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Abstract

This paper considers the problem of finding low order
nonlinear embeddings of dynamic data, that is, data char-
acterized by a temporal ordering. Examples where this
problem arises include, among others, appearance–based
multi–frame tracking, activity recognition from video and
dynamic texture analysis/synthesis. Our main result is a
semi-definite programming based manifold embedding al-
gorithm that exploits the dynamical information encapsu-
lated in the temporal ordering of the sequence to obtain
embeddings with lower complexity that those produced by
existing algorithms, at a comparable computational cost.
In addition, the use of spatio-temporal information allows
for minimizing the effects of outliers on the manifold struc-
ture and for handling fragmented sequences, where some of
the data is missing, for instance due to occlusion.

1. Introduction
The problem of finding low complexity representations

of high-dimensionality data is ubiquitous in computer vi-
sion and pattern recognition. Applications include, among
others, appearance-based tracking [3, 8], activity recogni-
tion from video data [4], gait recognition[1], video and im-
age inpainting [15], and dynamic texture analysis and syn-
thesis [10]. In all cases, the key to obtain computationally
tractable algorithms is to exploit the high degree of corre-
lation of the original data to obtain low dimensional repre-
sentations, which are then used as surrogates to solve the
problem of interest. For example, in the context of multi-
frame tracking of a target undergoing appearance changes,
nonlinear manifold embedding allows for representing the
evolution of all the pixels in the target as a trajectory in a low
dimensional manifold, characterized by the evolution of just
a few variables. Thus, predicting future target appearance
entails predicting the values of these variables, followed by
a nonlinear operation, rather than propagating the values of
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the (typically thousands) pixels involved.
Given its importance both for computer vision and ma-

chine learning, nonlinear manifold embedding has been
a very active research area in the past decade, leading
to a number of algorithms, including Locally Linear Em-
beddings (LLE) [13], semi-definite embedding (SDE)[16],
Global coordination of local linear models (GCM) [12] and
Dynamic Global Coordinate Model (DGCM) [9]. A com-
mon feature of these methods is that, while they exploit the
local spatial topology of the data, they stop short of tak-
ing full advantage of the available dynamical information,
encapsulated in its temporal ordering. Indeed, this informa-
tion is typically discarded, for instance in the SDE method,
or used in relatively simple models [9], that may fail to cap-
ture the underlying temporal dynamics. Thus, the resulting
representations are not necessarily the most compact ones.
In addition, neglecting dynamical information can lead to
embeddings that are fragile in the presence of outliers or
missing data. This phenomenon is illustrated in Fig. 1, ob-
tained by applying the method in [16] to a boxing sequence
from the KTH database [14]. As shown there, a single out-
lier (in this case due to camera jitter) can significantly alter
the structure of the manifold.

Figure 1: Effect of a single outlier on the manifold structure.

In this paper we propose a new manifold embedding al-
gorithm for dynamical sequences that exploits both spatial
and temporal information in order to obtain the simplest
possible dynamical representation of the data. Briefly, the
main idea is to model the data as the output of an underly-
ing Wiener system of the form shown in Figure 2 consisting
of the cascade of a piece-wise linear autoregressive model
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(generating the manifold trajectories) and a possibly time-
varying nonlinearity that maps the low dimensional mani-
fold representation back to the original data space. As illus-
trated in the paper, constraining target manifolds to those
spanned by feasible trajectories of the Wiener system en-
dows the proposed method with robustness against outliers
and allows for handling missing data. Further, in this con-
text the complexity of the representation is given by a com-
bination of the order (e.g the number of coefficients) of the
regressor and the (local) dimension of the embedding man-
ifold. By appealing to concepts from realization theory, the
problem of minimizing this complexity can be reduced to a
rank minimization form and efficiently solved used recently
proposed convex relaxations [6], leading to an algorithm
whose computational complexity is similar to that of the
SDE method.

Figure 2: Wiener Model. Here y ∈ Rd and x ∈ RD with
D >> d. y(0) denotes the initial conditions of the autore-
gressive process.

The paper is organized as follows. Section 2 presents
some background material, including a summary of the
SDE algorithm and key results from realization theory and
convex relaxations of rank required to develop the proposed
embedding method, which is presented in detail in sec-
tion 3. Section 4 presents experimental results and bench-
marking using synthetic and real video data. Finally, sec-
tion 5 summarizes our results and points out to directions
for future research.

2. Notation and Background Results
In this section we present the notation used throughout

the paper and summarize, for easy of reference, some key
results from the literature required to develop the proposed
embedding method.

