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Abstract 
The. use. of a small set of features is recurrent in 

the object recognition literature. If the image data is 
perfect with no sensor uncertainty and there are not 
incorrect feature correspondences between the model 
and the image, then the pose of the object can be com- 
puted with no error using these few correspondences. 
However, in most real cases the noise in the data will 
propagate into the pose. Moreover, the extent of the 
effect of the uncertainty will depend on the selection of 
the correspondences used to compute it. In this paper 
we address the problem of how to select these corre- 
spondence so that the effect of the data uncertainty on 
the pose estimation is minimised. 

1 Introduction 
Most model-based computer vision systems attempt 

to recognize and locate 3D objects from a 2D image of 
a scene by pairing features from a set of stored models 
with features extracted from the image. These corre- 
spondences are found using techniques such as inter- 
pretation trees [lo, 7, 21, hashing [27, 5, 9, 261, align- 
ment [17], bipartite search [20], and automated pro- 
gramming [l]. The pairings are such that the features 
in the image can be obtained (approximately) by ap- 
plying a geometric transformation to their correspond- 
ing model features. This transformation is usually re- 
ferred as the pose of the object, that is the position of 
the object with respect to a coordinate system. Most 
methods to compute the pose use a few point-to-point 
[14, 6, 12, 111 or line-to-line [21, 221 correspondences. 
If the data is perfect with no sensor uncertainty and 
with no incorrect correspondences, then the pose is 
exact, and the transformed model features exactly co- 
incide with the image features. However, in most real 
cases the noise in the data will propagate into the pose. 
Moreover, the extent of the effect of the uncertainty 
depends on the correspondences used to  compute it. 

In particular, an important issue that affects the 
performance of a recognition system is the fact that 
the accuracy of a pose computed using a small num- 
ber of correspondences can be very different depending 
on which correspondences are selected, even when the 
same number of correspondences is used. 

Recently, Grimson et a1 [12] presented a detailed 
study of how sensor uncertainty in the data propa- 
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gates into the pose when it is computed using three 
point correspondences and the method given in [ll]. 
Furthermore, they used their results to analyze the ef- 
fects of sensor noise in the performance of systems that 
use feature alignment or hashing schemes to do ob- 
ject identification. However, at the present time there 
are no methodologies available to improve the perfor- 
mance of a recognition system by incorporating stud- 
ies such as [12] into the selection process of the feature 
correspondences. Thus, designers are forced to build 
recognition systems in an iterative fashion, trying dif- 
ferent feature selection heuristics until the desired level 
of performance is achieved. 

2 Statement of the Problem 
The use of a small set of features is recurrent in the 

literature. Perceptual groupings was first suggested by 
Lowe [23]. Henikoff and Shapiro [15] defined interest- 
ing patterns formed by triplets of line segments and 
found that they were useful in reducing the number 
of hypothesized models. In the work by Mohan and 
Nevatia [24], the systems 3DP0 [16] and 3D-POLY 
[25] a few “local” or “kernel” set of features were used. 
Hansen [13] used a set of filters in order to reduce the 
number of features to be considered. Flynn [8] pro- 
posed the use of an utility measure of the features in 
order to reduce the number of hypothesis made by a 
hashing scheme. 

Ikeuchi and Kanade [18], Chen and Mulgaonkar [4], 
and Camps [3] used the concept of feature detectability 
to rank features in decreasing order of detectability. 

In spite of all this research activity, the selection of 
“good” features to be matched in object recognition re- 
mains difficult. In this paper we address the following 
problem: 

Let N be the number of model points and 
n 5 N be the number of points that are ac- 
tually w e d  t o  compute the p o j e  of the object. 
Then, find the subset of n model points such 
that the efec t  of the data uncertainty in the 
estimation of the pose is minimized. 

3 Definitions and Notation 
In photogrammetric terminology, the ezterior ori- 

entation of a camera is specified by all the parameters 
(three rotation angles and a translation vector) that 
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determine the pose of the camera with respect to the 
world reference frame. 

