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Abstract

The National Aeronautics and Space Administration
(NASA), along with members of the aircraft industry, re-
cently developed technologies for a new supersonic aircraft.
One of the technological areas considered for this aircraft is
the use of video cameras and image processing equipment
to aid the pilot in detecting other aircraft in the sky. The de-
tection techniques should provide high detection probability
for obstacles that can vary from sub-pixel to a few pixels in
size, while maintaining a low false alarm probability in the
presence of noise and severe background clutter. Further-
more, the detection algorithms must be able to report such
obstacles in a timely fashion, imposing severe constraints
on their execution time. This paper describes approaches
to detect airborne obstacles on collision course and cross-
ing trajectories in video images captured from an airborne
aircraft. In both cases the approaches consist of an image
processing stage to identify possible obstacles followed by
a tracking stage to distinguish between true obstacles and
image clutter, based on their behavior. The crossing target
detection algorithm was also implemented on a pipelined
architecture from DataCube and runs in real time. Both
algorithms have been successfully tested on flight tests con-
ducted by NASA.

1 Introduction

Continued advances in the fields of image processing and
computer vision have raised interest in their suitability to
aid pilots to detect possible obstacles in their flight paths.
For the last few years, NASA has been exploring the use
of image sequences for detecting obstacles in the flight path

of an aircraft. In the design of a High Speed Civil Trans-
port (HSCT) aircraft with a limited cockpit visibility, NASA
has proposed an External Visibility System (XVS) in which
high resolution video images would be obtained using cam-
eras mounted on the aircraft. These images can be used
to detect obstacles in the flight path to warn the pilots and
avoid collisions.

Algorithms for detection of airborne objects from
images are abundant in the published literature.
Nishiguchi et al. [12] proposed the use of a recursive
algorithm to integrate multiple frames while accounting for
small object motion. A dynamic programming approach
was used by Barniv [4] and Arnold et al. [2] to detect
moving objects of small size. The theoretical performance
of this approach was characterized by Tonissen and
Evans [13].

The above algorithms perform well when the back-
ground is uniform. However, in real situations the haz-
ardous object should also be detected against cluttered
backgrounds, such as clouds, ground or water. The objects
that cross the host aircraft have a significant translation in
the image. Hence, subtraction of consecutive images can
be used to remove the stationary clutter. If the background
clutter also has a significant motion, its motion should be
separated from the motion of the target. Irani and Anan-
dan [8] separated the scene motion into planar and parallax
motion, and identified independently moving objects which
have a significant parallax.

However, objects on a collision course could be nearly
stationary in the image. Image differencing is not useful in
such a case, since it can remove the object as well. Morpho-
logical filtering [6] removes objects of large size, usually
corresponding to clutter while retaining the objects of small
size. This approach is useful in removing large clutter, such
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as clouds. However, it does not remove small-sized clutter.
This paper describes the approaches we have used to

detect objects on collision course, as well as those cross-
ing the host aircraft. At present, the detection of collision
course and crossing objects are separately implemented.
The detection is divided into two stages, the image pro-
cessing stage and the tracking stage. The image processing
stage operates on the entire image, removes most clutter,
and isolates features that potentially correspond to targets.
The tracking stage tracks these features over a number of
frames, measures their properties, and tries to separate the
genuine targets from clutter using these properties. Since
the first stage has reduced the volume of data to be operated
on, more complex tracking algorithms can be implemented
without sacrificing the overall time complexity.

For collision course objects, the image processing stage
uses morphological filter to separate most clutter. To dis-
criminate the collision course object from remaining clutter,
the difference in translation and expansion of correspond-
ing image features is used in the tracking stage. The effec-
tiveness of this approach was demonstrated on a real image
sequence captured from an aircraft. For crossing objects,
image processing consists of steps such as image differenc-
ing and low-stop filtering to remove stationary clutter. This
stage was implemented on a pipelined processor system, the
DataCube MaxPCI to obtain real time performance. This
was followed by tracking of features with a significant and
consistent motion, on the associated host machine. Cross-
ing object detection was demonstrated on several image se-
quences obtained from flight tests conducted by NASA.

