
I. INTRODUCTION 

Continued advances in the fields of 
image-processing and computer vision have raised 
interest in their suitability to aid pilots to detect 
possible obstacles in their flight paths. For the 
last few years, NASA has been exploring the use 
of image sequences for detecting obstacles in the 
flight path of an aircraft. In the design of a high 
speed civil transport (HSCT) aircraft with a limited 
cockpit Visibility, NASA has proposed an extemal 
visibility system (XVS) in which high resolution 
video images would be obtained using cameras 
mounted on the aircraft. These images can be used 
to detect obstacles in the flight path to warn the pilots 
and avoid collisions. 

from images are abundant in the published literature. 
Nishiguchi, et al. [17] proposed the use of a 
recursive algorithm to integrate multiple frames 
while accounting for small object motion. A dynamic 
programming approach was used by Barniv [5 ]  and 
Arnold, et al. [2] to detect moving objects of small 
size. The theoretical performance of this approach was 
characterized by Tonissen and Evans [19]. 

The above algorithms perform well when the 
background is uniform. However, in real situations 
the hazardous object should also be detected against 
cluttered backgrounds, such as clouds, ground, or 
water. The objects that cross the host aircraft have a 
significant translation in the image. Hence, subtraction 
of consecutive images can be used to remove the 
stationary clutter. If the background clutter also has 
a significant motion, its motion should be separated 
from the motion of the target. Irani and Anandan [ l l ]  
separated the scene motion into planar and parallax 
motion, and identified independently moving objects 
which have a significant parallax. 

However, objects on a collision course could be 
nearly stationary in the image. Image differencing 
is not useful in such a case, since it can remove the 
object as well. Morphological filtering [7] removes 
objects of large size, usually corresponding to 
clutter while retaining the objects of small size. This 
approach is useful in removing large clutter, such 
as clouds. However, it does not remove small-sized 
clutter. 

We have used the approaches described here to 
detect objects on collision course, as well as those 
crossing the host aircraft [9, 10, 131. At present, the 
detection of collision course and crossing objects are 
separately implemented. However, the algorithms 
can be applied to the same image sequence to detect 
both kinds of objects simultaneously. The detection 
'is divided into two stages, the image-processing stage 
and the tracking stage. The image processing stage 
operates on the entire image, removes most clutter, 
and isolates feattires that potentially correspond to 
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targets. The tracking stage tracks these features over 
a number of frames, measures their properties, and 
tries to separate the genuine targets from clutter using 
these properties. Since the fnst stage has reduced 
the volume of data to be operated on, more complex 
tracking algorithms can be implemented without 
sacrificing the overall time complexity. 

stage uses morphological filter to separate most 
clutter. To discriminate the collision course object 
from remaining clutter, the difference in translation 
and expansion of corresponding image features 
is used in the tracking stage. The effectiveness of 
this approach was demonstrated on a real image 
sequence captured from an aircraft. For crossing 
objects, image-processing consists of steps such as 
image differencing and low-stop filtering to remove 
stationary clutter. This stage was implemented on a 
pipelined processor system, the Datacube MaxPCI to 
obtain real time performance. This was followed by 
tracking of features with a significant and consistent 
motion, on the associated host machine. Crossing 
object detection was demonstrated on several image 
sequences obtained from flight tests conducted by 
NASA. 

Section I1 describes the flight maneuvers used to 
get image sequences for both types of objects. Section 
111 describes the theory used for discriminating 
collision course objects from background clutter, 
using difference in the translation and expansion of 
the corresponding image features. Section IV and V 
describe the steps used to detect the collision course 
objects and crossing objects, respectively. Results 
on real image sequences are shown in the respective 
sections. The detection of collision course objects was 
performed off-line on real image sequence obtained 
from an aircraft. The detection of crossing objects was 
implemented in real time using Datacube, mounted on 
an aircraft, and tested during flight tests conducted by 
NASA. Section VI concludes this work, and explores 
avenues for future work. 

For collision course objects, the image-processing 

11. FLIGHT MANEUVERS FOR COLLISION COURSE 
AND CROSSING SCENARIOS 

The flight maneuvers were based out of NASA 
Langley Research Center in Virginia. ' h o  classes 
of maneuvers were flown, as shown in Fig. 1. In the 
collision course maneuver, the host aircraft was a 
Boeing 737 and the target aircraft,was a Lockheed 
Martin C-130, both of which were owned by NASA. 
This maneuver was initiated with the target aircraft 
climbing directly towards the host aircraft. Before 
collision could occur, the target aircraft leveled off 
and flew under the host. Because of safety concems, 
the collision course maneuver was conducted only 
two times. In one of these maneuvers, the background 
was uniform and it was trivial to separate the target, 

I I 1  . . .  

(a) (b) 

Fig. 1.  (a) Collision come abject maneuver: Wget aircr+i.ilies 
towards host aircraft. (b) Crossing object maneuver: target aircraft 

flies perpendicular U) host aircraft. . .  
. .: 

whereas in the other, the background was severely 
cluttered and the elimination of this clutter required 
the use of feature motion behavior, as described here. 
Special purpose image-processing hardware required ; 
for real-time obstacle detection was, not available 
during these flights and hence the focus was on 
capturing video data for off-line processing. 

