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Abstract— The problem of identifying discrete time affine
hybrid systems with noisy measurements is addressed in this
paper. Given a finite number of measurements of input/output
and a bound on the measurement noise, the objective is to
identify a switching sequence and a set of affine models that
are compatible with the a priori information, while minimizing
the number of affine models. While this problem has been
successfully addressed in the literature if the input/output data
is noise-free or corrupted by process noise, results for the
case of measurement noise are limited, e.g., a randomized
algorithm has been proposed in a previous paper [3]. In
this paper, we develop a deterministic approach. Namely, by
recasting the identification problem as polynomial optimization,
we develop deterministic algorithms, in which the inherent
sparse structure is exploited. A finite dimensional semi-definite
problem is then given which is equivalent to the identifica-
tion problem. Moreover, to address computational complexity
issues, an equivalent rank minimization problem subject to
deterministic LMI constraints is provided, as efficient convex
relaxations for rank minimization are available in the literature.
Numerical examples are provided, illustrating the effectiveness
of the algorithms.

I. INTRODUCTION

In recent years, considerable effort has been put in the

problem of identification of hybrid systems. In general, a

hybrid system is a system whose behavior is determined by

switching dynamics. These systems arise in many different

contexts, for examples, circuit network, biological systems,

systems with interaction with logic devices and continuous

processes. In addition, they can be used to approximate

nonlinear dynamics. Thus, due to the potential application

to a vast set of practical problems, the problem of identi-

fying input/output hybrid models has attracted considerable

attention, and several approaches have been developed.

For the identification problem of piecewise affine (PWA)

systems, there are many results available in the literature.

One may refer to a thorough review [12] for a summary of

recent developments. In the case where measurements are

noise-free, an algebraic procedure, known as Generalized

Principal Component Analysis (GPCA), has been proposed

in [8], [15] to efficiently solve the problem. The problem

can be also formulated as a mixed linear integer optimization

problem [14] or in terms of linear complementary inequal-

ities [1], leading to generically NP-hard problems. More

recently, a greedy algorithm has been proposed to identify
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the system while minimizing the number of switches [10].

For robust identification of PWA systems subject to process

noise, an efficient moment-based convex approach using

convex relaxations on rank minimization has been proposed

in [9] . A similar approach was also pursued in [11] to solve a

different problem: segmenting a collection of noisy measure-

ments into subspaces. However, to the best of our knowledge,

for the case of measurement noise, the only result available is

the approach proposed in [3] where a randomized algorithm

is provided based on sparse polynomial optimization.

In this paper, we continue the line of research started

in [3]. First, we provide an equivalent polynomial optimiza-

tion problem, which inherently has a sparse structure and

satisfies the so-called running intersection property. This

sparse structure can be used to significantly reduce com-

putational complexity, e.g. see [5], [6], [16]. The reasoning

behind the proposed approach bears strong connection to

hybrid decoupling used in GPCA. However, the approach

in this paper preserves all system parameters as a part of

optimizing variables, while GPCA eliminates the structure of

the parameters (this is elaborated in Section IV). Moreover,

it is shown that the sparse polynomial optimization problem

can be solved via a fixed size semi-definite program (SDP).

Furthermore, for larger size problems, an equivalent rank

minimization problem is provided. In formulating this rank

minimization problem, inspired by the results in [9], we

use similar tricks to isolate the system parameters from

the unknown noise terms, and, hence, eliminate them from

the decision variables in the formulated rank minimization

problem. A major advantage of the approach in this paper is

that the matrix in the objective function is symmetric and of

much smaller size than the ones used in [9]. One may note

that this feature notably reduces the computational burden in

solving convex relaxations of rank minimization problems.

The remainder of the paper is organized as follows.

