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Abstract. Tracking objects in the presence of clutter and occlusion remains a
challenging problem. Current approaches often rely on a priori target dynamics
and/or use nearly rigid image context to determine the target position. In this pa-
per, a novel algorithm is proposed to estimate the location of a target while it is
hidden due to occlusion. The main idea behind the algorithm is to use contex-
tual dynamical cues from multiple supporter features which may move with the
target, move independently of the target, or remain stationary. These dynamical
cues are learned directly from the data without making prior assumptions about
the motions of the target and/or the support features. As illustrated through sev-
eral experiments, the proposed algorithm outperforms state of the art approaches
under long occlusions and severe camera motion.

Keywords: dynamics-based tracking, occlusion, context.

1 Introduction

The focus of this paper is to provide accurate estimates of the location of a target while
it is not visible due to long occlusions. Persistent tracking is fundamental to many com-
puter vision applications including, surveillance, structure from motion, activity recog-
nition and human computer interfaces, just to mention a few. However, the problem of
keeping track of a target in the face of temporary occlusions remains challenging in
spite of the very extensive body of work on this topic.

Recent tracking approaches [4,5,6] incorporate concepts from object detection and
recognition to recapture the target after it was occluded. However, these approaches can-
not provide estimates of the location of an occluded target and hence must rely entirely
on its appearance which, in turn, can change significantly and lead to tracking failures.
More traditional approaches to tracking seek to improve robustness to occlusion by esti-
mating the position of the target through Kalman, Extended-Kalman or Particle filtering
[7,8,9,10]. While successful in many scenarios, these approaches often suffer from as-
suming too simplistic dynamical models (i.e. brownian motion, constant velocity, etc)
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Frame 34 Frame 38 Frame 40 Frame 44
(a)

(b) RT (Frame 38) (c) CAT (Frame 38) (d) ST (Frame 38) (e) RST (Frame 38)

Fig. 1. Tracking with occlusion and severe camera motion. (a) Sample frames of a bouncing
(marked in green) and a rolling (marked in red) ping-pong balls. (b-e) Estimated locations by
using (b) a piece-wise linear motion model [1]; (c) context regions and an affine relative motion
model [2]; (d) support features and an approximately constant distance model [3]; (e) dynamic
support features as proposed in this paper.

and can easily drift in the presence of prolonged occlusions and clutter similar to the
target. This problem can be avoided in part by assuming a piecewise linear dynamical
model that is fitted as the data becomes available [1,11]. However, these techniques
can also fail if occlusions are very long or if the camera undergoes severe motion. This
problem is illustrated in Figure 1b where a tracker using this approach fails to estimate
the correct location of a bouncing ping-pong ball while occluded by a black book in a
video captured by a camera undergoing severe motion.

More recently, [2,12,3] proposed to use context relationships that exploit strong mo-
tion correlations between the target and near-by regions or features. Both [2,12] propose
to use “companion regions” close to the target. The approach used in [12] only works
for a stationary camera and the companion region, which remains unchanged as the
target moves, must be manually selected. On the other hand, in [2] context regions are
found using a color-based split-and-merge segmentation algorithm and selected through
a mining process that looks for large regions that co-occur with the target and whose
locations are related to the target position through an affine model. Thus, in practice, the
target and the context objects are roughly modeled as moving approximately as a rigid
in 3D and in close proximity to each other. As a result, the number of suitable context
objects is rather limited since they have to be large regions and neither regions with
complex motions nor stationary background regions perform well as context features.
This is illustrated in Figure 1c where the only regions available to be used as context
belong to the background. In this case, these regions appear to be moving due to the
camera motion. However, the relative motion between the targets (rolling and bouncing
ping-pong balls) and the candidate context regions cannot be modeled as affine (see
Figure 2) due to the severe camera motion. Indeed, the estimates of the locations of
the targets provided by the two best context regions are very far from the true position.
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(a) Rolling ball (b) Bouncing Ball

Fig. 2. Affine based localization errors using different context objects for two targets in Figure 1a
using the method proposed in [2]

Furthermore, it should be noted that even when good context regions that move with the
target are available, the context objects are likely to be occluded along with the target
due to their proximity, leaving the tracker vulnerable.