2.1. Notation
x column vector or matrix valued variables.
M � 0 matrix M is positive semidefinite.

2.2. Semidefinite Embedding (SDE)

The dynamic embedding method that we propose in this
paper is inspired by the Semidefinite Embedding method
(SDE) [16] briefly described next. The main idea of this
method is to find a possibly nonlinear mapping that pre-
serves the local geometry while attempting to minimize the

(local) dimension of the manifold. Specifically, given N
points X .=

[
x1 . . .xN

]
, define a neighborhood relation-

ship matrix η ∈ RN×N with entries ηij ∈ {0, 1}, where
ηij = 1 if and only if xj is regarded as the neighbor of xi.
Finally, denote by Y .=

[
y1 . . .yN

]
the low dimensional

projections of the high dimensional data. In this context, the
local geometry is preserved if, for every point xi, there ex-
ists a rotation, reflection and/or translation that maps xi and
its neighbors precisely onto yi and its neighbors. Equiva-
lently, for every pair (i, j) such that ηij = 1, the following
equation must hold

Kii − 2Kij +Kjj = Lii − 2Lij + Ljj (1)

where Kij and Lij denote the entries of the Grammian
matrices associated with the data and its projections, e.g.
K .= YT Y and L .= XT X. As pointed out in [16], max-
imizing the trace of K tends to minimize the dimension of
the manifold where Y is embedded1. These observations
allow for recasting the embedding problem into the follow-
ing semi-definite optimization form:

maximize trace(K)

subject to

1. K � 0.

2.
∑

i,j Kij = 0.

3. Kii − 2Kij + Kjj = Lii − 2Lij + Ljj for all (i, j)
such that ηij = 1 or [ηT η]ij = 1

Once a solution K is found, the low dimensional projec-
tions can be recovered from its singular value decomposi-
tion: Y = D

1
2 VT = (UD

1
2 )T , where K = UDVT . Note

that, contrary to other embedding methods, the dimension
of Y does not have to be specified a-priori. Rather, the SDE
method detects the correct underlying dimensionality of the
inputs from the singular value spectrum of K.

2.3. Regressor Complexity and the Hankel Matrix

Consider a vector process described by an autoregressive
model of the form:

yk = a1yk−1 + a2yk−2 + . . .+ anyk−n (2)

To every trajectory yk of this model, one can associate a
Hankel matrix defined as:

Hy
.=


y0 y1 · · · yr

y1 y2 · · · yr+1

...
...

. . .
...

ys ys+1 · · · yr+s

 (3)

1Intuitively, maximizing trace(K) tends to spread out the projections
yi as far as possible, thus flattening the manifold.
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It is a well known result from realization theory [7, 11],
that, under mild conditions, given a sequence of measure-
ments {yk} generated by (2), the order n of the model is
related to the rank of the corresponding Hankel matrix by,
rank(Hy) = n, provided that r, s ≥ n.

2.4. Convex Relaxations of Rank Minimization
Problems (RMP)

From section 2.3, it follows that minimal complexity
models can be obtained by minimizing the rank of a matrix
that depends linearly on the optimization variables. This
observation plays a key role in obtaining low dynamic com-
plexity embeddings. However, a potential difficulty here is
that rank minimization problems are generically NP-hard.
To circumvent this difficulty, we will exploit a class of re-
cently proposed convex relaxations based on the fact that
trace is the convex envelope of rank, that is, its tightest con-
vex approximation [5]. This property allows for (approx-
imately) solving rank minimization problems affine in the
optimization variable by solving a semi-definite (hence con-
vex) program. Specifically, let M(y) denote a matrix that
depends affinely on the vector variable y. Then, the prob-
lem miny rankM(y) can be relaxed to:

minimizey,P,Q trace(P) + trace(Q)

subject to
[

P M(y)
M(y)T Q

]
� 0 (4)

where P,Q are matrix slack variables. A further improve-
ment on the solution to this problem can be obtained by
using a method based on a re-weighted heuristic that seeks
to iteratively solve

minimize logdet(M + δI)
subject to M � 0

where the function logdet(M + δI) is used as a smooth
surrogate for rank(M) and δ > 0 is a regularization con-
stant [6]. Considering the first order Taylor expansion of
logdet(M + δI) around Mk, the present best estimate for
the solution leads to the following iterative algorithm:

miny,Pk+1,Qk+1(trace((Pk + δI)−1Pk+1)+
trace((Qk + δI)−1Qk+1))

subject to
[

Pk+1 M(y)
M(y)T Qk+1

]
� 0

(5)

where Pk,Qk denote the solution obtained at the kth itera-
tion.