Section II defines notation used and presents some back-

ground results related to sparse polynomial optimization. In

Section III, we formally define the identification problem

of PWA systems in the presence of measurement noise. In

Section IV, we reformulate the identification problem as a

polynomial optimization problem and show that it has an

intrinsically sparse structure. A fixed size SDP is provided

which is proven to be equivalent to the identification prob-

lem. In Section V, an equivalent rank minimization problem

with fixed size LMI constraints is given and a drop rank

algorithm is then provided based on a convex relaxation

of rank minimization. Illustrative numerical examples are

provided in Section VI. Section VII concludes the paper with

some final remarks and directions for further research.
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II. PRELIMINARIES

A. Notation

xi abbreviation for xi1
i · · ·x

id

d where d is the

dimension of the vector x
Eµ[p(x)] the mean value of p(x) w.r.t the probability

measure µ on the random variable x
{mi}

N
0 the moment sequence where mi = Eµxi for

some probability measure µ and

0 ≤ i1 + . . . + id ≤ N

MN(m) the moment matrix in R(N+d

N )×(N+d

N )

constructed by {mi}
2N
0

M � 0 the matrix M is positive semi-definite

‖x‖p the ℓp norm of the vector x, p = 2 or ∞

B. General Polynomial Optimization

Consider the following general constrained polynomial

optimization problem:

p∗K := min
x∈K

p0(x) (P1)

where K ⊂ R
d is a compact semi-algebraic set with

nonempty interior defined as

K
.
= {x : pi(x) ≥ 0, i = 1, . . . L}

where pi(x) are polynomials with total degree di. This

problem is usually not convex, and hence, hard to solve

in general. Yet, let’s consider a related problem in the

probability measure space:

p̃∗K := min
µ∈P(K)

∫

p0(x)µ(dx) := min
µ∈P(K)

Eµ [p0(x)] (P2)

where P(K) is the space of finite Borel probability measures

on K . Although (P2) is an infinite dimensional problem, it is,

in contrast to (P1), convex. The following result, taken from

[5], establishes the equivalence between the two problems:

Theorem 1: Problems (P1) and (P2) are equivalent; that

is:

• p̃∗K = p∗K .

• If x∗ is a global minimizer of (P1), then the Dirac

distribution µ∗ = δx∗ with support on the point x∗ is a

global minimizer of (P2).

• For every optimal solution µ∗ of (P2), p0(x) = p∗K-µ∗

almost everywhere.

One direct consequence of this theorem is that, it is

possible to develop a convergent sequence of LMI based

convex relaxations to problem (P1), where the optimization

variables are mi
.
= Eµxi, the moments of the unknown

distribution µ.

If in addition p0(x) − p∗K has a Sum-of-Squares (SOS)

representation on K , i.e.,

p0(x)− p∗K = t20(x) +

L
∑

i=1

pi(x)t2i (x) (1)

for some polynomial t0(x) of degree at most N and some

polynomials ti(x) of degree at most N − di/2, then, it

is possible to construct an equivalent LMI based convex

optimization problem for P2. To this effect, let

p∗N = min
m

∑

α

p0,αmα (2)

s.t. MN(m) � 0,

MNi
(pim) � 0, i = 1, . . . , d,

where p0,α is the coefficient of xα in p0(x); Ni is the

smallest integer that no less than N − di/2; and MN (m)
is the so-called moment matrix and MNi

(pim) is the so-

called localizing matrix, both of which are constructed from

the truncated moment sequence {mi}N0 . For illustration and

clarity of exposition, consider the case where x ∈ R2, the

moment matrix MN (m) is defined as

MN (m) =











M0,0(m) M0,1(m) · · · M0,N(m)
M1,0(m) M1,1(m) · · · M1,N(m)

...
...

. . .
...

MN,0(m) MN,1(m) · · · MN,N(m)











where

Mj,k(m) =











mj+k,0 mj+k−1,1 · · · mj,k

mj+k−1,1 mj+k−2,2 · · · mj−1,k+1

...
...

. . .
...

mk,j mk−1,j+1 · · · m0,j+k











.

Note that the size of MN(m) is
(

d+N
N

)

×
(

d+N
N

)

. The

localizing matrix MNi
(pim) is defined as

MNi
(pim)(i, j) =

∑

α

pi,αm(β(i, j) + α)

where pi,α is the coefficient of xα in pi(x), m(i, j) is the

entry (i, j) of MN(m) and β(i, j) is the subscript of mβ .