The relation between the camera and the world ref- 
erence frames is given by a rotation and a translation. 
A point m represented in the world reference frame by 
the coordinates (X Y Z)' is represented by the coor- 
dinates (z y 2)' in the camera reference frame where 

( i ) = R (  f ) + d l  

R is a 3 x 3  rotation matrix, and d is a 3 x  1 translation 
vector. 

Once the point m is represented in the camera ref- 
erence frame, it can be projected using the perspective 
projection: 

( 2 )  
f 

P(R,d)(m) = ( ) = ; ( 5 ) 
where p(R,d)(?n) denotes the perspective projection of 
m and f is the focal length of the camera. 

In the sequel we represent a 3 D  model object by a 
3 x N  matrix M ,  

M = (  ml m ... mN ) (3) 
where the column is given by the world coordinates 
of the model point i. The perspective projection of the 
model M is denoted by P(R,d)(M) and is represented 
by a 2 N  x 1 matrix CO, 

CO1 

p(R,d)(M) = CO = ( c; ) (4) 
CON 

where c& is given by the image coordinates of the per- 
spective projection of the model point i. Finally, the 
observed image points assigned to the object points by 
some mapping algorithm are represented by 2 N  x 1 
matrix C .  

c = (  CN " )  (5) 

where is given by the image coordinates of the point 
corresponding to the model point i. If all the corre- 
spondences are correct, then CO and C are related by 

C = CO + ACo 
where AC, is additive mean zero Gaussian random 
noise having covariance matrix E. 

(6) 

4 Pose Estimation 
In this paper we will limit ourselves to the case 

where the camera is located on a sphere of radius r 
centered a t  the world reference frame origin, and such 
that the translation vector is known. The effect of 
these constraints is that the number of unknown exte- 
rior parameters is reduced from six to three, since the 
translation d is known. Given enough pairs of corre- 
sponding 2D and 3D points and an initial approximate 
solution, the rotation R can be found by using a non- 
linear least-square technique like the one described in 
[14, 231. 

Let M be the set of model points, C be the set of ob- 
served image points, C be the noise covariance matrix, 

and d be the translation vector. Then, the rotation 
matrix R can be found by minimizing the least-squares 
criterion 

6' = (c-  p(R,d)(M))'E-' (C-P(R,d)(M))  * (7) 
Assumsing that C = v21, minimizing 
minimze 

is equivalent to 

where II.11' and 11.ll~ denote the Euclidean and the 
Frobenius norms respectively. 

Since P(R,d) is a non-linear operator, an iterative 
procedure must be used to solve for R. The rotation 
matrix R can be found by linearizing P(R,d) around an 
approximate solution, solving for small corrections and 
adjusting the solution iteratively. 

Let T i k ) ,  r r ) ,  and rik) represent the world reference 
axes rotated by the rotation matrix R(k)  for the leth 
iteration: 

(9) 

The rotation R(k)  can be adjusted in a fast and easy 
way by premultiplying it with three correction-rotation 
matrices: 

~ ( " 1 )  = ~ ( k ) ~ ( k ) ~ ( k ) ~ ( k )  

where R g ) ,  RI;",), and Rt) are rotations around the 

axes dk), r r ) ,  and rik) with small angles hik)l e), 
and hLk) respectively. The optimal correction is found 
by solving the equation 

(10) L h, h. 

(11) J(k )h(k )  = e(k) 

where J ( k )  is the 2 N  x 3 Jacobian matrix, 

h(k)  is the vector of the unknown corrections for which 
we are solving, 
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and.dk) is a 3 x 1 vector with the error measured in 
the image: 

(143 e(k)  = c ._ p ( R ( h ) , d ) ( M )  * 

Thus, the rotation R(,) at iteration k is updated 
using equation (IO) with 

5 Sensitivity Analysis 
The sensitivity of the pose estimation algorithm to 

the noise in the data is given by the amount of pertur- 
bation on the rotation matrix due to a small perturba- 
tion in the data. In the sequel, we present a sensitivity 
analysis similar to the one presented in [14]. 