As an altemative to the collision course 
maneuvers, flights were conductkd with the target . . 
aircraft flying'directly away from. the host &rcr,+. , 

The images from these maneuvers could be played in, 
reverse to partly simulate a collision condition. %e 
drawback to this approach is that the background ,, ,,, 

motion and magnitude of relative velocity do not. , 

correspond to a collision condition. As a result, such 
maneuvers are not examined here. 

In the crossing maneuver, the host aircraft wis, '  
a modified Convair C-l31B.(owned by the United' 
States Air Force) and the target aircraft was a 
Beech King Air B-200 (owned by NASA). This 
maneuver was safer to perform than the collision 
course maneuver and was conducted dozens of 
times. Video was'captured using a Kodak Megaplus 
Model 1.0 digital camera with a 1,024~1,024 pixels 
resolution. Datacube MaxPCI system with real-ti* 
image-processing capabilities was installed on the host 
aircraft and the collision course object detection and 
tracking algorithm was tested during these flights. In 
a final system incorporating these'algorithms, both + 

collision course and crossing course object detection 
algorithms would be running in parallel and both' 
classes of hazards would be presented to the.pilots. ' 

Planning and running the flight tests was not a 
trivial task because of safety concems and'the number 
of people involved. All flights required months of 
advance planning to pass the Air Force and NASA 
safety reviews. Each aircraft required pilots, crew, 
and additional support personnel on the ground 
for refueling, maintenance, and logistics. .A large ' 

number of personnel were required because the flights 
supported not only image-processing, but also other 
aspects of the XVS program. For example, numerous 
types of displays were tested for their ability to show 

. .  

~ .' 
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other aircraft at different distances, and other sensors 
(such as radar) were tested for their detection ability. 

I l l .  DISCRIMINATION OF HAZARD FROM CLUTTfR 

It is well known in the pilots’ community, that an 
object on a collision or near-collision course remains 
stationary or nearly stationary in its 2-D image .’ 

view 1141. This property can be used to distinguish 
hazardous objects from clutter, by measuring the rate 
of translation of the features in the image. Another 
useful property is the rate of image expansion, which 
is approximately inversely proportional to the time to 
collision. Nelson and Aloimonos [16] use the image 
expansion in terms of the flow field divergence to 
estimate the time to colhsion, for separating obstacles. 
Ringach and Baram [18] use the normal flow, along 
with the object boundary information to estimate 
the flow field divergence. Baram and Bamiv [3] 
rely on object texture to extract information on local 
expansion. Instead of estimating a numerical depth 
value, an object is classified as “safe” or “dangerous.” 
using signs of image spatial and temporal derivatives 
in a feedforward neural network. Baram, Barniv, 
and Sony [41 improve on the above by using gray 
level derivatives instead of signs, which reduces 
the complexity of the neural network. The network 
leams the probability density functions of the data, 
corresponding to safe and dangerous categories, which 
can be used for classification of test data. Francois 
and Bouthemy [SI separate the image motion into 
components of divergence, rotation, and deformation. 
Meyer and Bonthemy [15] obtain maximum likelihood 
estimation of these components using normal flow 
measurements. Ancona and Poggio [l] use 1-D 
correlation to estimate optical flow for a time-to-crash 
detector. Most of these methods are useful for objects 
of larger sizes. However, in our case, the object sizes 
can be very small, even subpixel, along with very 
small rates of expansion. Hence, a feature:hased 
approach was used in this work, where the rate of 
expansion was estimated by tracking features over a 
large number of frames. 

In the following sections, the rates of translation 
and expansion for a collision course object as well 
as background clutter are derived. It will be seen that 
a collision course object usually has a small rate of 
translation and a large rate of expansion compared 
with the background clutter. However, the rate of 
translation also depends on the distance, and far away 
clutter, lying in upper parts of the image can have 
less rate of translation than a nearby object. On the 
other hand, nearby clutter in the lower parts of the 
image could have large rate of expansion. Hence, 
the conditions are derived under which the object 
has a lower translation rate and higher expansion rata 
compared with the clutter. 

/ \. 1 

c (Camera) \ \ v (relative) 

~ 
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Fig. 2. Geometry of (a) target (b) background moving relative to 
camera. 

Consider an object approaching towards the 
aircraft with a relative velocity of V as shown in 
Fig. 2(a). Let p be the distance of passage which is 
the closest distance that the object approaches the 
camera, and T denote the time to passage (or collision) 
which is the time the object takes to reach the distance 
of passage. The object distance is denoted by r. The 
corresponding geometry for the background is shown 
in Fig. 2(b). The declination angle of the line of sight, 
denoted by 0 determines the position of the feature 
in the image. The velocity of the host aircraft has 
a magnitude of V, and angle of inclination a. The 
background distance is denoted by r,,. 