To illustrate, consider g1 = a− x1x2, then

M1(g1m) =

[

a − m11 am10 − m22 am01 − m12

am10 − m22 am20 − m31 am11 − m22

am01 − m12 am11 − m22 am02 − m13

]

By the end, according to Theorem 4.2 in [5], we have

Theorem 2 (General Polynomial Optimization with SOS):

In problem (P1), if p0(x) − p∗K has the representation

form (1), then

p∗N = p∗K . (3)

C. Sparse Polynomial Optimization

The previous section describes how to build a finite SDP

to solve a polynomial optimization problem given that a

SOS representation is known to exist at a priori. However,

in terms of complexity, it might become computationally

intractable if the problem size is large, i.e., the dimension

of x is large and/or the degree N is large. Note that the

dimension of the moment matrix MN (m) is
(

d+N
d

)

, which

grows polynomially in N or d but still very fast, as pointed

out in [5], [7], [13]. On the other hand, however, many

polynomial optimization problems encountered in practice

have a sparse structure that can be exploited to decrease
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computational complexity; i.e., the polynomial pi only con-

tains a small fraction of the overall variables; e.g., see [16].

If the set of indices of variables in each pi satisfies the so-

called running intersection property, the size of the LMIs can

be significantly reduced, i.e., at most
(

N+ξ
N

)

where ξ is the

largest number of variables appearing in each polynomial,

e.g., see [6]. We now state the definition of this property.

Definition 1 (Running Intersection Property): Let Ik,

k = 1, . . . , d̃, be the subsets of variables X
.
= {x1, . . . , xd}

satisfying
⋃d̃

k=1 Ik = X . If

i) each constraint polynomial pi(x) uses only variables in

Ik for some k;

ii) the objective polynomial can be written as p0 = p0,1 +
· · ·+ p0,l where each p0,i uses only variables in Ik for

some k,

then running intersection property is satisfied in Problem (P1)

if the collection {I1, . . . , Id̃} obeys the following condition:

Ik+1 ∩
(

∪k
j=1Ij

)

⊆ Is for some s ≤ k, (4)

for every k = 1, . . . , d̃− 1.

Similar to the result stated in Theorem 2, for a sparse

polynomial optimization problem that satisfies the running

intersection property and has a sparse SOS representation

on K , one can construct a finite SDP as well. For simplicity,

we denote MN(m, Ik) the moment matrix for the reduced

variables in the set Ik and denote MNi
(pjm, Ik) the local-

izing matrix with the reduced variables in Ik. In the spirit of

results in [5], [6], we have the following theorem.

Theorem 3 (Sparse Polynomial Optimization with SOS):

Assume that (P1) satisfies Running Intersection Property

and let

p∗N = min
m

∑

α

p0,αmα (5)

s.t. MN(m, Ik) � 0, k = 1, . . . , d̃

MNi
(pim, Ik(i)) � 0, i = 1, . . . , d,

where pi(x) contains only variables in Ik(i), and p0(x) has

a sparse SOS representation on K , i.e.,

p0(x) − p∗K =

L
∑

k=1

(

t2k,0(x) +

d
∑

i=1

pi(x)t2k,i(x)

)

(6)

Then,

p∗N = p∗K . (7)

III. SET MEMBERSHIP IDENTIFICATION

In this section, we define the hybrid system identification

problem. We consider the problem of identifying single-

input-single-output switched linear systems of the form

yk = −
n
∑

i=1

ai(σk)(yk−i − ek−i) +

m
∑

i=1

bi(σk)uk−i + ek (8)

where u, y and e denote input, output and noise, respectively.

The magnitude of noise is bounded by ē > 0. Moreover,

ai and bi are the parameters of the system, where σk ∈
{1, 2, . . . , s} denotes which sub-system is active at time k.

Without any additional restrictions, the problem admits

infinitely many solutions. For example, one can assign a

trivial model corresponding to each measurement. Thus, one

needs to add additional constraints or objectives to make the

problem meaningful. In this paper, we aim at minimizing

the number of sub-systems and/or minimizing the order of

the linear models. For simplicity, let us assume that s, the

number of switched sub-systems, is known and (n, m), the

order of the linear models, is also known. This assumption

does not imply loss of generality since one can always

increase s and/or (n, m) one by one until a meaningful

solution is found. Then, the problem of interest can be

formally stated as follows.

