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Abstract— In this paper, the problem of identifying discrete
time affine hybrid systems with measurement noise is consid-
ered. Given a finite collection of measurements and a bound
on the noise, the objective is to identify a hybrid system
with the smallest number of sub-systems that is compatible
with the a priori information. While this problem has been
addressed in the literature if the input/output data is noise-free
or corrupted by process noise, it remains open for the case
of measurement noise. To handle this case, we propose a new
approach based on recasting the problem into a polynomial
optimization form and exploiting its inherent sparse structure
to obtain computationally tractable problems. Combining these
ideas with a randomized Hit and Run type approach leads
to further computational complexity reduction, allowing for
solving realistically sized problems. Numerical examples are
provided, illustrating the effectiveness of the algorithm and its
potential to handle large size problems.

I. INTRODUCTION

A hybrid system is a system whose behavior is deter-

mined by switching dynamics. These systems arise in many

different contexts, for example, circuit network, biological

systems, systems with interaction with logic devices and

continuous processes, and in addition, they can be used

to approximately model nonlinear dynamics. Due to the

potential application to a vast set of practical problems, the

problem of identifying input/output hybrid systems models

from experimental data has attracted considerable attention.

There are many results available in the literature concern-

ing the identification of piecewise affine switched systems

(PWAS); see the thorough review [9] for a summary of recent

developments. For example, in [12], [6],the identification

problem can be solved efficiently by an algebraic proce-

dure, known as Generalized Principal Component Analysis

(GPCA), for-noise free data. The problem can be also

formulated as a mixed linear integer optimization problem

as shown in [1], [11]. More recently, a greedy algorithm

has been proposed to identify the system while minimizing

the number of switches among sub-systems [8]. Finally, [7]

proposed a convex optimization algorithm based on moment

conditions for robust identification of PWAS subject to

process noise. While these methods are effective in many

situations, to the best of our knowledge, the identification of

input/output piecewise affine systems subject to both process

and measurement noise has not been addressed.
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Motivated by this fact and by the approach introduced

in [7], in this paper we propose a randomized algorithm aim

at solving the PWAS identification problem when data is

corrupted by measurements noise. It is based on the results

on sparse polynomial optimization [13], [5] and randomized

techniques [2], [3]. The starting point of the proposed method

is the algebraic procedure introduced in [12], [6] for noiseless

data. As shown there, the parameters of the system can be

recovered from the null space of a so-called Veronese matrix

built from the input/output data. In the case under consider-

ation here, the entries of this matrix depend polynomially on

the unknown noise. Thus, the a priori information and the

experimental data are consistent if and only if there exists

an admissible noise sequence that renders this matrix rank

deficient. As we show in the paper, the problem of finding

such a sequence and the corresponding null space from a

“noisy” Veronese matrix can be reformulated as a polynomial

optimization problem. In principle, these problems can be

solved by constructing a hierarchy of semi-definite program

(SDP) relaxations [4], [10]. However, the dimension of these

SDP relaxations and the entailed computational complexity is

not small, limiting the size of problems that can be handled.

To circumvent this difficulty, we exploit the fact that the

reformulated problem has an inherently sparse structure, and

hence recent results can be exploited to substantially reduce

its computational complexity, allowing for solving medium

size problems. Finally, to handle larger problems, we propose

an algorithm that combines sparse polynomial optimization

and randomized Hit-and-Run ideas.

The remainder of the paper is organized as follows. Sec-

tion II defines notation used and presents background results

related to sparse polynomial optimization. In Section III,

we formally define the problem and review the algebraic

approach to identification of (noiseless) PWAS systems. In

Section IV, we reformulate the identification problem as a

polynomial optimization problem and show that it has an

intrinsically sparse structure. We further provide an analysis

of the computational complexity of the method and develop a

Hit-and-Run type algorithm aimed at decreasing the compu-

tational burden. Illustrative numerical examples are provided

in Section V. Section VI concludes the paper with remarks,

future work and some open questions for future research.