A. Target Translation 

As seen from Fig. 2(a), when the object moves, the 
angle 4 as well as distances r and z change, but the. 
distance of passage p is constant. The rate of angular 
translation of an object in the image is T = 4. The 
pixel translation is approximately given by multiplying 
the angular translation by the focal length. From 
Fig. 2(a), we have 

x. 

z = pcot4 = rcos4. ( 1) 

The magnitude of relative velocity V is the rate of 
decrease of I, given by 



Also, the time to passage is given by 

r = ZJV = rcos4/V. (3) 

From (2) and (3), the rate of target translation is given 

(4) 

Thus, the rate of image translation is proportional 
to the distance of passage, and the objectsbn a 
collision course are likely to have a smaller rate 05 
translation compared with other objects. However, this 
rate is also dependent on the target distance, and a 
nearer target moves faster in the image than a farther 
target with the same distance of passage. If S,, is the 
smallest visible dimension that an object can have, the 
corresponding size s in t h e h a g e  is given by 

s 2 smin = S-fr. (5) 
Hence, from (4), one can write 

Hence, an object on a near collision course, having 
suficient time before imminent collision has the ratio 
of its image motion to its image size hounded by 
the above precomputable limit. For example, if the 
distance of passage of p = 150 m (500 ft) is allowed, 
and an object of smallest size of S,,, = 1.2 m (4 ft) 
is to be detected before T = 25 s (750 frames), then 
this ratio becomes 1/6, i.e., the image motion per 
frame is at the most 1/6th of the image size of the 
object. However, in actual practice, a larger range of 
velocities should be checked, to have a safety margin. 

It should be noted that the above relationship is 
valid only if the aircraft does not rotate or vibrate 
around its own axes. If there is rotation, it should 
be compensated by using the data from the aircraft 
navigation system. In the absence of this data, it may 
be possible to use image features due to clutter (if 
available) to perform the compensation, by modeling 
their image motion due to camera rotation. 

velocity-to-size ratio of the object would be bounded 
By reducing the image resolution to an appropriate. 
level, the image velocity of the object would also be 
restricted. Hence, using pyramid construction, target 
detection can be performed at a number of resolutions, 
and the suitable resolution selected. This also leads to 
spatio-temporal integration of the image data and the 
amplification of signal-to-noise ratio (SNR) which 
could enable detection of subpixel or low-contrast 
objects in uniform background, such as clear or 
overcast sky. 

B. Target Expansion 

If this compensation is successful, the 

time to collision, It is well known that the rate of 
image expansion, i.e., the increase of the image size 
of an object, is inversely proportional to the time to 
collision. 

In Fig. 2(a), as the object comes closer to the 
camera along the line of z ,  its size in the image will 
become larger. The rate of this expansion of any 
object is defined as the ratio of the rate of increase 
in its size to the size at that time, i.e., E = S/s-where 
s is the size of the object in the image. Since s = S/r 
where S is the object size which is assumed constant, 
we have S = -Si fr2. and 

E = G / r .  (7) 

By geometry of Fig. 2(a), 

To find the rate of expansion, this expressim is 
differentiated to yield 

2r i  = 2zz = -2zV. (9) 

Hence, rate of target expansion is given by 

where the time to passage is 

r = z/V = rcos$/V. (11) 

For r = 25 s = 750 frames, the ratio is 0.1:3% per 
frame, which is a very small magnitude. This small 
expansion can be measured by tracking it 'over a large 
number of frames. 

C. Background Translation 

The relationship between image translation and the 
distance of passage can be used to remove the clutter 
which is not on collision course and thus c xpected 
to have a large image motion. However, the image 
motion also decreases with the object distince. Thus, 
if clutter is at a large distance, it too could have a 
small image motion. The conditions under which an 
object on the collision course can be distir guished 
from ground clutter at the same image position are 
derived below. ' 

and the minimum distance of approach foi the 
background, respectively, as shown in Fig. 2(b). 
The relative velocity V, between the cameia and the 
background is actually the magnitude of the camera 
velocity. By substituting these parameters in (4), the 
rate of background translation can be wrinen as 

Let ro and po denote the background d stance, 

Po& 
7,' 

To = - 

Another discriminating feature between objects Let h, = h, - h, denote the difference betvieen the 
camera altitude h, and the background altitude h,. on collision course, and objects much farther, is the 
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Also, the angle of the camera velocity above the 
horizontal (not horizon) is a. In Fig. 2(b), d = iTE is a 
function of the relative height h, = E and the angle 
0 = LDBC. If the Earth were flat (or 0 is large), and 
the terrain is smooth, the dotted line corresponding to 
d would coincide with the surface of the Earth, and 
d = hocot6'. However, if we express 

d(h,,,B) = h,cot6f(h,,,O) (13) 
then the effects of the Earth's curvature would 
be incorporated in the function f derived in the 
Appendix as 

If the Earth's curvature can be neglected, then f 2 1 
On the other hand, if the object is on the horizon, it 
can he shown that f = 2. 

background translation TO is given by 
Using Fig. 2(b) geometry with (12), the rate of 

with 
r, = h,,cscBf(h,,,6). (16) 

If the hazard is to be discriminated from the 
background in the same line of sight, the rate of 
translation of the hazard must be much smaller than 
that of the background, i.e., T I qr1G with q, > 1, 
having a larger value for greater discriminating power. 
Using (4) and (15), we have 

Hence, the object distance r should be larger than the 
following expression: 

(181 

' C O S ~ = ~ - I  ( fo rp<<r )  

Hence, 6 should satisfy 

sin(0 + a)sine 2 q , ~ ~ e f ( h , , ~ ) .  (:TO) 
Also, using T 5 q;'%, with equations (4) and (15). 
one can write 

Since the object distance cannot be greater than the 
background distance in the line of sight, r I r,,. Hence, 
one can also write 

For p << r or Q << 1, this condition is approximately 
independent of r.  It can be said that for detection 
to be possible at all for a particular 0 and a, the 
above condition is necessary irrespective of the target 
distance r ,  provided it is sufficiently large. 