Let M be the matrix of the model points, C be the 
matrix of the observed irnage points, R be the true ro- 
tation matrix, and R be the rotation matrix estimated 
using the iterative least squares method described in 
the previous section. Then, 

P(fi,d)(M) P(R,d)(M) + VhP(R,d)(M)*h (16) 
where 

h := J t e  , (17) 
e = c -' P(R,d)(M) i (18) 

and J t  is the pseudo-inverse of J. 

rection vector, llhll', is given by 

If e is assumed to be zero-mean Gaussian random noise 
with covariance matrix C = a21, the expected value of 
hh' is 

E[hh) = E [ J t e e ' J t ' ]  =: a 2 J t J t '  = a2(J 'J)- l  (20) 

The expected value of the squared norm of the cor- 

E[h'h] = .E[trace(hh')] . (19) 

and the expected value of llhl12 reduces to 

Thus, the trace of the matrix (J'J)-l can be used as 
a measure of the sensitivity of the pose to the noise in 
the data. 

6 Selection of Point Correspondences 
Let A4 be the set of N model points, and n 5 N be 

the number of points that are actually going to be used 
to compute the pose. In order to minimize the effect 
of the data uncertainty on the estimated pose, these 
n points need to be selected carefully. In the previous 
section we showed that the trace of the matrix (J'J)-l 
measures the sensitivity of the pose to the noise in the 
features used in the computation. Thus, the subset of 
n points that minimizes the trace of the above matrix: 

min { trace (J 'J ) - ' }  (22) 

is a good choice from these considerations. Unfortu- 
nately, the number of possible subsets of n points is, 
in general, too large to  attempt to solve this minimira- 
tion problem directly. However, a suboptimal solution 
to this problem can be obtained by using an incremen- 
tal approach: 

~ [ h ' h ]  = v'trace(J'J)-' . (21) 

Subsets of n points 

Given a subset Pk C M with k points, select 
a point m E M such that the trace of (J'J)-l 
is minimized for the extended subset Pk+, = 
Pk U {m}. 

7 The Greedy Algorithm 
In this section we describe an algorithm that can 

be used by a matching procedure to select the next 
model feature to be assigned a correspondence. This 
algorithm is a greedy algorithm that finds a model point 
such that when it is added to the points used so far, 
the pose computed using the algorithm described in 
section 4 is robust to the noise present in the data. The 
algorithm is suboptimal since it has a limited horizon 
of one point at a time. 

7.1 Selection of initial points 
The pose estimation algorithm given in section 4 

starts with an initial rotation R(O) and then iterates 
to refine this pose. In order to compute the initial ro- 
tation R(O), a minimum of two points correspondences 
are required. Let ml  and % be two model points. It 
can be easily shown that if ml,  %, and the origin of 
the world reference frame are aligned, i.e. mz = a.ml,  
the estimated pose is not unique. Furthermore, if the 
points ml and m2 are close to the origin, a small per- 
turbation in the coordinates of the corresponding im- 
age points leads to a large change in the estimated 
pose. This suggests the heuristic rule that the initial 
points should be selected such that the area of the tri- 
angle fprmed by the two model points and the origin 
is maximum. 
7.2 Selection of subsequent points 

Once k correspondences have been found the prob- 
lem of selecting the next correspondence such that the 
estimated pose is robust reduces to selecting the model 
point that minimizes the trace of the 3 x 3 matrix 
(J'J>-l. 

Consider the set of k model points already assigned 
to some image point, P k ,  the corresponding matrix 
JiJk , and a candidate model point m ? k .  The ma- 
trix J ; + , J k + l  for the extended set ?,+, = ?, U (m} 
can be computed incrementally: 

J i + i J k + l  = J i J k  + jkjm (23) 
where j, is given by equation (13). Thus, the (k+l)-th 
point can be selected by solving for m in 

min{trace(JiJk m + jLjm)-') . (24) 

7.5 Handling outliers 
The initial rotation R(O) is found by solving a system 

with four equations and three unknowns such that a 
least square error criterion is minimized for the two 
initial model points. If the error of this fit is too high, 
at least one of the points is likely to be an outlier and 
a new pair of points is selected. 