II. PRELIMINARIES

For the reader’s convenience, in this section we define

the notation used and briefly summarize some results on

polynomial optimization that are used in the proposed algo-

rithm. For a more detailed exposition on (sparse) polynomial

optimization, the reader is referred to [4], [13], [5].
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A. Notation

xi abbreviation for xi1
i · · ·x

id

d

Eµ[p(x)] the mean value of p(x) w.r.t the probability

measure µ on the random variable x

{mi}
N
i=0 a moment sequence where mi = Eµxi

MN(m) the moment matrix constructed by {mi}
2N
i=0

M � 0 the matrix M is positive semi-definite

‖x‖p the ℓp norm of the vector x, p = 2 or ∞

B. General Polynomial Optimization

Consider the following general constrained polynomial

optimization problem:

p∗K := min
x∈K

p0(x) (P1)

where K ⊂ R
N is a compact set. This problem is usually

non-convex, hence hard to solve. Next, consider the related

problem:

p̃∗K := min
µ∈P(K)

∫

p0(x)µ(dx) := min
µ∈P(K)

Eµ [p0(x)] (P2)

where P(K) is the space of finite Borel probability measures

on K . Although (P2) is an infinite dimensional problem, it

is, in contrast to (P1), convex. The following result, taken

from [4], establishes the relation between the two problems:

Theorem 1: Problems (P1) and (P2) are equivalent; that

is:

• p̃∗K = p∗K .

• If x∗ is a global minimizer of (P1), then µ∗ = δx∗ is a

global minimizer of (P2).

• For every optimal solution µ∗ of (P2), p0(x) = p∗K , µ∗

almost everywhere.

One direct consequence of this theorem is that in

the case of semi-algebraic constraint sets, e.g K =
{x : pi(x) ≥ 0, i = 1, . . . d}, where pi are polynomials with

total degree dpi
, it is possible to develop a convergent

sequence of LMI based convex relaxations to problem (P1),

where the optimization variables are mi
.
= Eµxi, the

moments of the unknown distribution µ. To this effect, let

p∗N = min
m

∑

α

p0,αmα (1)

s.t. MN(m) � 0,

MNi
(pim) � 0, i = 1, . . . , d,

where p0,α is the coefficient of xα in p0(x); MN(m) is

the so-called moment matrix and MNi
(pim) is the so-called

localizing matrix, both of which are constructed from the

moments mi. For instance, in the case where x ∈ R2,

the moment matrix MN(m) consists of the block matrix

{Mj,k}0≤j,k≤N defined by

Mj,k(m) =











mj+k,0 mj+k−1,1 · · · mj,k

mj+k−1,1 mj+k−2,2 · · · mj−1,k+1

...
...

. . .
...

mk,j mk−1,j+1 · · · m0,j+k











,

and

MN(m) =











M0,0(m) M0,1(m) · · · M0,N(m)
M1,0(m) M1,1(m) · · · M1,N(m)

...
...

. . .
...

MN,0(m) MN,1(m) · · · MN,N(m)











.

The localizing matrix MNi
(gim) is defined as

MNi
(gim)(i, j) =

∑

α

gi,αm{β(i,j)+α}

where gi,α is the coefficient of xα in gi(x), m(i, j) is the

entry (i, j) of MN (m), β(i, j) is the subscript of mβ , and

Ni is the smallest integer that no less than N − dpi
. Then,

according to Theorem 4.2 in [4], we have

Theorem 2 (General Polynomial Optimization):

p∗N ↑ p∗K . (2)

as N increases to infinity,

C. Sparse Polynomial Optimization

While a hierarchy of SDP relaxations can be built to

asymptotically solve a general polynomial optimization prob-

lem, in terms of computational complexity, it can be applied

only to relatively small size problems. Indeed, according

to [4], [10], the largest size of the LMIs in the SDP is
(

d+N
d

)

.