2 Flight Maneuvers for Collision Course and
Crossing Scenarios

The flight maneuvers were based out of NASA Lang-
ley Research Center in Virginia. Two classes of maneuvers
were flown, as shown in Figure 1. In the collision course
maneuver, the host aircraft was a Boeing 737 and the target
aircraft was a Lockheed Martin C-130, both of which were
owned by NASA. This maneuver was initiated with the tar-
get aircraft climbing directly towards the host aircraft. Be-
fore collision could occur, the target aircraft leveled off and
flew under the host. Because of safety concerns, the col-
lision course maneuver was conducted only two times. In
one of these maneuvers, the background was uniform and it
was trivial to separate the target, whereas in the other, the
background was severely cluttered and the elimination of
this clutter required the use of feature motion behavior, as
described in this paper. As an alternative to the collision
course maneuvers, flights were conducted with the target
aircraft flying directly away from the host aircraft. The im-
ages from these maneuvers could be played in reverse to
partly simulate a collision condition. The drawback to this

approach is that the background motion and magnitude of
relative velocity do not correspond to a collision condition.
As a result, such maneuvers are not examined for this paper.
In the crossing maneuver, the host aircraft was a modified
Convair C-131B (owned by the United States Air Force) and
the target aircraft was a Beech King Air B-200 (owned by
NASA). This maneuver was safer to perform than the colli-
sion course maneuver and was conducted dozens of times.

Planning and running the flight tests was not a trivial
task because of safety concerns and the number of people
involved. All flights required months of advance planning
to pass the Air Force and NASA safety reviews. Each air-
craft required pilots, crew, and additional support personnel
on the ground for refueling, maintenance, and logistics. A
large number of personnel were required because the flights
supported not only image processing, but also other aspects
of the XVS program. For example, numerous types of dis-
plays were tested for their ability to show other aircraft at
different distances, and other sensors (such as radar) were
tested for their detection ability.

Target

Host

Target

Host

(a) (b)

Figure 1. (a) Collision course maneuver: The
target aircraft flies towards the host aircraft.
(b) Crossing maneuver: The target aircraft
flies perpendicular to the host aircraft.

3 Discrimination of Hazard from Clutter

It is well known in the pilots’ community, that an ob-
ject on a collision or near-collision course remains station-
ary or nearly stationary in its 2-D image view [10]. This
property can be used to distinguish hazardous objects from
clutter, by measuring the rate of translation of the features
in the image. Another useful property is the rate of image
expansion, which is approximately inversely proportional
to the time to collision. Nelson and Aloimonos [11] use
the image expansion in terms of the flow field divergence
to estimate the time to collision, for separating obstacles.
Francois and Bouthemy [7] separate the image motion into
components of divergence, rotation, and deformation. An-
cona and Poggio [1] use 1-D correlation to estimate optical
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flow for a time-to-crash detector. Baram and Barniv [3] rely
on object texture to extract information on local expansion.
Instead of estimating a numerical depth value, an object is
classified as ‘safe’ or ‘dangerous’ using a pattern recogni-
tion approach. Most of these methods are useful for objects
of larger sizes. However, in our case, the object sizes can
be very small, even sub-pixel, along with very small rates
of expansion. Hence, a feature based approach was used
in this work, where the rate of expansion was estimated by
tracking features over a large number of frames.

Consider an object approaching towards the aircraft with
a relative velocity of V as shown in Figure 2 (a). Let p be
the distance of passage which is the closest distance that the
object approaches the camera, and � denote the time to pas-
sage (or collision) which is the time the object takes to reach
the distance of passage. The object distance is denoted by r.
The corresponding geometry for the background is shown
in Figure 2 (b). The declination angle of the line of sight,
denoted by � determines the position of the feature in the
image. The velocity of the host aircraft has a magnitude of
V0 and angle of inclination �. The background distance is
denoted by r0.
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p

r
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φ

T (Target)
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Figure 2. Geometry of (a) target (b) back-
ground moving relative to the camera.

3.1 Target Translation

Referring to the scene geometry of Figure 2 (a), the rate
of angular translation of an object in the image is given by
T = _� – i.e., the rate of change of angle �. The pixel

translation is approximately given by multiplying T by the
camera focal length. It can be shown [9] that:

T = _� =
pV

r2
=

p cos�

�r
(1)

Thus, the rate of image translation is proportional to the
distance of passage, and the objects on a collision course
are likely to have a smaller image motion compared to other
objects. However, the rate of translation also depends on the
target distance, and a nearer target moves faster in the image
than a farther target with the same distance of passage.