When a subsequent point is added, one can use the 
current rotation R(k)  to project the model points cur- 
rently used and compare their location with their cor- 
responding image points. If the distance between these 



is higher than a multiple of the standard deviation of 
the noise, then the point is rejected as an outlier. 

If at a given point, too many points are classified as 
outliers, the initial points are suspected as outliers and 
the process starts again for a new pair of initial points. 

8 Experimental Protocol 
The importance of controlled experiments has only 

recently been stressed in computer vision. Controlled 
experiments are essential in order to illustrate the v& 
lidity of a solution presented. We tested the greedy 
algorithm using artificially generated data as well as 
real images. In this section we describe the experi- 
mental protocol used to test the proposed algorithm, 
based upon the one presented in [19]. 

8.1 Data Set Generation 
The data for the experiments was generated as fol- 

lows: 
0 Random model generation. ”,del = 50 random 
model sets were generated. The model points were 
generated by choosing points uniformly distributed in 
a box such that value of each of the coordinates lie in 
[-Mm,,, M,,,] where Mma+ = 5.0cm.. The number 
of model points generated in each experiment was N = 
10. 
0 Random exterior parameters generation. The 
rotation matrices R, were generated by selecting ran- 
dom points on a unit sphere and taking the r,  axis as 
the line from these points to the origin. The r,  and ry 
axes lie in the plane perpendicular to the rz axis. The 
orientation of r, axis in that plane was chosen ran- 
domly and ry axis was made perpendicular to it. The 
translation vector d was kept fixed w.r.t. the rotated 
coordinate system as d = (0 0 dz)’  where d, = 35.0cm. 
0 Image point generation. The model points were 
transformed using : CO = ROM + d. The pro- 
jected points fall in a box with u,v coordinates within 
[-C,,,, C,,,] where C,,, x 0.7cm.. 

8.2 Noise Modeling 

In order to test the algorithm in the presence of 
noise and outliers the following perturbations were in- 
troduced: 
0 Rotation perturbation. The rotation matrix R, 
was perturbed by rotating it around its r ,  and ry axes 
respectively. No rotation was done around r, axis since 
this does not result in any change in the sensitivity of 
the problem. The amount of rotation was varied from 
0.05 to 0.3 radians. 
0 Image noise generation. Independent, identically 
distributed Gaussian noise N ( 0 ,  a’l) was added to the 
image points to generate points with camera coordi- 
nates C = CO + ACo. This corresponds to SNR of the 
order of e in terms of length and its square in terms 
of area. For each set of model points, NIample = 20 
such samples were generated. 
0 Outlier generation. The number of outliers was 
varied as N,t =: 1,. . . ,4.  Camera points were ran- 
domly selected and replaced by randomly generated 
2D points within the range [-Cmaz, Cmaz]. 

8.3 Experimental Procedure 

Experiment I. No noise was added in this experi- 
ment. Only the sensitivity of the solution was stud- 
ied. The greedy method was applied to each of the 
model sets, varying the number of points used, n, from 
2 to N .  The obtained greedy sequences, P,, were com- 
pared against the optimal sequence (found by exhaus- 
tive search) with the same number of points, Po. This 
comparison was done by computing the difference be- 
tween the traces of the matrix (J’J)-l for each se- 
quence of length 2 to N. Those greedy sequences such 
that 

The following experiments were conducted: 

I trace(J‘J)-l 1 
trace( JLJ,) - 1 

> Th 

where Th is a suitable threshold were rejected. The 
percentage of rejected sequences was plotted against 
the length of the sequence n. The value of the trace 
for the greedy sequences, for sequences that have trace 
equal to the best trace, and equal to the median of 
the traces of all possible sequences were plotted. This 
was done to show that the greedy sequences give better 
solutions than typical sequences and comparable to the 
optimal sequence. 
Experiment 11. This experiment studies the effect 
of perturbation on the rotation matrix on the greedy 
sequence. Although the exact pose of the object is 
unknown, an approximate pose can be obtained at any 
given point in the algorithm. However, the dependence 
of the Jacobian matrix on the pose, i.e. second order 
effects are neglected. Since such perturbation is caused 
by noise, this experiment indirectly helps in knowing 
what to expect when noise is present. 