Problem 1: Given input and corrupted output measure-

ments u, y over the interval [1, L], a bound ē on the ℓ∞
norm of measurement noise e (i.e. |ek| ≤ ē for k ∈ [1, L]),
the number of sub-models s and the order of sub-models (n
and m), find a hybrid affine model of the form (8) that is

consistent with all a priori information and the measurement

data, or conclude that none exists.

Compared to the switched autoregressive exogenous

(SARX) linear models considered in [1], [9], the model (8)

assumes that one has measurement noise and does not

contain unmodeled system dynamics.1 In [3], the case with

measurement noise is considered and a polynomial optimiza-

tion problem is formulated for finding a compatible hybrid

model, if any, using an algebraic procedure known as GPCA.

In the next section, we use a related but different algebraic

procedure, with two main advantages. First, the parameters of

the linear models are explicitly included in the optimization

variables, i.e., once the polynomial optimization problem

is solved, the system parameters are known immediately.

Hence, there is no need to use parameter recovering algo-

rithms as in GPCA related approaches. Second, it is shown

the polynomial optimization problem can be solved via a

fixed size SDP program.

IV. ALGEBRAIC REFORMULATION

In this section, based on the so-called hybrid decoupling

constraint introduced in [15], one can see that equation (8)

is equivalent to the polynomial equation

p0,k(e, a, b)
.
=

s
∏

j=1

[(yk +
n
∑

i=1

ai(j)(yk−i − ek−i)−

m
∑

i=1

bi(j)uk−i − ek)] = 0 (9)

which holds for all k. Then, the identification problem is

equivalent to find some admissible noise e and parameters

ai(j) and bi(j), so that pk(e) = 0, k = 1, . . . , L.

To address this issue, we consider the following polyno-

mial optimization problem.

1This formulation can be easily modified to include unmodeled dynamics.
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Problem 2: Given the number of the sub-systems s and

the order of linear models (n, m), find

min
e,a,b

p0(e, a, b) (10)

s.t. ‖e‖∞ ≤ ē,

where

p0(e, a, b) =
L
∑

k=1

p0,k(e, a, b)2.

The equivalence between the above problem and Prob-

lem 1 is established in the following theorem.

Theorem 4: Given the number of the sub-systems s and

the order of the sub-models (n, m), if there exists at least

one compatible hybrid affine model for Problem 1, then there

exist noise e and parameters (a, b) so that the minimum of

Problem 2 is zero. The converse is also true.

Proof: If there is a compatible hybrid model, then, given the

true values of parameters and noise, one have p0,k(e, a, b) =
0 for all k. Hence, p0 = 0. Since p0 is a SOS, p0 ≥ 0, hence,

the minimum of (10) is zero. Conversely, if p0 = 0 for some

e, a, b, then p0,k(e, a, b) = 0 for all k. Since p0,k is a product

of s polynomials, then one of them is equal to zero. Denote

the index of such a polynomial by σ(k). Hence, a system

with a, b being its parameters is a compatible model, and

σ(k) is the index of the active sub-model at time k. �

Remark 1: As mentioned before, there is a connection

between the formulation above and GPCA based approaches.

There are, however, substantial differences between these

two. In GPCA, a algebraic procedure is used to construct

the so-called Veronese matrix. The related problem is to find

the null space of the matrix and to extract system parameters

from the null vector, e.g., see [15]. On the other hand, in our

procedure, the system parameters are a part of the optimiza-

tion variables. Hence, a necessary and sufficient condition is

derived in Theorem 4; and once the optimization problem is

solved, the parameters are determined immediately.

Although Problem 1 and Problem 2 are equivalent, at first

glance it seems that the reformulation is at least equally

difficult to solve, since (10) contains variables a, b and e
where the dimension of e is equal to the number of mea-

surements. However, if one carefully checks the structure

of the polynomial p0, it can be found that it is sparse. In

fact, p0 is a sum of squares of p0,k and for each k, p0,k

is a polynomial of variables a, b and ek−n, . . . , ek. Hence,

problem (10) inherently satisfies the running intersection

property defined in Definition 1, with

Ik = {a, b, ek, . . . , ek+n}, k = 1, 2, . . . , L. (11)

Moreover, p0 is a SOS already, implying that, if the minimum

of (10) is zero, p0 − p∗0 can be represented in the form

of (6); i.e., one just needs to take tk,0 = p0,k and tk,i = 0.