3. Low Order Dynamics Embedding (LDE)
The goal of this paper is to develop an algorithm spe-

cially tailored to dynamic data that minimizes the complex-
ity of the resulting embeddings. As briefly outlined in the

introduction, the key to accomplish this goal is to model
the (temporally ordered) data as the output of an unknown
Wiener system, and then search for embeddings that mini-
mize the complexity of this description, measured in terms
of both the dynamical order of the regressor and the dimen-
sion of the embedding manifold. From sections 2.2 and 2.3,
it follows that, in principle, this can be accomplished by
solving the following optimization problem:

miny rank(Hy)− λtrace(K) (6)
subject to:‖yi − yj‖22 = ‖xi − xj‖22 (7)

for all ηij = 1 or [ηT η]ij = 1
K = YT Y, Y .=

[
y1 . . .yN

]
(8)

Intuitively, the first term in the objective function seeks to
minimize the complexity of the regressor, while the sec-
ond, through the maximization of trace(K) seeks to mini-
mize the dimension of the embedding manifolds. The con-
straints (7) impose that the embedding preserves the lo-
cal spatial geometry. A difficulty here is that, due to the
quadratic dependence on yi of the objective function and
the constraints, the overall problem is non-convex, even if
using the rank relaxation discussed in section 2.4. In ad-
dition, restricting the embedding map to be a (local) isom-
etry severely limits the degree of dimensionality reduction
(intuitively, there are not enough degrees of freedom in the
manifold to satisfy exactly all the high dimensional equality
constraints). To circumvent these difficulties, in the sequel
we will work with the inner products kij

.= yT
i yj and the

matrix G .= Hy
T Hy, rather than with y and Hy (clearly

G and Hy have the same rank). In addition, rather than
imposing an exact isometry, we will relax the constraint (7)
to: ∣∣‖yi − yj‖22 − ‖xi − xj‖22

∣∣ ≤ ε‖xi − xj‖22 (9)
for all (i, j) ∈ local neighborhood (10)

where ε is a design parameter. Defining the family of Gram
matrices:

Ki,n =

 yT
i yi yT

i yi+1 · · · yT
i yi+n

...
...

. . .
...

yT
i+nyi yT

i+nyi+1 · · · yT
i+nyi+n

 (11)

and noting that G =
∑n

i=1 Ki,n+i−1 leads to the following
problem (affine in kij , the elements of K .= K1,2n):

minkij
{rank(G)− λtrace(K)} (12)

subject to:
(1− ε)‖xi − xj‖22 ≤ kii − 2kij + kjj

≤ (1 + ε)‖xi − xj‖22

G =
n∑

i=1

Ki,n+i−1 ,K � 0 ,
∑

kij = 0 (13)
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where the additional constraint
∑
kij = 0 guarantees that

the embedding is translationally invariant. Note that in the
problem above the constraint set and the second term in the
objective function are affine in the optimization variables.
Thus, using the convex relaxation (5) leads to the following
algorithm:
Algorithm 1: Low Dimensional Dynamic Embedding (LDE)

1.- Solve (iteratively)

minkij
trace((Pr + δI)−1Pr+1)+

trace((Qr + δI)−1Qr+1))− λtrace(K)
subject to:[
Pr+1 G
GT Qr+1

]
� 0

(1− ε)‖xi − xj‖22 ≤ kii − 2kij + kjj

≤ (1 + ε)‖xi − xj‖22
G =

∑n
i=1 Ki,n+i−1 ,K � 0 ,

∑
kij = 0

2.- Let Ko denote the optimal solution found in step 1.
Perform an SVD K = UDVT and compute the man-
ifold coordinates Y = D

1
2 VT .

As in the SDE case, the rank of K indicates the embed-
ding dimensionality. It is worth emphasizing that, when
compared against the SDE algorithm described in section
2.2, the proposed algorithm requires adding a single semi-
definite constraint (and the associated variables P,Q) to the
optimization. In return, it minimizes not only the dimension
of the embedding but also the complexity of the dynamic
model required to represent the data.

4. Experimental Results and Benchmarking
In this section we apply the proposed algorithm to dif-

ferent embedding problems, involving both synthetic and
real data and compare the results against those of obtained
using the SDE [16] and dynamic global coordinate model
(DGCM) [9] methods. We chose these two methods for
benchmarking purposes since the SDE method was shown
in [16] to outperform other static embedding approaches,
while DGCM is one of the few methods that exploits dy-
namical information, albeit using an assumed, simple dy-
namics.