In [3], the authors propose to use a Generalized Hough Transform approach with a
more dense set of “supporter features” that are learned and updated over time which
allows the tracker to handle moderate camera motion. However, the method uses a sim-
ple motion support model that assumes that the relative position between the supporter
features and the target is more or less constant and uses a manually selected forget-
ting factor to weight previous estimates. As a result, their predictions can be incorrect
due to the mismatch between the true and the assumed motion model1 as illustrated in
Figure 1d where the tracker incorrectly estimates the locations of the bouncing and the
rolling ping-pong balls.

1.1 Paper Contributions

In this paper, we propose a robust context based tracking algorithm – the Robust Sup-
porter Tracking (RST) algorithm – that uses the relative dynamics between the target
and contextual features to estimate the location of the target during occlusion and in the
presence of severe camera motion. The main idea is to be able to exploit dense con-
text features that exhibit different levels of motion correlation with the target, such as
the green, yellow and red trajectories shown in Figure 3, as they become available. In
this way, the proposed tracker can fuse information supported by the available features,
but it is not restricted to only using highly correlated or physically proximate ones. To
accomplish this, the tracker estimates the motion correlation between candidate sup-
porter features and the target, and weights the target location estimates accordingly. It
should be noted that the estimates are done using Hankel matrices of sequences of mea-
surements, without making a priori assumptions about their dynamics. The proposed
method is inspired by the ideas proposed by [2,3] and the Hankel based trackers pro-
posed in [1,11]. Yet, as illustrated in Figure 1e and in the experiments in section 5 , the

1 This problem is also exacerbated by the fact that predictions are made using a polar coordinate
system based on the dominant orientation of a histogram of gradients which is sensitive to
noise and illumination variations.
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(a) (b) (c)

Fig. 3. 3a A frame with the target marked by a red rectangle and feature trajectories. 3b The rigidly
coupled supporters are helpful to estimate the position of the occluded target. When there are no
rigidly correlated features, such as in 3c, the target motion can still be modeled and estimated.

proposed tracker makes more accurate estimations of the target location and is more
robust to severe camera motion than these approaches. In particular, the RST tracker
has the following advantages:

1. Compared to [2,3], it can use arbitrarily complex relative dynamics between the
context features and the target, and supporter features may move or not with the
target. Thus, the number of context features available is larger than in these previ-
ous approaches. Furthermore, the context features proposed here tend to be better
spatially distributed in the images as they do not need to be in close proximity with
the target. Finally, it weights the reliability of the predictions according to the com-
plexity of the dynamics. As a result, the estimates of the target position are more
robust to noise, especially during large and long occlusions, even in the presence of
severe camera motion.

2. Compared to [1,11], it uses multiple cues to estimate the target location. As a result,
it is more robust to noise, long occlusions and changes in dynamics.

This paper is organized as follows. Section 2 summarizes affine invariant properties
used in our approach. Section 3 explains the details of the proposed algorithm.
Sections 4 and 5 describe implementation details and experiments comparing the pro-
posed algorithm against state of the art approaches, respectively. Finally, section 6 gives
final remarks.

2 Background: Affine Invariants

In this section, for completeness sake, we briefly review a few basic concepts used in
our approach.

2.1 Notation

xit: image coordinates of feature i at time t; when the feature label is clear from con-
text, we drop the index i and simply use xt

x
(pqr)
it : affine coordinates of feature i wrt affine coordinate frame defined by features

p, q, r at time t.
|| · ||∗: the nuclear norm.
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2.2 Autoregressive Models and Hankel Matrices

Consider a vector dynamical process described by an nth order autoregressive model
of the form:

xk = a1xk−1 + a2xk−2 + . . .+ anxk−n (1)

where xk ∈ Rd. To every trajectory xk of this model, one can associate a Hankel
matrix defined as:

Hs,r
x

.
=

⎡
⎢⎢⎢⎣

x1 x2 · · · xr

x2 x3 · · · xr+1

...
...