Consequently, Problem 2 can be solved via a fixed and finite

sized SDP. This is summarized as follows.

Theorem 5: Given the number of the sub-systems s and

the order of the sub-models (n, m), consider the following

optimization problem

p∗s = min
m

∑

α

p0,αmα (12)

s.t. MN(m, Ik) � 0, k = 1, . . . , L

MNi
(pim, Iβ(i)) � 0, i = 1, . . . , L + n,

where Iβ(i) = {a, b, eβ(i), . . . , eβ(i)+n} is the partial vari-

able set for pi, β(i) = i for i = 1, . . . , L and β(i) = L
for i = L + 1, L + n; N = 2s and Ni = 2s − 1 for

i = 1, . . . , L + n; pi = ē2 − e2
i , i = 1, . . . , L + n. Then,

if there exists at least one compatible hybrid affine model

for Problem 1, p∗s = 0 is the optimum of (12). Conversely, if

p∗s = 0, rank MN(m, Ik) = rank MNi
(m, Ik) for all k, and

rank MN (m, Ik∩Ij) = 1 for all pairs (j, k) with Ik∩Ij 6= ∅,
then, there exists at least one compatible model.

Proof: This is a direct consequence of Theorem 3, given the

fact that running intersection property holds for the collection

of the variable sets Ik defined in (11) and the fact that p0 has

a representation of (6) by taking tk,0 = p0,k and tk,i = 0. �

Remark 2: The rank condition rank MN (m, Ik) =
rank MNi

(m, Ik) and rank MN(m, Ik ∩ Ij) = 1 is a

sufficient condition to guarantee that the optimum of the

SDP relaxation is the same to the one of the corresponding

polynomial optimization problem, see e.g. [4], [6]. With

this rank condition being satisfied, an algorithm is given

in [4], which can always extract an optimal moment sequence

corresponding to a probability measure with point support.

Remark 3: In the case where both input noise and output

noise are considered, the results above still apply. One

just need to add more variables for input noise terms in

the polynomial optimization problem, which has a similar

structure as shown above.

As illustrated above, by taking into account the sparsity,

the optimization problem can be solved if its size is relatively

small. One important observation is that the complexity is

proportional to the number of measurements, i.e. if one fixes

the structure of the hybrid system, the maximum size of

LMIs in the SDP remains the same and the number of

LMIs increases proportionally. Hence, if the hybrid system is

relatively simple, the identification problem can be solved via

solving (12) directly. However, if the hybrid system becomes

more complex, say, the number of sub-systems increases or

the order of the sub-models increases, the problem becomes

numerically difficult to solve. This comes from the fact that

the size of Ik is equal to nν = n + 1 + s(n + m), and the

max size of the moment matrices is equal to
(

nν+2s
2s

)

.

To overcome this numerical difficulty, motivated by GPCA

related algorithms, we formulate an equivalent rank mini-

mization problem by using quadratic functions of rows of

the Veronese matrix to eliminate the system parameters a, b
in the optimization problem. This is described in the next

section.

V. AN EQUIVALENT RANK MINIMIZATION PROBLEM

It can be seen that the main computational difficulty comes

from the fact that all system parameters are a part of the
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decision variables in the polynomial optimization. Thus, if

the structure of the hybrid system is too complex, one may

need large computational power to solve (12).

In this section, we show that, by manipulating the rows

of the noisy Veronese matrix, a rank minimization problem

with finite LMIs can be formulated and it is equivalent to the

original identification problem. Though rank minimization

problem is in general NP-hard, efficient relaxations are avail-

able especially for symmetric positive semi-definite matrix,

which is the case encountered.