4.1. Embedding Fast Time Varying Data

This synthetic data example illustrates the role played
by the temporal dynamics in obtaining smooth embeddings.
The high dimensional data was generated by randomly lift-
ing samples from a smooth 2D trajectory, in this case the
circle shown in Fig. 3a to two parallel surfaces (Fig. 3b).
The embeddings obtained applying the different methods to
the lifted data are shown in Figures 3c–3e. As illustrated

there, only the LDE method is capable of recovering the
original smooth 2D trajectory. Note in passing that in this
case the manifold obtained using SDE has dimension 3.

(a) Original data lying on
a 2D circle

(b) 3D data generated by
lifting the 2D circle onto
two parallel surface

(c) The 2D mani-
fold obtained using
DGCM

(d) The manifold ob-
tained using SDE.

(e) The 2D manifold
obtained using LDE

Figure 3: Embedding fast time-varying data

(a) Frame 39 (b) Frame 40 (c) Frame 41

(d) LDE embedding: the outlier has minimal
effect on the overall manifold structure

Figure 4: Applying the LDE method to a sequence with an
outlier (Frame 40).

4.2. Robustness to outliers

The next two examples illustrate the resiliency of the
LDE method to outliers. Figure 4 shows the results of ap-
plying the LDE method to a boxing sequence from the KTH

2371



(a) 2D trajectory synthesized using an
8th order LTI system

(b) 3D data generated by mapping the
trajectory to a cylinder surface

(c) 3D data corrupted with an outlier
(marked by a star)

(d) 2D Embedded obtained applying
DGCM to the corrupted data

(e) 2D Embedded obtained applying
SDE to the corrupted data

(f) 2D Embedded obtained applying
LDE to the corrupted data

(g) 3D trajectory reconstructed from
the 2D DGCM embedding

(h) 3D trajectory reconstructed from
the 2D SDE embedding

(i) 3D trajectory reconstructed from
the 2D LDE embedding

Figure 5: Synthetic example illustrating the resiliency of the LDE method to outliers.

database, where the location of the actor in the 40th frame
is shifted with respect to the location in the neighboring
frames due to unintentional camera jitter. As shown there,
the outlier has minimal influence on the manifold structure.
On the other hand, as illustrated in Fig. 1, this single out-
lier substantially affects the manifold produced by the SDE
method.

The next example considers synthetic data obtained by
first generating a trajectory from an 8th order LTI system
that evolved in a 2D manifold, then lifting the data to the
surface of a cylinder with unit radius, and finally adding an
outlier, as shown in Figure 5b. Figures 5d–5f show the man-
ifolds obtained using the different methods. As before, the
embeddings produced by the SDE and DGCM are fragile
to this single outlier, while the LDE embedding is largely
unaffected.

4.3. Embedding sequences with missing data

Both the LDE and SDE methods can be easily extended
to handle sequences with missing data. In the LDE case this
can be accomplished by simply treating the projections yj

of the missing data as free variables by removing the con-
straints (7) for these cases. In the SDE case, the missing
data can be recovered by first finding the embedding man-
ifold and the corresponding manifold projections yi of the
available data, and then applying the inpainting procedure
proposed in [2] to the sequence {yi}. Figure 6 shows qual-
itative results of applying these ideas to a sequence from
the CMU mobo dataset. Table 1 summarizes quantitative
results using the Walking (07 01.amc with missing frames
31 to 39) and Slowing Down (104 56.amc, with missing
frames 51 to 59) sequences from the mocap dataset. In both
cases, the missing frames were not used when computing
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the embeddings. As shown there, both the SDE and LDE
methods do well for the walking sequence (with LDE out-
performing SDE by 13%). On the other hand, for the slow-
ing down sequence, LDE outperforms SDE by almost one
order of magnitude. Briefly, since the walking sequence is
almost periodic, considering only spatial information yields
reasonably good interpolants, thus explaining the relatively
good performance of SDE. On the other hand, for the non–
periodic slowing down sequence, exploiting dynamical in-
formation is crucial to obtaining low-error interpolants. For
comparison, we have also included the performance of a
modified DGCM method, where missing data is handled by
interpolating the manifold during each EM iteration. The
low performance of the DGCM method is due to the fact
that the simple first order dynamics it uses on the manifold
are not rich enough to capture the temporal evolution of the
data.