On the other hand, many polynomial optimization problems

encountered in practice (such as the one considered in this

paper) have a sparse structure that can be exploited to de-

crease computational complexity; i.e., the polynomial pi only

contains a small fraction of the indeterminate variables. If the

sets of indices of variables in each pi and in the objective p0

satisfy the so-called running intersection property, the size of

the LMIs can be significantly reduced, i.e.
(

ξ+N
ξ

)

where ξ is

the largest number of variables appearing in the polynomials.

We now briefly state the definition of this property.

Definition 1 (Running Intersection Property): Let Ik be

the set of indices of the variables that appear in pk,

k = 1, . . . , d, and write p0 = p0,1 + · · · + p0,l where each

p0,i uses only variables {Xi|i ∈ Ik} for some k. Then,

the running intersection property is satisfied if the collection

{I1, . . . , Id} obeys the following condition:

Ik+1 ∩

k
⋃

j=1

Ij ⊆ Is for some s ≤ k, (3)

for every k = 1, . . . , d− 1.

Similar to the result stated in Theorem 2, for a sparse

polynomial optimization problem that satisfies the running

intersection property, the convergence property holds as

well. For simplicity, let us denote MN (m, Ik) the moment

matrix for the reduced variables in the set Ik , and denote

MNi
(gjm, Ik) the localizing matrix with the reduced vari-

ables in Ik. We now restate Theorem 3.6 in [5] that formalize

this approach.
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Theorem 3 (Sparse Polynomial Optimization): Let

p∗N = min
m

∑

α

pαmα (4)

s.t. MN (m, Ik) � 0, k = 1, . . . , d

MNi
(gjm, Ik) � 0, k = 1, . . . , d.

Then, as N increases to infinity,

p∗N ↑ p∗K . (5)

III. SET MEMBERSHIP IDENTIFICATION OF LINEAR

HYBRID SYSTEMS

In this section, we formally define the hybrid system

identification problem and formulate it as a constrained

polynomial optimization. More precisely, we consider the

problem of identifying single-input-single-output switched

linear systems of the form

yk =
n

∑

i=1

ai(σk)(yk−i − ek−i) +
m

∑

i=1

bi(σk)uk−i + ek (6)

where u, y and e are input, output and noise, respectively.

The magnitude of noise is bounded by ē > 0. Moreover,

ai and bi are the parameters of the system, where σk ∈
{1, 2, . . . , s} denotes which sub-system is active at time k.

Without additional restrictions, the problem admits in-

finitely many solutions, i.e., one can assign a trivial model

corresponding to each measurement. Thus, one needs to add

additional objectives to make the problem meaningful. In

this paper, we aim at minimizing the number of sub-systems,

denoted by s. For simplicity, assume that s is known. This

assumption does not imply loss of generality since one can

always increase s one by one until a meaningful solution is

found. Then, the problem of interest can be stated as follows.

Problem 1: Given input and corrupted output measure-

ments u, y over the interval [1, L], a bound ē on the ℓ∞
norm of measurement noise e (i.e. |ek| ≤ ē for k ∈ [1, L]),
the number of sub-models s and the order of sub-models (n

and m), find a hybrid affine model of the form (6) that is

consistent with all a priori information given.

Compared to the switched autoregressive exogenous

(SARX) linear models considered in [1], [7], the model (6)

assumes that one has measurement noise and does not

contain unmodeled system dynamics.1 We are now ready to

formulate the identification problem as finding the null space

of a a so-called “noisy” Veronese matrix.

A. Algebraic Reformulation

In the algebraic procedure, known as GPCA introduced

in [12], [6], if the noise e = 0, equation (6) can be

equivalently represented as

b(σk)T
rk = 0

where rk = [−yk, yk−1, . . . , yk−n, uk−1, . . . , uk−m, and

b(σk) = [1, a1(σk), . . . , an(σk), . . . , b1(σk), . . . , bm(σk)].