We now review GPCA approach which provides the moti-

vation for the results presented. That is, one can write (9) into

matrix forms, in which the noise terms ek and the parameters

a, b are isolated. Note that the information of the parameters

is included in the null vector of the Veronese matrix. A

similar idea has been used in [3] in the proposed randomized

algorithm, where the computational cost is reduced by fixing

each part of the variables in the iterations.

First let’s recall the construction of Veronese matrix.

Consider the polynomial equations (9) from time k = 1 to

L, by collecting all measurements, one can build the noisy

Veronese matrix Vs and polynomial equations as

Vs(r, e)x
.
=







vs(r1, e)
...

vs(rL, e)






x = 0. (13)

where x is a vector with elements being polynomial functions

of the system parameters. Then, the identification problem is

equivalent to finding admissible noise e so that Vs(r, e) has

a non-trivial null space, i.e. finding e and a non-zero vector

x so that (13) holds. Once such a null space is found, it can

be used to recover the parameters of the sub-systems; e.g.

see [15]. This is summarized in the following proposition.

Proposition 1 (Theorem 1, 2 in [15]): Given the number

of the sub-systems s, the order of sub-models (n, m), if

there exists at least one compatible hybrid affine model for

Problem 1, then there exists some admissible noise e such

that Vs(r, e) is rank deficient; and the system parameters a, b
can be extracted from its null space.

A simple example is illustrated on how to construct such

a noisy Veronese matrix.

Example 1: For s = 2 and the order (n, m) = (1, 1),
equation 9 can be written that

(yk + a1(yk−1 − ek−1)− b1uk − ek) ·

(yk + a2(yk−1 − ek−1)− b2uk − ek) = 0.

Hence, the k-th row of the noisy Veronese matrix Vs can be

written as

vk(r, e) =

















(yk − ek)2

(yk−1 − ek−1)(yk − ek)
−uk(yk − ek)

−uk(yk−1 − ek−1)
(yk−1 − ek−1)

2

u2
k

















T

Remark 4: The size of the Veronese matrix is L ×
(

n+m+s
s

)

. For each row of the matrix, the highest total degree

of the polynomials (in e) is s, the number of sub-systems.

Given the noisy Veronese matrix constructed above, let’s

define a matrix

Q(m)
.
=

L
∑

i=1

Eµ{vs(ri, e)
T vs(ri, e)} (14)

where m is the truncated moment sequence corresponding to

probability measure µ. Hence, Q(m) is a symmetric matrix

linear in m. Now, we are ready to propose the equivalent

rank minimization problem.

Problem 3: Given the number of the sub-systems s, the

order of sub-models (n, m), find a rank deficient matrix

Q(m) defined in (14) subject to

MN(m, Ik) � 0, k = 1, . . . , L,

MNi
(pim, Iβ(i)) � 0, i = 1, . . . , L + n.

where Iβ(i) = {eβ(i), . . . , eβ(i)+n} is the partial variable

set for pi, β(i) = i for i = 1, . . . , L and β(i) = L for i =
L+1, . . . , L+n; N = s and Ni = s−1 for i = 1, . . . , L+n;

and pi = ē2 − e2
i , i = 1, . . . , L + n.

Then, we observe that this problem is indeed equivalent

to the problem of finding an admissible noise sequence that

results in a rank deficient Veronese matrix.

Theorem 6: If there exists an admissible noise sequence e
such that the Veronese matrix Vs(r, e) is rank deficient,

then Problem 3 has a feasible solution. Conversely, if Prob-

lem 3 has a feasible solution m, and if rank MN(m, Ik) =
rank MNi

(m, Ik) for all k and rank MN(m, Ik ∩ Ij) = 1
for all pairs (j, k) with Ik ∩ Ij 6= ∅, then, Vs(r, e) is rank

deficient for some admissible noise e.

Proof: First note that there exists some unit vector x and

admissible noise e such that

Vs(r, e)x = 0

if and only if

L
∑

i=1

xT vs(ri, e)
T vs(ri, e)x = 0. (15)

Since vs(ri, e)
T vs(ri, e) is positive semi-definite, it is equiv-

alent to finding a unit vector x∗ that the minimum of the

following problem

min
e

(x∗)T

[

L
∑

i=1

vs(ri, e)
T vs(ri, e)

]

x∗ (16)

s.t. e ∈ K

is zero, where K is defined as

K
.
= {e : pk

.
= ē2 − e2

k ≥ 0, k = 1, . . . , L + n}.