Table 1: Missing data reconstruction error
DGCM SDE LDE

Walking Mean Err. 56.51 21.91 19.38
Slowing down Mean Err. 454.5 122.6 38.0

(a) (b) (c)

Figure 6: Using the LDE method to reconstruct missing
frames 41-49. (a) Interpolation; dashed lines indicate the
manifold obtained using 91 frames and rank minimiza-
tion, the stars indicate interpolated data; solid lines are the
ground truth. (b) Sample frame. (c) Reconstructed frame.

4.4. Dynamic Texture Reconstruction

Figure 7: Sample frames from the Flag sequence.

This example compares the performance of the DGCM,
SDE and LDE algorithms for the problem of obtaining

parsimonious representations of dynamic textures. Table
2 shows a comparison of the reconstruction error versus
the order of the manifold dynamics, obtained when apply-
ing these methods to the flag video from the MIT tem-
poral texture dataset (Figure 7). In all cases the original
sequence was first projected to the manifold and then re-
constructed using a radial basis function. When compared
against DGCM, the LDE method is able to achieve a 11%
improvement in the reconstruction error while reducing the
dimension of the embedding manifold by almost an order of
magnitude. When compared against SDE, the LDE method
yields an improvement of at least 16% when using the same
manifold dimension. Figure 8 sheds some insights into the
reasons why LDE outperforms the other methods here. As
shown there, by exploiting the temporal information, the
SDE method is capable of finding an embedding where the
matrix KLDE = YT

LDEYLDE has rank 4 (hence only a 4-
dimensional manifold is needed), compared against KSDE

that has roughly rank 10. Similarly, the Hankel matri-
ces corresponding to the 3 methods have rank 6(LDE), 20
(SDE) and 27 (DGCM), indicating the need for dynamical
models of these orders.

Table 2: Reconstruction error versus manifold dimension
for the flag dynamic texture example

Manifold Dimension Error
DGCM 20 4.8145× 106

LDE
20 3.3608× 106

10 4.0194× 106

4 4.3561× 106

SDE
20 4.3325× 106

10 4.8099× 106

4 5.0646× 106

(a) Singular value spectrum of the Hankel matrices of the
embedded data. Top: DGCM; Center: SDE; Bottom: LDE)

(b) Singular value spectrum of the Grammian matrix of the
embedded data. Top: DGCM; Center: SDE; Bottom: LDE)

Figure 8: Manifold and dynamic regressor dimensions for
the flag example.
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4.5. Appearance Prediction

This example illustrates the ability of the LDE method
to extrapolate future values of the time series. In this ex-
periment we considered 63 frames from a (downsampled
by 4) jump–turn sequence from the CMU Motion Capture
clips(91 46.amc). The goal is to use the first 50 frames to
predict the values of the last 13. Applying the proposed
LDE method leads to a one–dimensional manifold where
the temporal evolution of the embedded data can be cap-
tured using a seventh order regressor. Similarly, using the
SDE method leads to a one–dimensional manifold, but in
this case the order of the required autoregressive model (es-
timated from the corresponding Hankel matrix) is 13. Table
3 shows the prediction error of these 2 methods, once the
predicted manifold coordinates are mapped back to pixel
space using a radial basis function. For comparison pur-
poses we also show the results of the DGCM reconstruction.
As illustrated there, the proposed LDE method yields a 50%
reduction in the prediction error,while using a substantially
simpler manifold model.

Table 3: Reconstruction error for the predicted frames,
jump-turn sequence

Manifold Dimension Model Order Error
DGCM 2 1 215.6
SDE 1 13 244.0
LDE 1 7 160.4

5. Conclusion

A key element in analyzing high-dimensional data is the
exploitation of spatio/temporal correlations to obtain low
dimensional, parsimonious representations. Existing non-
linear dimensionality reduction algorithm fully exploit the
spatial topology, but most stop short fully of exploiting the
temporal correlations that characterize a large portion of the
data available in computer vision applications. Indeed, this
information is typically discarded or used in relatively sim-
ple models that often fail to take full advantage of the under-
lying dynamics. In this paper we presented a new nonlinear
embedding method, specially tailored to dynamic data that
exploits both spatial and temporal information in order to
obtain the simplest possible dynamical representation. As
shown here, this can be accomplished by appealing to con-
cepts from systems theory and convex optimization to re-
duce the problem to a computationally tractable convex op-
timization form. The advantages of the proposed algorithm
vis-a-vis existing methods in terms of robustness, ability to
reconstruct missing data and produce lower complexity em-
beddings were illustrated using both synthetic and real data.

Research is currently underway seeking to extend these re-
sults to the case of time–varying manifolds and dynamics.
Such a description is needed for instance when tracking
a target that can undergo sudden appearance and motion
changes.
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