It should be noted that the above relationship is valid
only if the aircraft does not rotate or vibrate around its own
axes. If there is rotation, it should be compensated by using
data from the aircraft navigation system. In absence of this
data, image features due to clutter should be used to perform
the compensation, by modeling their image motion.

3.2 Target Expansion

The rate of image expansion of any object is given by
E = _s=s where s is the size of the object in the image. It
is well known that this rate of image expansion is inversely
proportional to the time to collision. It can be shown [9]
that:

E = �
_r

r
=

zV

r2
=

V cos�

r
=

cos2 �

�
(2)

� =
z

V
=

r cos�

V
(3)

For � = 25 s = 750 frames, E = 0:13% per frame, which
is a very small magnitude, measured by tracking over a large
number of frames.

3.3 Background Translation

The relationship between the image translation and the
distance of passage can be used to remove the clutter which
is not on collision course and thus expected to have a large
image motion. However, the image motion is inversely pro-
portional to the distance of the object from the camera.
Thus, if clutter is at a large distance, it too could have a
small image motion. Hence, the image translation of an ob-
ject should be compared with that of a ground feature in
the same line of sight. To compute the rate of background
translation, the corresponding background parameters are
substituted in equation (1) as:

T0 =
p0V0
r20

(4)

where p0, V0, and r0 are shown in the scene geometry
of Figure 2 (b). For reliable discrimination between haz-
ard and background, the rate of translation of the hazard
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should be much smaller than that of the background – i.e.,
T � ��1t T0 with �t > 1, having a larger value for greater
discriminating power. In such a case, it can be shown [9]
that the following condition should be satisfied:

sin(� + �) sin � � �tDQ
p
1�Q2f(h0; �) ' �tDQ (5)

with

D =
h0
�V0

; Q =
p

r
= sin� ; cos� =

p
1�Q2 ' 1

f(h0; �) = 2

�
1 +

q
1� 2h0=(Re tan

2 �)

�
�1

(6)

where Re is the radius of the earth, and f(h0; �) accounts
for the curvature of the earth. For nearby points, f ' 1,
whereas for points on the horizon, f = 2. Since the object
distance cannot be greater than the background distance in
the line of sight, r � r0, one can also write:

sin(� + �) �
�tp
p
1�Q2

�V0
'

�tp

�V0
(7)

which is approximately independent of r. Hence, it can be
said that for detection to be possible at all for a particular �
and �, the above condition is necessary irrespective of the
target distance r. For example, if we have:

p = 150m ' 500ft; � = 25 s;

V0 = 150m=s ' 290 knots; h0 = 1 km ' 3280 ft;

� = 0; �t = 2:5; f ' 1 (8)

For these values D = 0:267 and from equation (7), the nec-
essary condition is � � 5:7�. This condition corresponds
to the target being at the same position as the background,
which is r = r0 = 10 km ' 5:4nmi, or Q = 0:015. How-
ever, if the target is nearer, the condition on � is determined
by equation (5). For example, if a hazard should be detected
at r = 5 km ' 2:7nmi orQ = 0:03, one would really need
� � 8:1�. The required � increases as r decreases.

3.4 Background Expansion

For estimating the rate of background expansion, the
background parameters are substituted in equation (2) as:

E0 =
z0V0
r20

(9)

If reliable discrimination of the hazard from the back-
ground is required, the rate of expansion of the hazard
must be much larger than that of the background, – i.e.,
E � �eE0 with �e > 1, having a large value for greater
discriminating power. Using the geometry of Figure 2 (b),
it can be shown [9] that the following condition is required:

cos(�+�) sin � � ��1e D(1�Q2)f(h0; �) ' ��1e D (10)

where D and Q are given by equation (6). For the condi-
tions stated in equation (8), we need � � 6:2� for reliable
detection using expansion.

3.5 Analysis

The behavior of conditions required for detection using
translation and expansion is shown as plots of required an-
gle � against D = h0=(�V0) in Figure 3. The dashed line
shows the maximum allowable � for detection using expan-
sion (independent of the target distance). The other curves
show the minimum � required for detection using transla-
tion for various values of target distance r in km, for the
distance of passage p = 150m. For a wider range of de-
tection, the required minimum � for translation should be
small, whereas the maximum allowable � using expansion
should be large. The minimum � for translation increases
with D = h0=(�V0) as well as Q = p=r. However, maxi-
mum � for expansion which is independent of Q increases
faster with D. Hence, a large value of D – i.e., large aircraft
height h0, small time to passage � , and small host aircraft
velocity V0 – would give a greater range of � for which at
least one of the two approaches would be useful for dis-
crimination. However, detection using translation improves
for small D and Q – i.e., large target distance r but small
distance of passage p.
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Figure 3. Plots of detection behavior using
translation and expansion.