Note that the objective function in (16) is a SOS in terms

of e for any fixed x, hence, it can be represented in the

form of (6). Moreover, the running intersection property is
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satisfied for (16). Therefore, by Theorem 3, it follows that

the minimum of the following problem

min
m

(x∗)T Q(m)x∗ (17)

s.t. MN (m, Ik) � 0, k = 1, . . . , L,

MNi
(pim, Ik(i)) � 0, i = 1, . . . , L + n,

is zero, where N = s, Ni = s − 1 for all i, and Q is

defined in (14). Since vs(ri, e)
T vs(ri, e) is positive semi-

definite, Q(m) is positive semi-definite as well.2 Hence, we

have (x∗)T Q(m)x∗ = 0 for some unit vector x∗ if and only

if the matrix Q(m) is rank deficient.

Conversely, if the rank condition holds, one can always

extract a moment sequence m∗ corresponding to a prob-

ability measure with point support, such that Q(m∗) is

rank deficient. Hence, there is an admissible noise e that
∑L

i=1 vs(ri, e)
T vs(ri, e) is rank deficient. This implies the

Veronese matrix is rank deficient for the same noise e, which

concludes the proof. �

Although rank minimization is NP-hard, efficient convex

relaxations are available. In particular, good approximate

solutions can be obtained by using a log-det heuristic that

relaxes rank minimization to a sequence of convex problems,

e.g., see [2], [9]. Furthermore, as stated in Theorem 6, it

suffices to find a rank deficient solution. Thus, we use a

modification of log-det heuristic that aims at dropping the

rank by one, as illustrated in the following.

Algorithm 1 Drop Rank

Set X ← Q(m), X0 ← I , k← 0.

repeat

Solve

Xk+1 ← arg min Tr(Xk + δI)−1X

s.t. m ∈M

where M is the feasible set in Problem 3.

Decompose the symmetric matrix Xk = T−1DT .

Set δ ← min diag(D).
Set k ← k + 1.

until a convergence criterion is reached.

return Xk

Remark 5: Given a rank deficient matrix Q(m∗) is found

with a moment sequence m∗, a null vector can be easily

determined by computing its eigenvectors and eigenvalues.

Moreover, by Theorem 6, there exists some admissible noise

e that the Veronese matrix Vs(r, e) is rank deficient. One can

extract such a noise value e from the moment sequence m∗

using the algorithm introduced in [4]. Once the noise values

are estimated, the problem can be converted to the noise

free case by plugging the noise estimates in to the Veronese

matrix and the system parameters can be computed using the

procedure introduced in [8].

2Note that Q(m) is p.s.d. since m satisfies the LMI constraints in (17).
This comes directly from the fact that the finite moment condition is the
dual formulation of the related SOS problem.

VI. NUMERICAL RESULTS

In this section, we present several numerical examples for

illustrating the proposed algorithms. In the first example, a

simple hybrid system with limited measurements is consid-

ered. The identification problem is then solved by solving the

SDP problem (12) directly, according to Theorem 5. In the

second example, a more complex hybrid model is considered.

It is then shown that, the rank minimization relaxation

algorithm in Algorithm 1 works efficiently on identifying the

system parameters. A few comments is also given regarding

how the noise bound may affect identification results.

A. Example I: via Sparse Polynomial Optimization

In this example, we consider a hybrid linear switching

system with s = 3 and (n, m) = (1, 0), where the sub-

models are

yk = −0.9(yk−1 − ek−1) + uk−1 + ek (Submodel 1)

yk = −0.5(yk−1 − ek−1) + uk−1 + ek (Submodel 2)

yk = +0.7(yk−1 − ek−1) + uk−1 + ek (Submodel 3)

and the hybrid system is modeled as (8), i.e.,

yk = −a1(σk)(yk−1 − ek−1) + uk−1 + ek,

where σk ∈ {1, 2, 3} depending on which sub-model is

active at time k. In the simulation, we set σ(k) = 1 for

k = [1, 5], σ(k) = 2 for k = [6, 10] and k = [16, 20],
σ(k) = 3 for k = [11, 15]. The experimental data was

obtained with unit step input and with uniformly randomly

generated noise bounded by ē. First we set the noise bound

ē = 0.1 and then increase the bound by setting ē = 0.3.