If the curvature of the Earth can be neglected, 
then f 21 1. The necessary condition in (22) does not 
simplify. However, (20) reduces to 

sin(0 + a)sin6 2 q r D Q m .  (23) 

On solving for B,  this yields 

6'2 ~ [ C O S - ~ ( - ~ ~ ~ D Q ~ +  corn-a]. (24) 

For example, if we have 

p = 150 m, T = 25 s, V, = 150 d s ,  
(25) 

h, = 1 km, = 0, qr = 2.5 

for these values, D = 0.267, and from (22) the 
necessary condition is 0 > 5.7". This condition 
corresponds to the target being at the same position as 
the background, which is r = r, = 10 km N 5.4 nmi or 
Q = 0.015, using (16). However, if the target is nearer, 
the condition on 6 is determined by (20) or (23). For 
example, if a hazard should be detected at r = 5 km 2 

2.7 nmi or Q = 0.03, one would really need 0 2 8.1". 
The required 6' increases as r decreases. 

D. Background Expansion 

For estimating the rate of expansion of the 
background, the corresponding parameters for the 
background are substituted in (10) to give 

Eo = *, (26) 

. 

r0 
From Fig. 2(b) and (13). the rate of background 
expansion can be written as 

' 

v,cos(o + a )  - v,cos(~ + a)cose - 
d 

E, = 
'0 

If reliable discrimination of the hazard from the 
background in the same line of sight is required, the 
rate of expansion of the hazard must be much larger 
than that of the background, i.e., E 2 qeEo with qe > 1, 
having a large value for greater discriminating power. 
Using (10) and (27). one needs 

or 
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Fig. 3.  Plats for detection using translation and expansion. Plats 
of required R in degrees against D = hO/(.rb) in meters. Maximum 

0 for detection using expansion is shown by dashed line, and is 
independent of target distance. Other cuwes show minimum ff 

required for detection using translation for various values of target 
distance r in km, for the distance of passage p = 150 m. 

where D and Q are given by (19). For the case of 
f hi 1, the (29) reduces to 

cos(B+cu)sinB<q;'D(l -e2) .  (30) 
Explicit solution for 6' is then given by 

6'5 I[sin-'(Zq;'D(l -QZ)+sina)-a].  (31) 

For the conditions in (25). with ve = 2.5 and Q GC 1, 
we need 0 < 6.2" for reliable detection using 
expansion. 

E. Analysis 

using translation and expansion is shown as plots 
of required angle 6' against D = ~, / (TV,)  in Fig:3. 
The dashed line shows the maximum allowable 0 
for detection using expansion (independent of the 
target distance). The other curves show the minimum 
0 required for detection using translation for various 
values of target distance r in km, for the distance of 
passage p = 150 m. For a wider range of detection, 
the required minimum 6' for translation should be 
small, whereas the maximum allowable 0 using 
expansion should be large. The minimum I? for 
translation increases with D = h,/(rV,) as well as 
Q = p / r .  However, maximum 0 for expansion which 
is independent of Q increases faster with D.  Hence, a 
large value of D, i.e., large aircraft height h,, small 
time to passage T, and small host aircraft velocity 
V,, would give a greater range of 6' for which at 
least one of the two approaches would be useful for 
discrimination. However, detection using translation 
improves for small D and Q, i.e., large target distance 
r but small distance of passage p.  

IV. COLLISION COURSE OBJECT DETECTION 

The behavior of conditions required for detection 

For detecting objects on a collision course, the 
image-processing stage uses morphological filtering 

to remove most of the background clutter. The 
tracking stage tracks the translation and expansion of 
the features for a number of frames, and uses these 
to separate the objects on collision course from the 
remaining background clutter. The approach used 
for detecting the objects on a collision course was 
tested on the image sequence provided by NASA 
containing an aircraft on a collision course, with a 
lot of background clutter. The approach successfully 
discriminates the object from the clutter. The running 
time for the current implementation is approximately 
7 s per frame, with a scope for improvement by 
optimizing the code. Specialized hardware may he 
able to improve the performance further to enable real 
time implementation. 

A. Image Processing Stage 

A morphological filter [7] can remove large-sized ' . 
features (usually clutter), while retaining small-sized 
features (usually targets). A difference between the 
original image and its morphological opening (top-hat 
transform) outputs small-sized positive targets (bright 
targets in dark background), On the other hand, the 
difference between the morphological closing and the 
original image (bottom-hat transform) outputs negative 
targets (dark targets in bright background). Both these 
images are nonnegative, and can be separately used to 
detect targets. 

A single mask for these morphological operations 
gives undesirable outputs for jagged boundaries of 
large features. Hence, a horizontal mask m, and a 
vertical mask my were used separately as proposed 
by [7]. These masks are of length 5 with origin at 
the center of the mask, with all the pixels having 
the default value of zero. The outputs are given 
hY 

F, = F - max{F o m,,F o m y }  (32) 

F- = - F + m i n { F * m , , F O m , }  ' ". (33)  

where F is the original image, and o and 
denote morphological opening and closing * 

suppression was performed on the outputs F+ ~ " 

and F- of the filters, and pixels exceeding a 
threshold were sent as features to the tracking 
stage. 

operations, respectively. Nonmaximal . ~. . 