For each model set, Nsamplc = 20 random perturba- 
tions were applied to the original rotation matrix, and 
new camera points were projected. No further noise 
nor outliers were added to these points. The greedy 
solution was computed using the new sets of camera 
points. Since the rotation matrices were perturbed, 
the trace values also were perturbed. Comparison of 
these trace values was made with the optimal value by 
finding the number of experiments in which the trace 
found was greater than the trace of the optimal se- 
quence of the same length by more than a threshold 
value Th, i.e. 1 trace(J’J)-’ I 

trace( JAJ,) - 1 
> T h  

The percentage of rejected sequences was plotted 
against the length of the sequence n. 
Experiment 111. This experiment studies the perfor- 
mance of the algorithm in the presence of noise. 

For each model set, random Gaussian noise was 
added to the points. Nsample = 20 such samples of 
noise were added for each set. However, no outliers 
were added. The greedy solution was computed using 
each of these. Since noise perturbs the pose, the trace 
values also get perturbed. Comparison of these trace 
values was made with the optimal sequence of the same 
length, by finding the number of experiments in which 
the trace found was greater than 10 % of the trace of 
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the corresponding optimal sequence. The distance be- 
tween the actual pose R, and the computed pose R is 
defined aa the norm of their difference: 

This distance corresponds to the largest possible devi- 
ation of the coordinates of a unit vector when trans-, 
formed by R instead of R,. The theoretical RMS value 
of this distance is equal to mnoise&ace(.7'J)-l. In 
this experiment, a greedy sequence wae rejected if 

For comparison, for each of the samples, a random se- 
quence was used in place of the sequence found by the 
greedy algorithm. Similar plots were made for these 
sequences, to show the relative merit of the greedy se- 
quence. 
Experiment IV. This experiment studies the perfor- 
mance of the algorithm in the presence of noise and 
outliers. For each model set, random Gaussian noise 
was added to the points and outliers were introduced. 
NSomp~e  = 20 such samples of noise were generated 
for each model. The greedy solution was computed 
using each of these and discarding possible outliers. 
The traces and the distance between the poses were 
compared in a similar way to the previous experiment. 
However, the comparison was done only for the se- 
quences that successfully rejected the outlier points. 
The percentage of the sequences that failed to detect 
outliers were also plotted against the length of the se- 
quence n. 

9 Results 
In this section we discuss the results obtained when 

the experiments described in the experimental protocol 
were carried out, as well as the results obtained with 
real data. 
Experiment I The plot of the percentage of mod- 

els with greedy sequences failing the trace comparison 
test for several threshold values is given in Fig 1 (a). 
Fig 1 (b). shows a similar plot using the sequences hav- 
ing median trace. It is observed that the greedy 

Figure 1: Experiment I. (a) Percentage of greedy se- 
quence failing the trace comparison test. (b) Percent- 
age of median sequences failing the trace comparison 
test. 

sequences fail less than the median sequence, showing 
the effectiveness of greedy algorithm. The failure rate 
decreases as the length of the sequence increases. This 

::i 
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Figure 2: Experiment I. (cont) (a) Trace values for 
the best sequences. (b) Trace values for the greedy 
sequences. (c) Trace values for the median sequences. 
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Figure 3: Experiment 11. Performance characterization 
of the greedy algorithm when the rotation is perturbed. 

is expected since initially the pose is not known. How- 
ever, as more points are selected, the greedy criterion 
takes over, selecting sequences with the best trace at 
each step. The values of the traces of the best, greedy 
and median sequences are shown in Fig 2 (a)-(.) re- 
spectively. 
Experiment I1 The plot in Fig 3 shows the effect of 
the perturbation in the rotation on the performance of 
the greedy algorithm. As the perturbation increases, 
the chance of failure of the greedy sequence also in- 
creases. However, no marked deterioration was ob- 
served for perturbations up to 0.1 radians (5.7 degrees). 
Experiment I11 The effect of the data noise on 
the performance of the algorithm is shown in Fig 4. 
Fig 4(a) shows the rate of failure using the trace test 
with threshold ratio of 1.1 and Fig 4(b) the rate of 
failure using the norm of the rotation difference test 
with threshold ratio of 1.5. The standard deviation 

was varied between 0.01 (SNR of 0.014) and 0.1 
(SNR of 0.14). It is observed that the effect on the per- 
formance is marked after the u , , ~ ~ ~  increases beyond 
0.05. Similar results for random sequences are shown 
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in Fig 4(c) and Fig 4(d). It can be easily seen that the 
number of rejected sequences is much greater for the 
random sequences, hence highlighting the advantage of 
the proposed selecting method. 