. . .
...

xs xs+1 · · · xr+s−1

⎤
⎥⎥⎥⎦ (2)

Note that the columns of the Hankel matrix correspond to overlapping subsequences
of the trajectory, shifted by one, and that the block anti-diagonals of the matrix are
constant. This special structure encapsulates the dynamic information of the data. In
particular, a well known result from realization theory [13,14] is that, under mild con-
ditions, the rank of the Hankel matrix is the order n of the model – i.e. rank(Hs,r

x ) = n
provided that r, s ≥ n. Thus, the rank of this matrix measures the complexity of the
underlying dynamics of a given sequence of measurements. It is easy to see that the
coefficients ai, i = 1, . . . , n of the autoregressive model (1) satisfy

Hs,n+1
x

[
an . . . a1 −1

]T
= 0 (3)

Moreover, it was recently shown [11] that the coefficients ai, i = 1, . . . , n of the au-
toregressive model (1) are invariant under affine transformations.

2.3 Affine Coordinates

Three noncollinear points M1,M2,M3, define an affine coordinate frame in which any
point P coplanar with M1,M2,M3 can be expressed as

P = M1 + α(M2 −M1) + β(M3 −M1) (4)

where P(M1,M2,M3)=̇(α, β) are the affine coordinates of P with respect to the refer-
ence frame (M1,M2,M3). It is well known, that affine coordinates are invariant to
affine transformations, i.e.

p(m1,m2,m3) = P(M1,M2,M3)

where mi is the affine transformation of Mi, i = 1, 2, 3, respectively:

[
mi

1

]
=

[
A t
0 0 1

] [
Mi

1

]
,

A is a 2× 2 non-singular matrix and t is a translation vector.
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3 A Robust Supporter Tracking Algorithm

In this section, we introduce a novel Robust Supporter Tracking (RST) algorithm. The
main idea is to use dynamics based support from context features to accurately estimate
the location of the target while it is occluded. We do this by relating the location of the
target to multiple affine reference frames defined by context features as explained be-
low. Then, multiple estimates consistent with the relative dynamics between the target
and each of the reference frames are combined through a voting scheme, where estima-
tions generated using more dynamically correlated features are trusted more and hence
given more weight. The complete procedure is given in Algorithm 1 and the details are
explained below.

Algorithm 1. Robust Supporter Tracking Algorithm
while run do

detect and track features by matching
if target is invisible then

For each feature, build the feature triplets that satisfy (Eq. 13) and (Eq. 14)
Compute ||HΔx(ijk) ||∗ for each triplet
Sort the triplets by ascending ||HΔx(ijk) ||∗
Select the first N feature triplets with smallest ||HΔx(ijk) ||∗ to build the voting triplet
supporter set S.
for each triplet in S do

Estimate Δx̂
(ijk)
t (Eq. 8) or (Eq. 9)

Compute x̂
(ijk)
t (Eq. 5)

end for
Compute p(xt|It) (Eq. 11)
Predict the target position (Eq. 12)

end if
end while

3.1 Local Autoregressive Dynamic Models

The position of the target is estimated based on its relative motion with respect to affine
reference frames which are defined by triplets of context features as described next.

