES WITH FPN CORRECTION. THRESHOLD AMPLITUDES

ARE SHOWN FOR FALSE ALARM RATE OF 0.02 PER SIMULATION

AND MISDETECTION RATE OF 0.001 PER TARGET

However, this only changes by a scale factor, and since both
signal as well as noise would be scaled equally, SNR analysis
does not change.

A. False Alarm and Misdetection Probabilities

Probability of false alarms is the probability that there is
at least one state exceeding the threshold out of velocity
states at the final output time , for the pixel where there is no
signal in its neighborhood—i.e., hypothesis

(8)

where denotes the probability of for hypothesis
at time , being less than or equal to the threshold .

Probability of misdetection is the probability that there
is no output with correct velocity exceeding the threshold
at time , within a neighborhood of size , where one cell
contains signal—i.e., hypothesis —and the other cells are
noise. This allows for some tolerance in the location of target.
For example, a 5 5 neighborhood corresponding to
gives a tolerance of pixels in the location of the target. On the
other hand, a 1 1 neighborhood consisting of only the target
position corresponds to or giving no tolerance
for the target position

(9)

where denotes the probability of for hypothesis
at time being less than or equal to the threshold .

B. Normal Approximations

For an analytic solution of the performance of the dynamic
programming algorithm, the distributions of the interme-
diate outputs can be approximated using normal approxi-
mations. Consider independent standard normal variables

. The cumulative distribution function (CDF) of
the maximum of these variables is given by

(10)

where is the CDF of a standard normal variable. The prob-
ability density function (PDF) is the derivative of the CDF given
by

(11)

where is the standard normal PDF.
This distribution of maximum of standard normal variables

can be approximated as a normal distribution , where
and denote the mean and the variance of the actual dis-

tribution. These are computed using numerical integration, and
are tabulated in Table IV for different values of .

For general normal variables , one can sub-
stitute , where are standard normal variables.
The maximum of is approximately normally distributed with
mean and variance given by

(12)

Let the input at any time be normally distributed, in the
absence and presence of the target as

(13)
Then, the distributions of the output at time will be approx-
imately normally distributed as

(14)

where the and parameters are calculated below.

C. False Alarm Analysis

For noise pixels, we have

(15)

Using (12), the mean and variance parameters at time can be
recursively expressed as

(16)

Solving these recursive equations yields expressions for mean
and variance at time

(17)
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TABLE IV
VALUES OF � AND � FOR A NUMBER OF VALUES OF q

To get approximate closed-form expressions for , one can
write as

(18)
where is dependent on but always lies between 0 and 1.
Using is equivalent to using the first-order term of
binomial expansion, whereas corresponds to assuming
that remains approximately constant with , which is jus-
tifiable, since is quite small. Accordingly, we have

(19)

where is a function of all and also lies between 0 and 1.
Values of and can be used as the zero-order and
first-order approximations, respectively.

For , such that (also, ), we
have

(20)

For the case when , the sum changes from
to . Hence, the expressions become

(21)

Finally, the probability of false alarms is

(22)

giving

(23)

where denotes the CDF of a standard normal variable.
Hence, the threshold can be expressed in terms of the mean

, variance , and the false alarm probability as

(24)
where

(25)

D. Misdetection Analysis

The probability of misdetection is given by

(26)

Substituting the expression of in terms of false alarm rate,
we have

(27)

giving

(28)

Hence

(29)

where

(30)

since, usually, .
Approximations of and are obtained considering

the exceeding of threshold only due to the signal part and not
due to the noise part. Also, it is assumed that the target occupies
a single pixel. In such a case, we have

(31)

It can be easily shown that

(32)
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E. Calculation of Required SNR

To calculate the SNR required for detection at particular rates
of false alarms and misdetections, (24) and (29) are combined
to give

(33)

Using expressions for , , , and , and as-
suming , , and , the SNR required
for detection is obtained as

(34)

For , replacing by , we get

(35)

For , such that

(36)
The above expressions of can be written in the form

(37)

where , , and depend on , , and . The terms and
decrease with , improving the algorithm performance as in-
creases. However, the term increases with , putting a lower
bound on the required SNR, thus limiting the performance. It
can be shown that this bound increases with , and, hence, a
lowest possible value of should be used. This is intuitively ex-
plained, since a maximum is taken over noise pixels and it is
more likely to be a false alarm when is large.