B. Tracking Stage 

To estimate the translation of the features, they 
were tracked over a large number of frames. Since the 
navigation system data was available, the position of ' 

the features were compensated using this data. The 
strongest feature in a window around the predicted 
position was taken as the corresponding feature in the 
next frame. and the smoothed estimates of the feature 
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Fig. 4. (a) First and (b) last frames in image sequence used'for target delection. Target aircraft, not visible in (a), is marked by a 
rectangle in (b). 

position and velocity in each frame were obtained 
using Kalman filter approach. 

For detecting expansion, a 15 x 15 window 
around each feature was explored. The subimage 
corresponding to the window was thresholded, and 
the connected component containing the center of the 
window was found. All the pixels in the subimage 
that did not belong to the component were set to 
zero. The subimage was convolved with a number 
of smoothing masks. These masks perform matched 
filtering with object templates corresponding to a 
number of different sizes. The maximum output 
from all these masks was considered as the measure 
of target strength. The expansion was measured 
in terms of increase of the target strength, tracked 
over a number of frames. The target strength was 
plotted against the frame number, and the mean rate 
of expansion was estimated by applying least squares 
to the logarithm of the target strength. 

C. Results 

The estimation of translation and expansion 
was performed on a sequence of images captured 
from an analog camera in which the target aircraft 
is approaching the camera. The aircraft was flying 
at a barometric height of around 3200 ft (975 m), 
with the airspeed around 160 knots (82 d s ) .  The 
inclination angle cy was less than 3". For T = 25 s, (19) 
gives D = 0.329. If p = 150 m N 500 ft is allowed, 
and 7, = qe = 2.5, then the necessary condition for 
reliable detection using translation by (22) is 0 2 
10.5". Reliable detection using expansion requires 
0 5 7.6" using (29). Since the FOV of the camera was 
small (9.75"), expansion would be more suitable for 
most parts of the image under the above conditions. 
However, for larger values of 7, translation would be 
more favorable than expansion. For example, 7 = 
100 s gives D = 0.0822, and the conditions for 
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I .  

(b) 

Fig. 5. Feahlre tracks (a) befon (b) after compensation. Compensation refers to the rotation compensation using navigation. Target 
aircraft is marked by a rectangle. 

reliable detection with translation and expansion 
would change to 8 2 2.6" and 0 5 1.9", respectively. 
In practice, it was observed in this case that both 
translation and expansion could separate the collision 
course aircraft from most clutter. 

Fig. 4(a) and (h) show the first and the last 
image frames in the 482 frame (16 s) sequence used 
for target detection. Fig. 5(a) and (b) show all the 
target tracks before and after motion compensation, 
respectively. The target track is shown separately 
in Fig. 6(a) and (h). Fig. 6(c) shows the plot of the 
estimated target strength against the frame number, 
to measure the target expansion. Corresponding plots 
for a clutter track are shown in Figs. 6(d)-(f). It can 
he seen that the target track has a smaller rate of 
translation hut a larger rate of expansion than the 
clutter track. A scatter plot of the feature expansion 
against translation for these tracks, including the target 

track is shown in Fig. 7. The rate of translation is 
measured in terms of the displacement magnitude 
of the compensated features in 100 frames, whereas 
the expansion is measured in terms of the increase 
in the logarithm (to base 10) of the target strength in 
100 frames. The target having large rate of expansion 
and small rate of translation is located in the upper 
left comer of the plot. A clutter feature in the upper 
right corner having large rates of both translation and 
expansion is from lower part of the image (large 8). 
This ground based feature has a small time to passage 
but large distance of passage, and therefore does not 
pose danger to the aircraft. 

V. CROSSING OBJECT DETECTION 

In addition to the detection of objects on a 
collision course, it is useful to monitor the objects 
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Fig. 6. Translation and expansion for typical target and clutter tracks. (a) Target track. (b) Target uack after compensation. (c) Plot of 
expansion of target track against frame number. (dHf) Correspnding plots for clutter track. Target track has smaller rate of translation 

and larger rate of expansion. 

Fealursiranrlatton mr lm hemes lpirels 1 

Fig. 7. Scatter plot of feature expansion against translation. Target marked as encircled asterisk, and is in upper le!i corner, having 
small rate of Innslation and large rate of expansion. 
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which are crossing the aircraft. For this purpose, a 
system was designed to specifically detect objects 
having a translational motion in the image. To 
distinguish translating objects from ground or cloud 
clutter, the following criteria were used. 

1) The object should.have sufficient signal 
strength. 

2) The object should have an &age velocity - 
greater than a threshold. 

3) The object should have a consistent,,motion, 
i.e., its velocity must not change abruptly. 

Note that the clutter is expected to.have smaller 
motion than'a crossing object but larger motion and 
smaller expansion than collision course object. Hence, 
different algorithms aie needed to separate clutter 
from crossing and collision course objects. 

implemented on the pipelined image-processing 
system;the Datacube MaxPCI described in [9, 
131 to obtain real time performance;.The system, 
was mounted on the Air Force Total In-Flight ' 

Simulator (TIFSNC1314) aircraft, and flight tests 
were-conducted by NASA with aiother aircraft 
flying in front of it. The detection and tracking of 
the target aircraft were demonstiated during the flight 
test. 