4 Collision Course Object Detection

For detecting objects on a collision course, the image
processing stage uses morphological filtering to remove
most of the background clutter. The tracking stage tracks
the translation and expansion of the features for a number
of frames, and using these to separate the objects on col-
lision course, from the remaining background clutter. The
approach used for detecting the objects on a collision course
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was tested on the image sequence provided by NASA, con-
taining an aircraft on a collision course with severe back-
ground clutter. The approach successfully discriminates the
object from the clutter. The running time for the current im-
plementation is approximately 7 seconds per frame, with a
scope for improvement by optimizing the code. Specialized
hardware may be able to improve the performance further
to enable real time implementation.

4.1 Image Processing Stage

A morphological filter [6] can remove large sized fea-
tures (usually clutter), while retaining small sized features
(usually targets). A difference between the original image
and its morphological opening (top-hat transform) outputs
small-sized positive targets (bright targets in dark back-
ground). On the other hand, the difference between the
morphological closing and the original image (bottom-hat
transform) outputs negative targets (dark targets in bright
background). Both these images are non-negative, and can
be separately used to detect targets.

A single mask for these morphological operations gives
undesirable outputs for jagged boundaries of large features.
Hence, a horizontal mask mx and a vertical mask my were
used separately as proposed by [6]. These masks are of
length 5 with origin at the center of the mask, with all the
pixels having the default value of zero. The outputs are
given by:

F+ = F �maxfF �mx; F �myg (11)

F� = �F +minfF �mx; F �myg (12)

where � and � denote morphological opening and clos-
ing operations, respectively. Non-maximal suppression was
performed on the outputs of the filters, and pixels exceeding
a threshold were sent as features to the tracking stage.

4.2 Tracking Stage

To estimate the translation of the features, they were
tracked over a large number of frames. Since the naviga-
tion system data was available, the position of the features
were compensated using this data. The strongest feature in
a window around the predicted position was taken as the
corresponding feature in the next frame, and the smoothed
estimates of the feature position and velocity in each frame
were obtained using Kalman filter approach.

For detecting expansion, a 15� 15 window around each
feature was explored. The sub-image corresponding to the
window was thresholded, and the connected component
containing the center of the window was found. All the pix-
els in the sub-image that did not belong to the component
were set to zero. The sub-image was convolved with a num-
ber of smoothing masks. These masks perform matched

filtering with a object templates corresponding a number
of different sizes. The maximum output from all these
masks was considered as the measure of target strength.
The expansion was measured in terms of increase of the
target strength, tracked over a number of frames. The tar-
get strength was plotted against the frame number, and the
mean rate of expansion was estimated by applying least
squares to the logarithm of the target strength.

4.3 Results

The estimation of translation and expansion was per-
formed on a sequence of images captured from an ana-
log camera in which the target aircraft is approaching
the camera. The aircraft was flying at a barometric
height of around 3200 ft (975m), with the airspeed around
160 knots (82m=s). The inclination angle � was less than
3�. For � = 25 seconds, equation (6) gives D = 0:329.
If p = 150m ' 500 ft is allowed, and �t = �e = 2:5,
then the necessary condition for reliable detection using
translation by equation (7) is � � 10:5�. Reliable detec-
tion using expansion requires � � 7:6� using equation (10).
Since the FOV of the camera was small (9:75�), expansion
would be more suitable for most parts of the image under
the above conditions. However, for larger values of � , trans-
lation would be more favorable than expansion. For exam-
ple, � = 100 seconds givesD = 0:0822, and the conditions
for reliable detection with translation and expansion would
change to � � 2:6� and � � 1:9�, respectively. In practice,
it was observed that both translation and expansion could
separate the collision course aircraft from most clutter.