1This formulation can be easily modified to include unmodeled dynamics.

Based on the so-called hybrid decoupling constraint, one can

write this as a polynomial equation

ps(r) =

s
∏

i=1

(bT
i rk) = c

T
s vs(rk) = 0, (7)

which holds at any time k. Therefore, by collecting all

measurements, we can build the so-called Veronese matrix

Vs and polynomial equations

Vscs
.
=







vs(r1)
T

...

vs(rL)T






cs = 0. (8)

Hence, the problem is converted into the related problem of

finding the null space of the Veronese matrix Vs.

In the case where measurement noise needs to be con-

sidered, one can preform a similar reasoning and derive the

following polynomial equation.

ps(r, e) =
s

∏

i=1

(bT
i r̃k) = cs

T vs(rk) = 0, (9)

where

r̃k = [yk − ek, . . . , yk−n − ek−n, uk−1, . . . , uk−m].

Then, a “noisy” Veronese matrix Vs(r, e) can be constructed

and the identification problem is equivalent to finding admis-

sible noise e so that Vs(r, e) has a non-trivial null space, i.e.

finding e and a non-zero vector x that

Vs(r, e)x = 0. (10)

Once such a null space is found, it can be used to recover

the parameters of the sub-systems; e.g. see [12].

Now we present a simple example to illustrate this proce-

dure and highlight the difficulty of the problem.

Example 1: For s = 2 and the order (n, m) = (1, 1),
equation (7) can be written that

(yk + a1(yk−1 − ek−1)− b1uk − ek) ·

(yk + a2(yk−1 − ek−1)− b2uk − ek) = 0.

Hence, the k-th row of the noisy Veronese matrix Vs can be

written as

vk(r, e) =

















(yk − ek)2

(yk−1 − ek−1)(yk − ek)
−uk(yk − ek)

−uk(yk−1 − ek−1)
(yk−1 − ek−1)

2

u2
k

















T

Remark 1: Note that given the noisy measurements u and

y, the Veronese matrix above is a matrix polynomial function

of e. Moreover, there is a special structure on how the noise

“appears” in the matrix, i.e., ek appears not only at the k-th

row of V (e), but also at the rows k + 1, k + 2, . . . , k + n.

Hence, there are elements in the matrix being multivariate

polynomials. Note in SARX linear models, each ek only

appears in a single row, which guarantees that every element
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in the Veronese matrix is either a constant or a univariate

polynomial, motivating the proposed moments-based convex

optimization algorithm in [7]. However, this algorithm no

longer applies when measurement noise is considered.

IV. MAIN RESULTS

In this section, we provide the details of our approach

to hybrid systems identification. The exposition is divided

in two parts. First, we show that an admissible sequence e

and a vector x that satisfy (10) can be found by solving

a polynomial optimization problem. The sparse structure of

the optimization problem is then exploited to obtain compu-

tationally tractable relaxations that work well for moderate

size problems. Finally, to further decrease computational

complexity and to solve larger size problems, we proposed

a Hit-and-Run type randomized algorithm.

A. An Equivalent Sparse Polynomial Optimization Problem

Finding the null space of the noisy Veronese matrix is

equivalent to minimizing its minimal singular value and

determining the corresponding eigenvector. Thus, we refor-

mulate it as a general polynomial optimization problem by

introducing an additional unitary vector.

Problem 2: Given the number of the sub-systems s and

the order of sub-models (n, m), find

min
e,x

‖Vs(r, e)x‖
2
2 (11)

s.t. ē2 − e2
k ≥ 0, k = 1, . . . , L,

‖x‖22 − 1 ≥ 0.

It is easy to see this problem equivalent to Problem 1.

Proposition 1: Given the number of the sub-systems s

and the order of the sub-models (n, m), if there exists at

least one compatible model for Problem 1, then there exist

e and x so that the minimum of Problem 2 is zero.