F. Temporal Averaging and Single Frame Thresholding as
Special Cases

For detection of stationary targets, the optimal detector is
given by pixelwise temporal averaging. However, direct use of
temporal averaging results in infinite memory. To give a higher
weight to more recent observations, the following recursive
filter can be used:

(38)

This recursive temporal averaging can be considered special
case of dynamic programming with , for which

and . Hence, the threshold SNR for recursive
temporal averaging becomes

(39)

Also, for , this expression takes the limit

(40)

The same result would be obtained by using in original
equations. For , such that

(41)

For single-frame thresholding ( or ), the threshold
SNR reduces to .

Note that the first term from the dynamic programming al-
gorithm disappears in these expressions, and there is no lower
limit to the performance if .

G. Analysis

Fig. 11(a) shows plots of against for the dynamic
programming algorithm with and a number of values
of . The false alarm rate is 2 (0.02 per simulation for
a image), and the misdetection rate is 0.001. It can
be seen that decreases with increase in , but saturates
at a certain point depending on . It should be noted that lower
required SNR means better performance. Fig. 11(b) shows the
corresponding plot for —i.e., recursive temporal
averaging. Fig. 11(c) and (d) shows the plots of against

with and , respectively, for a number of
values of and . It is observed that increases with
as expected. The also increases slightly with , but the
plots cannot show the change. Except in the case of and

—i.e., temporal averaging—the saturates at
some minimum value as .

H. Comparison Between Theoretical and Observed
Performance

The parameters used in the calculation of theoretical perfor-
mance of the algorithms for 2 2 targets are shown in Table V.
The calculated and the observed SNR threshold for these pa-
rameters for various algorithms are shown in Table VI.

One can observe that the actual performance of the algorithm
for 2 2 targets is slightly better than the theoretical perfor-
mance for most of the algorithms. The reason for this is, that
a 2 2 target occupies at least one pixel completely, and a few
other pixels partially. Hence, its performance should be slightly
greater than the calculated performance in which one assumes
that the target occupies exactly one pixel.

To correct this problem, point targets were used in place of
2 2 targets. The experiments described in previous sections
were repeated using point targets. The comparison between the
calculated and observed SNR for a number of false alarm and
misdetection rates are shown in Table VII. It can be seen that
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Fig. 11. Plots of SNR againstK for (a) p = q = 4 (dynamic programming)
and number of � values; (b) p = q = 1 (temporal averaging) and number of �
values; (c)� = 1 and number of p and q values; and (d)� = 15=16 and number
of p and q values. The parameters used are FA = 2� 10 , MD = 0:001.

TABLE V
PARAMETERS USED FOR CALCULATING THE THEORETICAL

PERFORMANCE OF ALGORITHMS

TABLE VI
COMPARISON OF THEORETICAL PERFORMANCE OF THE ALGORITHMS

WITH OBSERVED PERFORMANCE ON 2� 2 TARGETS

the calculated and observed SNR rates agree very well in most
cases. However, in the case of extremely low false alarm and
misdetection rates, the observed SNR is greater than the calcu-
lated SNR for the dynamic programming algorithm. The reason
for this is the normal approximation used for the distribution of
the resulting output.

VII. CONCLUSION

This paper described a protocol and a set of experiments to
characterize and compare the performance of target detection al-
gorithms. The experimental protocol described how to generate
targets, model noise and obtain the ROC—i.e., plots of missed
detection rates against the false alarm rates. The methodology
presented in [8] was used to combine multiple ROC into a few
performance curves, showing the variation of minimum target
amplitude required against a target parameter (such as the size
of object), for fixed false alarm and missed detection rates. It
was observed that smaller target amplitude is required for larger
target size, as expected. Other parameters such as, whether the
FPN is corrected or not, for simulated as well as real digital

TABLE VII
COMPARISON OF THEORETICAL PERFORMANCE OF THE ALGORITHMS WITH

OBSERVED PERFORMANCE ON POINT TARGETS FOR A NUMBER OF DIFFERENT

VALUES OF FALSE ALARM (FA) AND MISDETECTION (MD) RATES

camera images without clutter, were also varied. It is concluded
that the fixed pattern noise correction improves the performance
of the algorithm as expected, in both simulated and real camera.
This shows that the FPN correction should be performed to im-
prove the target detection performance. For real images with
clutter, the use of morphological and low-stop filtering for the
preprocessing step were compared. It was observed that the mor-
phological filter is more effective than the low-stop filter for re-
moval of large clutter.

A comparison between methods show that dynamic pro-
gramming algorithm performs much better than thresholding
a single frame to detect targets, while in the case of stationary
targets, temporal averaging of frames performs slightly better
than dynamic programming, although temporal averaging is
significantly faster than the dynamic programming algorithm.
However, the performance of temporal averaging severely
degrades for moving targets.

The theoretical expressions for the SNR required for detec-
tion were derived using statistical methods. It was observed that
the experimental results agreed well with the theoretical values.
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