Figure 4 (a) and (b) show the first and the last image
frames in the 482 frame (16 second) sequence used for tar-
get detection. Figure 4 (c) and (d) show all the target tracks
before and after motion compensation, respectively. The
target track is shown separately in Figure 5 (a) and (b).
Figure 5 (c) shows the plot of the estimated target strength
against the frame number, to measure the target expansion.
Corresponding plots for a clutter track are shown in Fig-
ures 5 (d)-(f). It can be seen that the target track has a
smaller rate of translation but a larger rate of expansion
than the clutter track. A scatter plot of the feature expan-
sion against translation for these tracks, including the target
track is shown in Figure 6. The rate of translation is mea-
sured in terms of the displacement magnitude of the com-
pensated features in 100 frames, whereas the expansion is
measured in terms of the increase in the logarithm (to base
10) of the target strength in 100 frames. The target having
large rate of expansion and small rate of translation is lo-
cated in the upper left corner of the plot. A clutter feature in
the upper right corner having large rates of both translation
and expansion is from lower part of the image (large �).
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Figure 4. (a) First (b) last frames in the image
sequence used for target detection. Feature
tracks (c) before (d) after compensation. The
target, not visible in (a), is marked by a rect-
angle in (b)-(d).

5 Crossing Object Detection

The image processing stage of the detection system per-
forms image differencing and low-stop filtering to remove
stationary and uniform background. The tracking stage
tracks the feature positions, integrates the feature strength
over time, and checks for significant and consistent mo-
tion in the features to distinguish target from clutter. The
image processing stage was implemented on the pipelined
image processing system, the DataCube MaxPCI, whereas
the tracking stage was implemented on the associated host
machine. For a successful real-time implementation, the
output rate of image processing stage was matched to the
input rate of the tracking stage by dynamically selecting the
threshold for feature extraction. This is known as the rate
constraint criterion [5]. The system was mounted on the
host aircraft, and flight tests were conducted by NASA with
another aircraft flying in front of this aircraft. The detection
and tracking of the target aircraft were demonstrated during
the flight test.

It should be noted that simple algorithms were used for
the system to get real time performance. Other approaches
requiring optical flow computations were tried [9], but were
found to be unsuitable for real time implementation with the
particular hardware. The image processing stage and track-
ing stage for crossing object detection are briefly described
below, and in more detail in [9].
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Figure 5. Translation and expansion for typi-
cal target and clutter tracks: Target track (a)
before (b) after compensation. (c) Plot of ex-
pansion of target track against frame number.
(d)-(f) Corresponding plots for a clutter track.
The target track has a smaller rate of transla-
tion and a larger rate of expansion.

5.1 Image Processing Stage

This stage performs the basic image processing steps to
suppress clutter and extract features which could potentially
be crossing targets. The resolution of the image was re-
duced by performing a smoothing and down-sampling op-
eration, so that real time operation becomes feasible with
the current hardware. A low-stop filter was applied to the
reduced image to suppress background clutter. Image dif-
ferencing was then performed by subtracting consecutive
frames, which is equivalent to low-stop filtering in tempo-
ral direction. Since the object is assumed to be translating,
image differencing would suppress stationary objects corre-
sponding to background clutter.

Directly using the output of the previous step would give
rise to a large number of features for an extended target.
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Figure 6. Scatter plot of the feature expansion
against translation: The target marked as an
encircled asterisk, is in upper left corner, hav-
ing a small rate of translation and a large rate
of expansion.

Non-maximal suppression was performed to get a single
feature (or sometimes a small number of features) for the
entire target. To extract candidate features, thresholding
was performed. The threshold was selected using the image
histogram, so that the number of features match the process-
ing rate of the slower tracking stage. The positions and the
amplitudes of the resulting features were transmitted to the
tracking stage.

5.2 Tracking Stage

This stage maintains a list of tracks containing the po-
sition, velocity, amplitude, and the track life. The list is
empty in the beginning. For each track in the list of tracks,
the strongest feature from the image processing stage in a
neighborhood window is selected as the continuation of the
track. Kalman filter is used to update the track position and
velocity. The feature amplitude is scaled by a forgetting
factor, and added to the track amplitude. If no feature sat-
isfying the above conditions is found in the neighborhood
of the track, the position and velocity are extrapolated using
only the state update.

After all the current tracks are updated, features in the
feature list are used to check for new tracks. For every fea-
ture, the list of tracks is scanned to see if a track is already
there in its neighborhood. If not, a track is created out of
the feature. Its position will be the same as feature position
whereas velocity initialized to zero. The actual velocity will
be computed only in the next frame.