Although these two problems are equivalent, at first glance

it seems that the reformulation is at least equally difficult to

solve, since it contains variables x and e where the dimension

of e is equal to the number of measurements. However,

if one carefully checks the structure of the polynomial

‖Vs(r, e)x‖
2
2, it can be found that the polynomial is sparse.

More specifically, the polynomial can be rewritten as follows.

p0
.
= ‖Vs(r, e)x‖

2
2

=
L

∑

i=1

(xT vs(ri))
2

= p0,1(x, e1, . . . , en) + p0,2(x, e2, . . . , en+1)

+ . . . + p0,L(x, eL, . . . , el+n) (12)

where p0,is are polynomials. Hence, the problem (11) satis-

fies the running intersection property defined in Definition 1.

Thus, one can construct convergent SDP relaxations of

significantly smaller size to solve Problem 2. 2

2These observations still hold true when input noise is considered, where
one just need to add more variables for the input noise sequence.

The following simple example illustrates how the sparse

structure substantially reduces computational complexity.

Example 2: Consider two sub-systems (s = 2) with order

n = 1 and m = 1, and 20 measurements (L = 20). Then, in

Problem 2, one would have to build one LMI with size Θ1 =
(

20+6+4
4

)

= 27, 405 and 21 LMIs of size Θ2 =
(

20+6+2
2

)

=
378 for N = 4 in the SDP relaxation. On the other hand, by

taking into account the sparsity, one could build a SDP with

20 LMIs of size Θ3 =
(

2+6+4
4

)

= 495, and 21 LMIs of size

Θ4 =
(

2+6+2
2

)

= 45, for the same relaxation order.

Another important observation is that the complexity is

proportional to the data length. Hence, if the hybrid system

is relative simple, the identification problem can be solved

via solving Problem 2 directly. However, if the hybrid

system becomes complicate, say, the number of sub-systems

increases and/or the order of the sub-models increases, the

problem becomes numerically difficult to solve.

To overcome this difficulty, we propose an iterative algo-

rithm. More precisely, we start from a random unit vector

x0, and solve (11) for x = x0 to find e that minimize the

objective function. Then, we fix e and let x be the singular

vector of Vs(r, e) corresponding to its minimal singular

value. We repeat this iteration until x and e converge. This

iteration problem is formally defined as follows.

Problem 3: Given an initial unit vector x0, find e∗ and

x∗ such that

e∗(x0) = arg min
e

‖Vs(r, e)x
∗‖22 (13)

s.t. ‖e‖∞ ≤ ē,

and

x∗(x0) = arg min
x

‖Vs(r, e
∗)x‖22 (14)

s.t. ‖x‖22 = 1.

It is easy to see that the computational cost is significantly

reduced by fixing a part of the unknown variables. On the

negative side, however, one may encounter a convergence

problem. That is, counterexamples can be constructed where

the procedure above converges to some local minimum,

depending on the initial vector x0. Therefore, we propose a

randomized algorithm that circumvents this problem, which

is described in the next section.

B. A Hit-and-Run Algorithm

In this section, we propose a randomized algorithm to

circumvent the local convergence problem.

First of all, let us state the following proposition that helps

in the understanding the algorithm.

Proposition 2: Let

γ = ‖Vs(r, e
∗(x0))x

∗(x0)‖
2
2

where e∗(x0) and x∗(x0) are the solutions of Problem 3 for

some initial unit vector x0. Then, the minimum of Problem 2

is γ if and only if the minimum of the problem

min
e,β,d

‖Vs(r, e)(x
∗ + βd)‖22 − γ‖x∗ + βd‖22 (15)

s.t. ‖e‖∞ ≤ ē.
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is zero.

Proof: We prove it by contradiction. For the “if” part,

assume that the minimum of Problem 2 is not γ. Then there

exist some noise e and some unit vector x̃ that

‖Vs(r, e)x̃‖
2
2 < γ.