This system is divided into two stages, an 
image-processing stage and a tracking stage. The 
image-processing stage removes most of .the clutter, 
and isolates potential features which could be 
translating objects, This stage involves repetitive 
image operations such as convolution, pointwise 
operations, histograms, etc. which are suitable for 
a pipelined architecture, and can be performed in 
integer format. Hence, these steps are implemented 
on the DataCube machine. The output of this stage is 
a list of image features which are liiely to contah 
the target objects, including their positions and 
the signal strengths. However, the list may also 
contain features corresponding to background 
clutter, which are not separated by the simple 
image-processing steps. The tracking stage tracks 
these features to distinguish the genuine translating 
objects from background clutter using .the criteria 
mentioned above: Since the image-processing stage 
has reduced the volume of data to be operated on, 
more complicated target tracking algorithms can 
be implemented even on the host PC associated 
with the Datacube. The threshold used in the 
image-processing stage is adjusted dynagically 
to give a nearly constant number of features for 
the tracking stage so that they can he processed 
in real time using the slower host. This matching 
of the output rate of one stage to the input rate 
of the next stage is known as the rate constraint 
criterion [61. 

The'system to detect translating objects has been 

. 
' '' 

. . 

, 

A. Image-Processing Stage 

~ 
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This stage performs the basic image-processing 
steps to suppress clutter and extract features which 
could potentially be crossing targets. 

The resolution of the 
image is reduced so that the system is capable of 
operation in real time. The image is convolved with 
a 5 x 5 low-pass filter mask and then down-sampled 
by two in both horizontal +d vertical directions. 
Low-pass filtering suppresses high frequencies, which 
would otherwise have been aliased to low frequencies 
by the down-sampler. Although the image resolution 
is reduced, the SNR is actually enhanced. This is 
because the target size is usually greater than 2 pixels, 
leading to spatial integration of the target contrast. 

2 )  Low-Stop Filtering: A low-stop filter is applied 
to the reduced image to suppress background clutter. 
The filter is formed by subtracting a low-pass filter 
of larger size (9 x 7) from a low-pass filter of smaller 
size (3 x 5). This step suppresses uniform background 
intensity and weak clutter corresponding to low 
frequencies, and also performs spatial integration 
for larger objects. A rectangular mask is used since 
the targets are expected to have a greater width than 
height. 

3) Zmage Diferencjng Image differencing ' ' 

is performed on the'low-stop filtered images by 
subtracting consecutive frames. This is equivalent 
to a low-stop filter in temporal direction. Since 'the 
object is assumed to be translating, image differencing 
suppresses stationary objects corresponding to 
background clutter. It should be noted that steps 1 
to 3 are theoretically interchangeable, since they are 
all linear filters. However, since these operations are 
peiformed with integer arithmetic of limited precision, 
the particular order of the.steps is used to reduce the 
"cation error. 

4) Nonmaximal Suppression: Directly using 
the output of the previous step would give rise to 
a large number of features for an extended target. 
Nonmaximal suppression is performed to get a single 
feature (or sometimes a small number of features) 
for the entire target. Pixels can have both positive 
or negative values corresponding to bright and dark 
targets, respectively. Hence, an absolute value image 
is first formed, and every pixel which is not a local 
maximum in its 3 x 3 neighborhood is marked. The 
marked pixels are set to zero in the original image, 
i.e., the image before taking the absolute values. 

To extract candidate 
features, the output from the above steps should 
be thresholded. Furthermore, the threshold should 
be chosen so that the number of features does not 
overload the tracking stage. Hence, the threshold 
is selected so that the number of pixels exceeding 
the threshold is less than or equal to a fmed rate 
which matches the operation speed of the tracking 
stage. For this purpose, a histogram of the values of 

1) Resolution Reduction: 

5 )  Histogram Formation: 



the nonmaximal suppressed image is constructed. 
The threshold then is determined as the smallest 
pixel value for which the number of elements in 
the histogram bins above this value does not exceed 
the fixed rate. Applying this value as the threshold 
would then ensure that the number of features remains 
hounded. 

Pixels in the 
image with the output value greater than the threshold 
are separated as features, The feature positions and 
amplitudes are transmitted to the tracking stage. 

B. Trackjng Stage 

6) Thresholding and Feature Output: 

This stage maintains a list of tracks containing 
the frame number, unique ID, position, velocity, 
and amplitude. The list is empty in the beginning. 
The following steps are repeated for every frame 
for which the list of features is received from the 
image-processing stage. 

1) Track Update: For each track in the list of 
tracks, the list of features is scanned to obtain features 
in a neighborhood window around the track position. 
If one or more such features are found, the one with 
the largest amplitude is selected as the continuation of 
the track. Using the coordinates (z, .z2) of this feature, 
as well as the current track position ( x I , x 2 )  and 
velocity (uI,u2), the expected position and velocity for 
the next frame is estimated using a Kalman filter. The 
filter is applied separately for horizontal ( i  = 1) and 
vertical ( i  = 2 )  directions. For each direction, the state 
vector is given by Xi = [xi U,]‘. and the observation is 
the feature coordinate zi. The track life n of the track 
is the number of frames in which the target has been 
observed, with adjustments made in  the frames whe:re 
the target is not observed. The measurement update is 
given by 

The state update is given by 

x,(n + 1) = x t ( n )  +ut(.)  

u,(n + 1) = ut@). 
(35) 

The Kalman filter matrix K ( n )  = [K,(n) Kz(n)]‘ is 
precomputed using the inverse covariance formulation 
of the Kalman filter. The computation is performed 
for a number of n = 1 . . . N ,  where N is large enough 
so that K ( N )  does not change significantly with N .  