Start by considering an affine reference frame in the 3D scene defined by a triplet
of non collinear points (Xi,Xj ,Xk). Assuming that the depth of the scene is small
compared to the distance between the camera and the target, express the location of the
target in this reference frame at time t:

X
(ijk)
t = (α

(ijk)
t , β

(ijk)
t )

Next, model the motion of the target with respect to the affine reference frame by using
an autoregressive model of the form in (1):

ΔX̂
(ijk)
t =

n∑
f=1

a
(ijk)
f ΔX̂

(ijk)
(t−f)
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where ΔX̂
(ijk)
t = X̂

(ijk)
t − X̂

(ijk)
(t−1) is the noiseless velocity of the target at time t,

expressed in the reference frame (Xi,Xj ,Xk)t. Since both affine coordinates and the
regressor coefficients are invariant to affine projections, we have that the same equa-
tions are true for the projections of the target and the reference points, as illustrated in
Figure 4:

x
(ijk)
t = (α

(ijk)
t , β

(ijk)
t )

Δx̂
(ijk)
t =

n∑
f=1

a
(ijk)
f Δx̂

(ijk)
(t−f)

where Δx̂
(ijk)
t = x̂

(ijk)
t − x̂

(ijk)
(t−1) and x

(ijk)
t = x̂

(ijk)
t +wt where wt is measurement

noise.
Then, the location of the target at time t, with respect to the affine reference frame

(xi,xj ,xk)

x̂
(ijk)
t = x̂

(ijk)
(t−1) +Δx̂

(ijk)
t (5)

can be estimated by enforcing that the data available so far should be explained by the
lowest order autoregressive model [1]. That is, an estimate of the velocity Δx̂ijk

t can be
found by minimizing the rank of the Hankel matrix of the available measurements with
respect to the measurement noise and the future measurement:

Δx̂
(ijk)
t = arg min

Δw,Δx̂
(ijk)
t

rank(HΔx(ijk) ) (6)

where

HΔx(ijk)
.
=

⎡
⎢⎢⎢⎢⎣

Δx
(ijk)
1 Δx

(ijk)
2 · · · Δx(ijk)

c

Δx
(ijk)
2 Δx

(ijk)
3 · · · Δx

(ijk)
c+1

...
...

. . .
...

Δx
(ijk)
t−c+1 Δx

(ijk)
t−c · · · Δx̂

(ijk)
t

⎤
⎥⎥⎥⎥⎦

where c is chosen so that the Hankel matrix is as square as possible using all the
available measurements.
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Fig. 4. The trajectory of the target in the image space is expressed relative to an affine coordinate
system defined by a triplet of features (orange dash line on the right)
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A problem with this approach is that rank minimization is an NP-hard problem.
Fortunately, there exist good convex relaxations to this problem [15]. For example, one
can solve instead

min trace(P ) + trace(Q)

s.t.

[
P HΔx

HT
Δx Q

]
≥ 0

||Δw||2 < Tnoise

Δx = Δx̂ +Δw

(7)

where the superscripts (ijk) were dropped for clarity. A further improvement on the
solution to this problem can be obtained by using a method based on a re-weighted
heuristic that seeks to iteratively solve the following Semi-Definite Problem [16].

min trace((Pk + δI)−1Pk+1) + trace((Qk + δI)−1Qk+1)

s.t.

[
Pk+1 HΔx

HT
Δx Qk+1

]
≥ 0

||Δw||2 < Tnoise

Δx = Δx̂ +Δw

(8)

Alternatively, one can estimate Δx̂ijk
t using the regressor

Δx̂t = a1Δxt−1 + a2Δxt−2 + . . .+ anΔxt−n (9)

where the coefficients a =
[
an . . . a1

]
can be estimated from (3) using the previous

measurements and total least square error minimization

â = −V12V
−1
22

where Ht−n−1,n+1
Δx = UΣV T is the singular value decomposition of the Hankel matrix

Ht−n−1,n+1
Δx formed with the last t− 1 measurements,

V :=

[
V11 V12

V21 V22

]
,

V11 is n × n, V22 is a scalar, and n is the order of the regressor2 which can be easily
estimated by computing an SVD of the Hankel matrix. Thus, the computational cost
of estimating the relative velocity of the target is reduced to the cost of computing two
small SVDs and a matrix multiplication.