Figure 4: Experiment 111. (a) Trace performance for 
the greedy sequence. (b) Rotation difference perfor- 
mance for the greedy sequence. (c) Trace performance 
for a set of random sequences. (d) Rotation difference 
performance for a set of random sequences. 

Experiment IV The effect of noise and outliers on 
the performance of the algorithm is shown in Fig 5. 
Fig 5(a) shows the rate of failure using the trace test 
with threshold ratio of 1.1 and Fig 5(b) shows failure 
rate using norm of difference test with threshold ratio 
of 1.5. However, these tests were performed only for 
the cases where the outliers points were properly de- 
tected. Fig 5 shows the percentage of sequences where 
some outlier point was not detected. The noise stan- 
dard deviation crn'noirc was fixed a t  0.03 and the number 
of outliers added was varied from 1 to 4. It is seen that 
the performance deteriorates quite rapidly as the num- 
ber of outliers is increased. The crossings near the end 
of some of the curves are accounted by the fact that 
the number of choices available are lower for sets with 
more outliers. Hence, the value of the best trace is 
expected not to be much higher than the trace of the 
greedy sequences. 

10 Real data 
The algorithm was also tested on real data. Fig. 6 

shows the results obtained with an image of a bookend. 
Fig. 6(a) shows a grayscale image of the bookend with 
the model points highlighted. Fig. 6(b) shows the back 
projection of the model when all the model points are 
used to compute the pose. Fig. 6(c) shows the back 
projection of the model onto the image when four ran- 
dom points (circled on the figure) are used to compute 
the pose. Finally, Fig. 6(d) shows the back projection 
of the model when four points are selected using the 
greedy algorithm (circled on the figure). Clearly, the 

"I 
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Figure 5: Experiment IV. (a) Trace performance for 
the greedy sequence. (b) Rotation difference perfor- 
mance for the greedy sequence. (c) Percentage of se- 
quences where some outlier was not detected. 

greedy solution is better than the random one, and 
comparable to the one obtained using all the points. 

11 Conclusions 
In this paper we studied the noise sensitivity of a 

point-to-point iterative least square pose estimation 
procedure when the translation of the camera is con- 
strained. These results were applied in the design of a 
robustalgorithm to select the nezt feature to be matched 
by a recognition system. The proposed algorithm se- 
lects the next point such that it minimizes the effect of 
the data uncertainty on the computation of the pose. 
Even though the solution is only suboptimal (since the 
algorithm looks for only a point at a time) our exper- 
imental results show that the computed poses using 
the points provided by the algorithm are comparable 
with the best possible poses computed with the same 
number of points. 

The algorithm requires the computation of the in- 
verse of O ( N a )  3 x 3  matrices where N is the total 
number of model points. However, the computation of 
these matrices is done incrementally, reducing signifi- 
cantly the complexity. 

We have laid out a rigorous methodology to charac- 
terize the performance of the algorithm in the presence 
of noise and outliers and we have presented experimen- 
tal results using both artificial and real data. 

Finally, this algorithm can be easily extended to the 
case where the camera looks in an arbitrary direction, 
but it remains at a fixed distance from the origin. On 
the other hand, the most general case when all six ex- 
terior parameters are unknown, is more difficult and it 
is the subject of future research. 
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Figure 6: Bookend image. (a) Grayscale image with 
model points highlighted. (b) Back projection using 
all the  model points. (c) Back projection using four 
random model points (circled on the figure). (d) Back 
projection using four points selected using the greedy 
algorithm (circled on the  figure). 
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