The track amplitude is updated using recursive 
averaging according to the following equation: 

F(n  + 1) = f ( n )  + aF(n) (36) 

where F(n) and F(n + 1) are the track amplitudes 
for the current and next frames, f ( n )  is the feature 
amplitude, and LY is the forgetting factor. The track life 
n is incremented by one. 

If no feature satisfying the above conditions is 
found in the neighborhood of the track, the position 
and velocity are extrapolated using only the state 
update. Theoretically, this would mean that the 
values of the Kalman filter matrix would have to 
be recomputed. To avoid such a computation, the 
value of the track life n is reduced by a factor to 
approximately simulate the effect of having “lost 
track” of the feature. The feature amplitude is updated 
using f(n) = 0 in (36). 

2 )  Formation of New Tracks: After all the current 
tracks are updated, features in the feature list are used 
to check for new tracks. For every feature, the list of 
tracks is scanned to see if a track is already there in 
its neighborhood. If not, a track is created out of the 
feature with its track life n = 1. Its position (x1,x2) 
will be the same as feature position (zI,zz), whereas 
velocity (uI,uz) is initialized to zero. The actual 
velocity will be computed only in the next frame. 

3) Pruning the List of Trackr: If the number 
of tracks is too large, the stage can get overloaded 
and fail to operate in real time. To eliminate this 
possibility, if the number of tracks are greater than a 
particular number, the weakest tracks are deleted. 

two or more tracks may be formed corresponding 
to the same object. Hence, tracks which are very 
close to each other and have nearly the same velocity 
are merged, retaining the one with the larger track 
amplitude. 

the object, including having an amplitude larger than 
a threshold, as well as a significant and consistent 
motion are outputted as potential objects. 

C .  Results 

4 )  Merging Similar Tracks: It may happen that 

5 )  Output: Tracks which satisfy the criteria of 

The real-time image capturing, recording, and 
processing system was demonstrated on the flight tests 
conducted by NASA. During the frst  set of flight 
tests, image sequences were captured and recorded 
successfully at the rate of 30 framesls. The tracking 
algorithms were designed and fine-tuned using these 
image sequences. During the next set of flight tests, 
in addition to the real-time capturing and recording, 
the crossing target tracking algorithm was executed 
concurrently at the rate of 15 framesk. Several image 
sequences with the target aircraft crossing the host 
aircraft were obtained. It was observed that the system 
successfully detected and tracked the crossing object 
during the flight tests. Fig. 8 shows a trace of the 
tracking algorithm applied on an image sequence 
with target aircraft translating from right to left at a 
distance of 3 nmi (5.4 km). The aircraft is located at 
the end of the track in this image. 

Table I summarizes the performance of the 
crossing target tracking algorithm on a number of 
image sequences with different distances between 
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"mi km 

1.5 2.78 
1.8 3.33 
2.0 3.70 

Fig. 8. Tracking algorithm applied on image sequence with target aircraft crossing from right to left at distance of 3 nmi (5.4 km). 
(a)-(c) Three frames from sequence. (d) Detected track of target aircraft. 

# Frames MD Rate FA Rate more desirable than a low mis-detection rate. Hence, 
120 . 0.061 0.000 
130 0.113 0.000 reduce the false alarm rate, and were same for all the 
150 0.394 0.000 scenarios. It is possible to get a better performance by 

the parameters of the algorithms were selected to. ' 

TABLE I 
Performance of the Crossing Target Detection Algonthm for 

Image Sequences Corresponding to a Number of Target Distances 

mis-detection rate depends on the taget size and 

distance in most cases. Since false alarms can be very 
contrast, and therefore increases with the 

Distance I annoying to the pilots, a low false alarm rate was 

5.4 10.00 410 0.643 0.000 

- 
2.4 210 0.059 0.000 adjusting parameters according to the characteristics 
3.0 :::: 1 210 0.056 0.ow (such as the clutter level) of each scenario. 
4.7 8.70 300 0.335 0.183 
5.0 9.26 I 340 0.803 0.147 

of false a l m s  throughout the sequence to the number of image This DaDer described aooroaches for detectine 
. I  I I  L frames in the sequence. The mis-detection (MD) rate is the ratio 

of the number of frames in which the target was missed U) the 
total number of frames. 

obstacles in the flight path of an aircraft in presence 
of background clutter. Algorithms for detecting 
obiects OD a collision course, as well as those crossing 

the host and the target aircraft. The false alarm rate 
is measured as the ratio of the total number of false 
alarms throughout the sequence to the number of 
image frames in the sequence. The mis-detection rate 
is measured as the ratio of the number of frames in 
which the target was missed to the total number of 
frames. The false alarm rate depends on the amount 
and motion of clutter in the images, whereas the 