3.2 Vote by Rank Minimization Estimates

Estimates of the target location from different feature triplets are combined through
a Generalized Hough Transform (GHT) voting scheme. Naturally, we prefer to trust
estimates computed from a triplet of features whose motion is most correlated to the
motion of the target itself. Thus, the stronger the correlation between their motions, the
higher voting weight these supporters are assigned. Motion correlation is measured in

2 As long as there are at least 2n measurements available.
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terms of the order of the auto regressive model that is needed to explain the motion of
the target with respect to the triplet, which, in turn, is estimated by the nuclear norm
of the corresponding Hankel matrix, ||HΔxijk ||∗ as a surrogate of rank. Then, we can
formulate a voting scheme with a single Gaussian Model as follows.

p(xt|(xit,xjt,xkt)) ∼ 1

‖HΔx(ijk)‖∗N(xt|x̂(ijk)
t , Σ) (10)

where Σ = σI , and σ is a constant. Then, combining the prediction from all supporter
triplets, we have the probability density function of the target position

p(xt|It) =
∑
i∈S

p(xt|(xit,xjt,xkt))p((xit,xjt,xkt)|It) (11)

where It is the tth frame image and S is the voting triplet feature set. Finally, the
prediction result is given by

x̂t = argmax
xt

p(xt|It) (12)

4 Implementation Details

Any tracker can be used while the target is visible. For simplicity, we used a KLT tracker
to track the target. Then, occlusion is detected when the KLT template matching fails
and the RST algorithm begins to estimate the position of the occluded target.

Any reliable feature such as Scale Invariant Feature Transform (SIFT) [17], Harris
corner, etc can be used as context features. In our implementation, we use SIFT features.
First, SIFT features are extracted from the first frame and are used to initialize a feature
set. Then, the features in the present frame are matched against the ones in the feature set
by the function provided in [18]. A matching score lower than Tmatch = 104 indicates
that the corresponding feature has been tracked in the present frame, otherwise the
feature is considered lost. After matching, the present positions of the tracked features
are added to their trajectories and the unmatched SIFT features in the present frame are
added to the feature set as new detected features. We used 20 frames long supporter
trajectories and hence we can handle relative dynamics of up to order 10. Typically,
there are between 20 to 30 such features per frame and N ≤ 5 triplets are used.

Noise on the position of the features used as reference triplets affects the values of
the affine coordinates of the target with respect to the affine coordinate system. Thus, to
reduce the effect of noise, features for a triplet are selected according to the following
three rules:

1. The distance between pairs of features must be greater than a threshold Tdist = 20.
2. The angle between the vectors xj−xi and xk−xi should be as close to 90 degrees

as possible.
3. Triplets that move as a rigid should be preferred. Thus, following [19], the order of

the dynamics of xj − xi and xk − xi - i.e. the rank of the corresponding Hankel
matrices or its convex envelope, the nuclear norm, should be as low as possible.
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In summary, given a set of candidate features F and a feature xi ∈ F , the other two
points in the reference triplet xj and xk are selected from F by comparing the nuclear
norm of the Hankel matrices of their differences:

||Hxj−xi ||∗ ≤ ||Hx−xi
||∗∀x ∈ F such that ||x− xi||2 > Tdist (13)

and

||Hxk−xi ||∗ ≤ ||Hx−xi ||∗∀x ∈ F such that ||x− xi||2 > Tdist and | cos(φ(ijk))| < Tφ

(14)

where cosφ(ijk) =
(xj−xi)

T .(xk−xi)
‖xj−xi‖‖xk−xi‖ and Tdist and Tφ are thresholds.