Let d = x̃− x∗ and β = 1, then,

‖Vs(r, e)(x + βd)‖22 < γ.

Hence,

‖Vs(r, e)(x + βd)‖22 − γ‖x + βd‖22

= ‖Vs(r, e)(x + βd)‖22 − γ < 0

which is a contradiction.

For the “only if” part, assume the minimum of prob-

lem (15) is less than zero for some direction d and some

scalar β. Note this minimum is always non-positve, since

the objective is always zero if one take β = 0. Then, let the

unit vector

x̃ =
x∗ + βd

‖x∗ + βd‖2
,

one has

‖Vs(r, e)(x
∗ + βd)‖22 − γ‖x∗ + βd‖22

= ‖x∗ + βd‖22 · (‖Vs(r, e)x̃‖
2
2 − γ) < 0

Hence, γ cannot be the minimum of Problem 2, which is a

contradiction. �

Thus, solving problem (15) is equivalent to solving Prob-

lem 2, which is also a sparse polynomial optimization

problem satisfying running intersection property. Now we

are ready to state the randomized algorithms, which is

summarized in Algorithm 1.

C. Computational Cost Analysis

In Step 1, since x is fixed, the objective polynomial in

problem (11) becomes

p0 = p0,1(e1, . . . , en+1) + . . . + p0,L(eL, . . . , eL+n).

Hence, for a fixed relaxation order N , the size of the moment

matrices is
(

n+1+N
N

)

and the size of localizing matrices is
(

n+N−1
N−2

)

, in the constructed SDP. The number of LMIs is

2L+1. Note also that since the total degree of p0 is equal to

2s, it usually does not require a high relaxation order to solve

the optimization problem at or very close to the optimality.

Step 2 is a singular value decomposition for a constant

matrix. The size of the matrix Vs(r, e)
T Vs(r, e) is

(

n+m+s
s

)

,

which is not related to the data length of measurement data.

In Step 4, to construct a SDP relaxation for a fixed

relaxation order N , the size of the moment matrices is
(

n+2+N
N

)

and the size of localizing matrices is
(

n+N
N−2

)

. The

number of LMIs is 2L + 1.

By the analysis above, we observe that this algorithm can

be applied to complicate problems encountered in practice.

However, it is unclear how many H&R iterations are needed

to find a singular value close enough to zero, given a solution

Algorithm 1 Hit-and-Run Algorithm

Step 0: Generate a random vector x0 that ‖x0‖ = 1
Set x∗ ← x0

repeat

repeat

Step 1: Set x← x∗, solve

e∗ ← argmin
e

‖Vs(r, e)x‖
2
2

s.t. ‖e‖∞ ≤ ē

Step 2: Set e← e∗, solve

x∗ ← argmin
x

‖Vs(r, e)x‖
2
2

s.t. ‖x‖22 = 1

until

min
e

‖Vs(r, e)x
∗‖22 = min

x
‖Vs(r, e

∗)x‖22

s.t. ‖e‖∞ ≤ ē s.t. ‖x‖22 = 1

Step 3: Set γ ← ‖Vs(r, e
∗)x∗‖22

repeat

Step 4: (H&R) Pick a random direction d, solve

(e, β)← argmin ‖Vs(r, e)(x + βd)‖22 − γ‖x + βd‖22

s.t. ‖e‖∞ ≤ ē

until a convergence criterion is reached

until

return x∗

exists. In our numerical examples, we found the algorithm

usually terminates and gives a good estimate in less than 100

iterations.

V. NUMERICAL RESULTS

In this section, we present some numerical results for the

proposed randomized algorithm. In the first part, the CPU

time needed for solving the sub-problems in Algorithm 1 is

given. In the second part, we use an academic example to

illustrate the effectiveness of the proposed algorithm.