- 
the host aircraft were developed. To distinguish 
collision course objects from background clutter, their 
translation and expansion in the image were used. The 
image translation and expansion of an object on a near 
collision course were expressed in terms of parameters 
such as the distance of passage, time to passage, 
object distance, and relative velocity between the host 
aircraft and the obstacle. Corresponding expressions 
for ground objects (not on collision course) were 
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derived in terms of aircraft height, aircraft velocity, 
angle of inclination, and other parameters. Conditions 
under which image translation and expansion can 
be used to discriminate collision course object from 
background clutter were derived. Morphological fill.er 
was used for extracting image features corresponding 
to potential target, while removing most background 
clutter. The features were. then tracked over a large 
number of frames to estimate their translation and 
expansion, which were used to remove remaining 
clutter. The results were shown on a real image 
sequence captured from a camera mounted on an 
aircraft, with another aircraft flying towards it. 

In case of crossing objects, the target strength, 
motion, and motion consistency were used to 
discriminate genuine targets from clutter. The 
image-processing stage consisted of simple operations, 
such as image differencing, low-stop filtering, 
nonmaximal suppression, histogram formation, and 
thresholding which were implemented on a pipelined 
image-processing system called DataCube MaxPCI. 
The features obtained after these operations were 
tracked over a large number of frames to estimate 
the target strength, motion, and consistency. Since the 
number of features is small the tracking stage could 
be implemented on the host machine associated with 
DataCube MaxF‘CI. The whole system for detection 
of crossing objects was implemented in real time, and 
successfully tested on several real image sequences 
during flight tests. 

explored. To estimate image translation in case 
of collision course objects, compensation for the 
rotational .or vibrational motion of the camera was 
performed. If the navigation data is unavailable, 
the image features due to the stationary clutter 
should be used to perform the compensation, by 
modeling thee image motion. It should be noted 
that the camera motion could produce images having 
subpixel displacements relative to each other, with ;x 
possibility of obtaining higher resolution images by 
combining multiple images. This process is known as 
superresolution [12]. 

Image expansion can also be caused by rotation 
of the target aircraft causing a “false” expansion 
in the direction perpendicular to the rotation axis, 
deforming its shape in the image. On the other h a d ,  
the expansion due to a collision course would take 
place uniformly% all directions without deformation. 
Measurement of deformation components [8] could be 
useful .for distinguishing between the false expansion 
and the genuine expansion due to a collision course. 

The performance of the crossing object detection 
system would be relatively poor in the cases where the 
host aircraft rotated about its own axes. To improve 
the performance, the image motion due to aircraft 
rotation should be compensated using navigation 
data. Altematively, the background motion should 

The following avenues for future work can be 

. 
Fig. 9. Geometry of Earth‘s cu~yature. Coordinates used are with 

respect to Eaah‘s center. 

be modeled to separate independent object motion. 
This could be done using the approach of Irani and 
Anandan [ 111 which separates the scene motion into 
planar and parallax components. However, since 
the DataCnbe architecture can perform only simple 
image-processing operations, the procedure would 
have to be performed on the host machine, using 
feature based approach. 

At present, only the crossing object detection is 
implemented on DataCube, while the collision course 
object detection was tested offline with available 
image sequences. When adequate computational 
resources, are available, the collision course algorithm 
can be implemented on DataCube in similar 
manner. Image processing can be done on pipelined 
architecture, while tracking and discrimination can 
be done on host machine. Both algorithms can be 
performed simultaneously on the images to detect 
crossing as well as collision course objects. If an 
object changes trajectory from crossing to collision 
course, the crossing object algorithm would lose 
track and collision course algorithm would pick it 
up. However there may be a time when none or 
both of the algorithms would be tracking the object. 
This would depend on the clutter level and whether 
an object in intermediate course can be reliably 
distinguished from clutter. Better clutter elimination 
would have to be developed if one wants to track 
objects in such course. 

Finally, the approaches developed here for 
obstacle detection using visible light images could be 
combined with those using radar and other sources for 
design of a complete collision avoidance system. 

APPENDIX: EFFECT OF HORIZON 

The function describing the effect of the curvature 
of the Earth is calculated here, neglecting the effects 
of refraction. Fig. 9 shows the geometry of the Earth’s 
curvature. The coordinates used are with respect to the 
Earth‘s center. Using this, we have 

d=Rsiny, d t a n O = h o + R ( 1 - c o s y ) ~ h h , + d 2 / ( 2 R )  

(37) 
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where R = R, + h,, h, is the altitude of the 
background, Ro is the radius of Earth, and y is the 
angle subtended on the center of the Earth by the 
triangle. Solving this equation yields 

d=R[tanO&Jtan2B-2h,7;;].  (38) 

The correct solution is the smaller value of d ,  since 
the larger value represents the other intersection of the 
line of sight with the Earth. 

d=~[tan&J=] 

(39) 

By substituting in (13), we have 

If 6' N n/2, or R is large, h is small, then f N 1, i.e., 
the Earth's curvature can be neglected. However, 
where the line of sight just touches the Earth, i.e., at 
the horizon, the discriminant under the square root is 
zero, then f = 2 and the corresponding 0 is 

Any value of 6' smaller than this value corresponds 
to the line of sight not touching the Earth, i.e., - -  
background above the horizon. 
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