5 Experiments

In this section, we demonstrate the advantage of the proposed algorithm. First, we show
that our algorithm improves the accuracy of the estimated target location remarkably.
Second, the advantage of using adaptive dynamics model is presented. Finally, it is
shown that by exploiting the supporter triplet coordinate system the proposed algorithm
is robust to severe camera motion and long occlusions. As illustrated in Figure 1, us-
ing context features [3] performs better than using context regions [2]. Hence, in our
experiments we compare the performance with the Supporter Tracker (ST) [3] and the
Hankel-based Robust Tracker (RT) [1]. In addition to the video shown in Figure 1, we
show results for seven videos. Four of these videos have ground-truth on where the
target is located and were used to establish quantitative measures of the performance
of the three algorithms being compared. The remaining three videos are increasingly
challenging and show that the proposed algorithm performs similarly or better than ST
when rigidity between the target and supporters exists and that it is more robust and
accurate than the state of art approaches in the presence of severe camera motion and
prolonged occlusions.

5.1 Estimation Accuracy

To measure the estimation accuracy, the algorithms are tested with the videos where the
ground truth is available. In three of the test videos (India, Beer Robot, Bouncing Ball),
there is no occlusion and the ground truth of the target position is obtained by KLT
and occlusion is simulated. In the swinging racket video, the ground truth during the
occlusion was obtained by using a VICON system to track a label attached on the table
tennis racket. In the short-term estimation case, the estimation is always made upon
the past ground truth. In the long-term estimation, the estimation is made upon the past
estimations and the ground truth before estimations. Sample frames for the long term
occlusion cases are shown in Figure 5. The means of the estimation errors for short and
long term occlusion are listed in Table 1a and 1b and visualized in Figures 6 and 7,
respectively. As seen there, the proposed algorithm gives consistently more accurate
estimations, and it is significantly better when there are long occlusions.
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(a)

(b)

(c)

(d)

Fig. 5. Sample frames with known ground truth data from sequences: (a) India traffic (occlusion
= 21frs.); (b) Beer Robot (occlusion = 125frs.); (c) Bouncing ball (occlusion = 12frs.); and (d)
Swinging racket (occlusion = 13frs.). We mark the tracked target with a red crossed circle, the
RST estimation with a green dot, the ST estimation with a yellow circle, and the RT estimation
with a magenta cross. The cyan lines point to where the RST features vote and the green and red
dash lines are the affine coordinate basis of each supporter. Also, the sequentially tracked features
are marked as blue circles.
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(b)

Fig. 6. Visualization of the estimation error. ST is short for Supporter Tracker [3]; RT is short for
Robust Tracker(RT) [1]; Robust Supporter Tracker (RST) is proposed algorithm. (a) Short term
occlusion. (b) Long term occlusion.
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Table 1. Short-term and long-term estimation. The mean of ‖xt − x̂t‖2 in the occlusion. Length
of occlusion in frames, given in parenthesis. (SR is short for Swing Racket; BB is short for
Bouncing Ball).
(a) Short-term estimation. The mean of ‖xt−
x̂t‖2 in the first frame of occlusion.

India Beer Robot BB SR
(21 frs) (125 frs) (12 frs) (13 frs)

ST 4.1384 2.8408 35.7987 29.1990
RT 1.5077 0.7924 4.7730 6.9537

RST 0.9781 0.5645 1.0438 6.6842

(b) Long-term estimation.The mean of ‖xt −
x̂t‖2 during entire occlusion.

India Beer Robot BB SR
(21 frs) (125 frs) (12 frs) (13 frs)

ST 6.1147 17.4931 63.9240 243.0031
RT 13.5030 171.9341 27.6450 105.2612

RST 2.4778 3.9857 3.9303 17.9683

Fig. 7. True position of the pingpong racket and long term estimates.