The identification problems are solved based on Theorem 5

via solving a SDP relaxation built from the equivalent sparse

polynomial optimization problem.

The parameter values used in the simulation and their

estimated values with respect to different noise bounds are

illustrated in Table I.

TABLE I

ESTIMATED AND TRUE VALUES OF PARAMETERS

True ē = 0.1 ē = 0.3
Submodel 1 a1 0.9000 0.9352 0.5825
Submodel 2 a1 0.5000 0.4867 0.5825
Submodel 3 a1 -0.7000 -0.6841 -0.6652

Moreover, the active sub-system at time k can be deter-

mined once the sub-models are identified. The results are

shown in Figure I.
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Fig. 1. Identified and true active sub-systems v.s. time
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Remark 6: As one can see from Table I and Figure I,

if the noise bound is large, there are compatible hybrid

systems with a smaller number of sub-systems. However,

one should note that this is not a failure of our algorithm. In

fact, the hybrid system obtained is still compatible with all

the measurements and a priori information. This should not

be surprising since when the measurements are limited, the

difference between model dynamics could be covered by the

noise, especially when the noise is large. Moreover, when

the noise is large, one may get a compatible hybrid system

with linear sub-models of lower orders.

B. Example II: via Rank Minimization

In this example, we consider a more complex hybrid sys-

tem to show the computational efficiency of using Theorem 6

and Algorithm 1. It is assumed that there are three sub-

systems with the order (n, m) = (2, 1). That is,

yk = −a1,i(yk−1−ek−1)−a2,i(yk−2−ek−2)+b1,iuk−1+ek

where i ∈ {1, 2, 3} depending on which sub-system is

active at time k We take 120 measurement with 11 switches

among these three sub-systems. The simulation is run for two

different noise levels, i.e. ē = 0.1 and ē = 0.3. The input

signal u is uniformly randomly generated between -1 and 1.

In Table II, we present the values of the system parameters

identified by the algorithm for the noise levels considered.

TABLE II

ESTIMATED AND TRUE VALUES OF PARAMETERS

True Noise e < 0.1 Noise e < 0.3

Submodel 1
a1 0.9000 0.9183 0.9586
a2 0.1800 0.1736 0.2379
b1 0.2000 0.2310 0.2863

Submodel 2
a1 0.5000 0.5155 0.5494
a2 0.0600 0.0564 0.1014
b1 1.0000 1.1310 1.0802

Submodel 3
a1 -1.0000 -0.9716 -0.9618
a2 0.3000 0.3144 0.3287
b1 0.6000 0.6369 0.6991

Moreover, the active sub-system at time k can be deter-

mined once the sub-models are identified. The results are

shown in Figure I.
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VII. CONCLUDING REMARKS

This paper addresses the identification problem of discrete-

time affine hybrid systems with input/output data corrupted

by measurement noise. The proposed approach first formu-

lates the identification problem as a polynomial optimization

problem. It is shown that the optimization problem obtained

inherently has a sparse structure, which can be used to

significantly reduce the size of the SDPS, and, hence, reduce

computational cost. Moreover, since the objective function

has a SOS representation, the relaxation is equivalent to the

original problem (size of relaxation is determined exclusively

by the number of sub-models). Furthermore, to address

the computational difficulties when the hybrid system is

complex, a drop rank approach is given to solve the original

identification problem. Though rank minimization problem

is in general NP-hard, efficient convex relaxations are avail-

able in the literature. Numerical examples are provided to

illustrate the effectiveness of the proposed algorithm.

It is shown in the paper, by isolating system parameters

from the decision variables in the optimization problem, the

computational cost can be substantially reduced. However,

the structure information of system parameters is then lost.

Hence, ongoing work is aimed at developing approaches

to separate the search of admissible noise and systems

parameters while preserving the structure information.
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