A. CPU Time of Each Iteration for Different Size Problems

In this example, we run the code in Matlab2007R on a

computer with 1.8GHz CPU and 1 GB RAM. Moreover, we

used the package provided by Waki et al. [14] to solve

the sparse polynomial optimization problem. The CPU time

used for formulating the optimization problem and solving

the SDP relaxations is listed in the table followed.

N L s Conversion Time (sec) SeDuMi Time (sec)

2 20 2 2.21 0.19
4 20 2 2.48 1.02
8 20 2 4.51 20.89
2 40 2 8.28 0.31
4 40 2 9.33 2.18
8 40 2 13.29 49.64
2 80 2 112.12 0.60

N : relaxation order; L: number of measurements;
s: number of sub-systems.

164



Remark 2: As shown in the table, if one fixes the relax-

ation order N , the CPU time for solving the optimization

problems is proportional to the number of measurements

L. On the other hand, the conversion time (that is, the

time used to formulate the sparse optimization problems into

standard SeDuMi forms) is long when L is large. However,

one should note this formulation can be done symbolically

once the structure of the hybrid system is fixed. Thus it

can be expected that the algorithm can be applied to handle

problems of much larger size, if the coding is optimized,

B. Illustrative Example

In this section, we consider an illustrative example to

demonstrate the effectiveness of the proposed algorithm. It

is assumed that there are three sub-systems with the order

(n, m) = (2, 1). That is,

yk = −a1,i(yk−1−ek−1)−a2,i(yk−2−ek−2)+biuk−1 +ek

where i = 1, 2, 3. We take 90 measurement with 5 switches.

The simulation is run for two different noise levels, i.e. ē =
0.05 and ē = 0.2 (note that the GPCA approach usually

cannot handle noisy data well, especially for large noise;

see [7]). The input signal u is random ranging from −1 to

1. In Table I, we present the values of the system parameters

identified by the algorithm for the noise levels considered.

TABLE I

ESTIMATED AND TRUE VALUES OF PARAMETERS

True Noise e < 0.05 Noise e < 0.2

Sub-model 1
a1 1.8000 1.7642 1.9320
a2 0.8100 0.8261 0.7034
b1 1.5000 1.5134 1.5820

Sub-model 2
a1 0.5000 0.4742 0.3394
a2 0.0600 0.0436 0.0240
b1 1.0000 0.9821 1.3740

Sub-model 3
a1 -1.4000 -1.3627 -1.1360
a2 0.7400 1.7642 0.6722
b1 1.0000 1.0461 1.3836

Moreover, the measurements are classified to one of the

the sub-models, indicating which one is active at time k. This

is shown in Figure I.
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Fig. 1. Identified and true active sub-systems v.s. time

It can be seen that, in the case of small noise, the

parameters of the sub-systems can be closely recovered and

almost all (except one) measurements are correctly classified.

For the case of large noise, one could conclude that the

measurements are “misclassified” at several time instants.

However, it should be noted that, given the model identified

above, the classification obtained is indeed compatible with

the measured data and a priori information on the magnitude

of the noise. In fact, if the dynamic of sub-models are close

and the noise is large, one may get a hybrid system with less

sub-models. This should not be regarded as a failure of the

algorithm, as the system identified is compatible with all the

given information.

VI. CONCLUDING REMARKS

This paper addresses the identification problem of discrete-

time affine hybrid systems with input/output data corrupted

by measurement noise. The approach suggested in the paper

formulates the identification problem as a polynomial opti-

mization problem. The inherent sparse structure is then ex-

ploited to significantly reduce the computational cost needed

to solve its SDP relaxations. Furthermore, a randomized

algorithm is proposed (by using ideas from Hit-and-Run)

to speed up the computation, in order to be able to han-

dle much more larger sized problems. Numerical examples

are provided to illustrate the effectiveness of the proposed

algorithm and the potential to attack large size problems.

Hence, ongoing work is aimed at optimizing the code,

as discussed in Section V-A. On the other hand, we are also

working on finding a bound on the expected number of H&R

iterations needed for a given precision.
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