5.2 Estimation by Nonrigidly Coupled Features

With enough sequential measurements, the dynamical model that we use can adapt to
slowly changing linear dynamics. Thus, our algorithm can use supporting features to
estimate the position of the target, even if they are not rigidly correlated with the tar-
get. This feature is illustrated with four examples. In Figures 1e and 8, it is shown that
our algorithm correctly estimates the position of the ping-pong balls and the cup us-
ing stationary background supporters, even in the presence of severe camera rotation.
In Figure 5d, we show a few frames of the swinging racket video, where our algo-
rithm can model and estimate the swinging table tennis racket, using features on dif-
ferent body parts of the person holding the racket, while the other trackers fail. Finally,
Figure 8c shows frames from a video of a police car chasing another vehicle, where our
tracker uses supporters from the background and other independent moving objects to
accurately estimate the location of the occluded car being chased by the police vehicle.

5.3 Robustness to Camera Motion

By combining the triplet coordinate system and the adaptive dynamic model, our al-
gorithm is more robust to severe camera motion. This is clearly seen in the examples
shown in Figures 1 and 8b where the camera rotates wildly. Another example is shown
in Figure 5c, where our tracker follows a bouncing ball through long occlusions under
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(a)

(b)

(c)

Fig. 8. Sample frames of increasingly challenging videos. (a) The ETH moving cup and support-
ers move almost rigidly. (b) A moving cup observed by a swinging camera and (c) Chasing car
with moving camera and very long occlusion. We mark the tracked target with a red crossed
circle, the RST estimation with a green dot, the ST estimation with a yellow circle, and the RT
estimation with a magenta cross. The cyan lines point to where the RST features vote and the
green and red dash lines are the affine coordinate basis of each supporter. Also, the sequentially
tracked features are marked as blue circles.

irregular camera motion while the other trackers fail due to the complex motions of the
target and the camera.

6 Conclusion

In this paper we presented a novel tracking algorithm that uses context features and sys-
tems dynamics to estimate the location of a target in the presence of long occlusions and
camera motion. The algorithm does not assume a priori information about the motion of
the target or the supporter features. Supporter features can move with the target, inde-
pendently of the target, or not at all. The algorithm includes a mechanism to weight the
reliability of the estimations by quantifying the extent of motion correlation between
the target and the supporter features from the available measurements. The algorithm
was tested and compared against other context based trackers and a dynamics based
tracker using several challenging videos. In all cases, the performance of the proposed
tracker was superior.
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12. Cerman, L., Matas, J., Hlaváč, V.: Sputnik Tracker: Having a Companion Improves Robust-
ness of the Tracker. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS,
vol. 5575, pp. 291–300. Springer, Heidelberg (2009) 2

13. Ho, B., Kalman, R.: Effective construction of linear, state-variable models from input/output
functions. Regelungstechnik 14, 545–548 (1966) 5

14. Moonen, M., Moor, B.D., Vandenberghe, L., Vandewalle, J.: On- and off-line identification
of linear state space models. Int. J. of Control 49, 219–232 (1989) 5

15. Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum
order system approximation. In: ACC, vol. 6, pp. 4734–4739 (2001) 8

16. Fazel, M., Hindi, H., Boyd, S.: Log-det heuristic for matrix rank minimization with applica-
tions to hankel and euclidean distance matrices. In: ACC, vol. 3, pp. 2156–2162 (2003) 8

17. Lowe, D.: Object recognition from local scale-invariant features. In: ICCV (1999) 9
18. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algo-

rithms (2008) 9, http://www.vlfeat.org/
19. Lublinerman, R., Sznaier, M., Camps, O.: Dynamics based robust motion segmentation. In:

CVPR, vol. 1, pp. 1176–1184 (2006) 10

http://www.vlfeat.org/

	Dynamic Context for Tracking behind Occlusions
	Introduction
	Paper Contributions

	Background: Affine Invariants
	Notation
	Autoregressive Models and Hankel Matrices
	Affine Coordinates

	A Robust Supporter Tracking Algorithm
	Local Autoregressive Dynamic Models
	Vote by Rank Minimization Estimates

	Implementation Details
	Experiments
	Estimation Accuracy
	Estimation by Nonrigidly Coupled Features
	Robustness to Camera Motion

	Conclusion
	References