If the number of tracks is too large, the stage can get
overloaded and fail to operate in real time. In such a case,
the weakest tracks are deleted to prevent overloading. Fur-
thermore, tracks which are very close to each other and have
nearly the same velocity are merged, to eliminate multiple

tracks corresponding to same object. Tracks which satisfy
the criteria of the object – i.e., having an amplitude larger
than a threshold, as well as a significant and consistent track
velocity – are output as potential objects.

5.3 Results

The real-time image capturing, recording, and process-
ing system was demonstrated on the flight tests conducted
by NASA. During the first set of flight tests, image se-
quences were captured and recorded successfully at the rate
of 30 frames per second. The tracking algorithms were de-
signed and fine-tuned using these image sequences. During
the next set of flight tests, in addition to the real-time cap-
turing and recording, the crossing target tracking algorithm
was executed concurrently at the rate of 15 frames per sec-
ond. Several image sequences with the target aircraft cross-
ing the host aircraft were obtained. It was observed that the
system successfully detected and tracked the crossing ob-
ject during the flight tests. Figure 7 shows a trace of the
tracking algorithm applied on an image sequence with tar-
get aircraft translating from right to left at a distance of 3
nautical miles (5:4 km). The aircraft is located at the end of
the track in this image.

            

Figure 7. Tracking algorithm applied on an im-
age sequence with the target aircraft (marked
by a rectangle) translating from right to left at
a distance of 3 nmi (5:4 km).

Table 1 summarizes the performance of the crossing tar-
get tracking algorithm on a number of image sequences with
different distances between the host and the target aircraft.
The mis-detection (MD) rate is the ratio of the number of
frames in which the target was missed to the total number
of frames, whereas the false alarm rate (FA) is the ratio of
the total number of false alarms throughout the sequence to
the number of image frames in the sequence. The rate of
false alarm depends on the amount of clutter in the images,
whereas the rate of mis-detection depends on the target size
and contrast, and therefore increases with the target distance
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Table 1. The performance of the crossing tar-
get detection algorithm for image sequences
with a number of target distances.

Distance # Frames MD rate FA rate
nmi km

1.5 2.78 120 0.061 0.000
1.8 3.33 130 0.113 0.000
2.0 3.70 150 0.394 0.000
2.4 4.44 210 0.059 0.000
3.0 5.55 210 0.056 0.000
4.7 8.70 300 0.335 0.183
5.0 9.26 340 0.803 0.147
5.4 10.00 410 0.643 0.000

in most cases. Since false alarms can be very annoying to
the pilots, a low false alarm rate was more desirable than
a low mis-detection rate. Hence, the parameters of the al-
gorithms were selected to reduce the false alarm rate, and
were same for all the scenarios. It is possible to get a bet-
ter performance by adjusting parameters according to the
characteristics (such as the clutter level) of each scenario.

6 Summary and Future Work

This paper described approaches for detecting obstacles
in the flight path of an aircraft in presence of background
clutter. Algorithms for detecting objects on a collision
course, as well as those crossing the host aircraft were de-
veloped. To distinguish collision course objects from back-
ground clutter, their translation and expansion in the image
were used, whereas for crossing objects, their strength, mo-
tion, and motion consistency were used. Detection of cross-
ing objects was implemented on a real time system, and
successfully tested on flight tests. The following avenues
of future work can be explored.

To estimate image translation in case of collision course
objects, compensation for the rotational or vibrational mo-
tion of the camera was performed. If the navigation data is
unavailable, the image features due to the stationary clutter
should be used to perform the compensation, by modeling
their image motion.

Image expansion can also be caused by rotation of the
target aircraft causing a ‘false’ expansion in the direction
perpendicular to the rotation axis, deforming its shape in the
image. On the other hand, the expansion due to a collision
course would take place uniformly in all directions without
deformation. Measurement of deformation components [7]
could be useful for distinguishing between the false expan-
sion and the genuine expansion due to a collision course.

The performance of the crossing object detection system
was relatively poor in the cases where the host aircraft ro-
tated about its own axes. To improve the performance, the

image motion due to aircraft rotation should be compen-
sated using navigation data. Alternatively, the background
motion should be modeled to separate independent object
motion. This could be done using the approach of Irani and
Anandan [8] which separates the scene motion into planar
and parallax components. However, since the DataCube ar-
chitecture can perform only simple image processing opera-
tions, the procedure would have to be performed on the host
machine, using feature based approach.

Finally, the approaches developed here for obstacle de-
tection using visible light images could be combined with
those using radar and other sources for design of a complete
collision avoidance system.
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