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Abstract

This paper addresses the problem of video inpainting,
that is seamlessly reconstructing missing portions in a set
of video frames. We propose to solve this problem proceed-
ing as follows: (i) finding a set of descriptors that encap-
sulate the information necessary to reconstruct a frame, (ii)
finding an optimal estimate of the value of these descriptors
for the missing/corrupted frames, and (iii) using the esti-
mated values to reconstruct the frames. The main result of
the paper shows that the optimal descriptor estimates can
be efficiently obtained by minimizing the rank of a matrix
directly constructed from the available data, leading to a
simple, computationally attractive, dynamic inpainting al-
gorithm that optimizes the use of spatio/temporal informa-
tion. Moreover, contrary to most currently available tech-
niques, the method can handle non–periodic target motions,
non–stationary backgrounds and moving cameras. These
results are illustrated with several examples, including re-
constructing dynamic textures and object disocclusion in
cases involving both moving targets and camera.

1. Introduction
The problems of still–image and video inpainting, that

is the process of automatically and seamlessly restoring or
altering portions of an image or a video clip has been the
subject of considerable attention in the past few years (see
for instance [17, 30, 22, 10, 16, 37, 23, 19, 33]).

Earlier work in the field led to a number of algorithms
that worked well for still images inpainting and completion
in various cases ([2], [3], [9], [20], [32], [26], [12]), but
had very limited applicability in the case of image inpaint-
ing in video sequences. Several image–sequence based ap-
proaches have been proposed to handle these limitations.

Kokaram et al. [17] proposed the use of three interpola-
tors to perform motion estimation and interpolate missing
portions in films from frames around. This technique works
well for restoring relatively small losses not spanning con-
tinuous frames, but has a substantial computational burden.

An optimal-flow estimation based algorithm was proposed
to repair poor-quality video frames in [16], but its applica-
bility is restricted to slightly corrupted and slowly changing
image areas. Wexler et al. [37] minimize an objective func-
tion to find a patch satisfying spatio-temporal consistency
constraints with the patches around the missing area. How-
ever, at the present time these results are restricted to ob-
jects undergoing repetitive motion, and the computational
burden of the algorithm is high, due to its iterative nature.
A probabilistic technique has been proposed in [6], based
upon learning a patch based probability model, which in
turn is used to synthesize the missing area. A drawback of
this approach is that it does not guarantee smoothness of the
resulting clip.

Patwardhan et al. [23] presented an algorithm for filling-
in partial occlusion in video sequences obtained from a
fixed camera, and have recently extended these results to
moving cameras. A similar approach has been also pursued
in [15], where tracking is used to speed up the search for
the target. In [14], Jia proposed a two-phase method for
video repairing dealing with various constraints imposed
by periodic motion, camera subclass, etc. In [39], a mo-
tion layer segmentation method was introduced to remove
relatively large objects from the original video. Additional
video completion papers based on figure-background seg-
mentation include ([7], [27], [28], [4], [29]). However, at
the present time, none of these methods exploits the under-
lying global spatio-temporal dynamics of the sequence.

In this paper we propose a new approach to video in-
painting that exploits some simple results from Linear Sys-
tems theory to recast the problem into a matrix rank min-
imization problem. To this effect, we propose to proceed
as follows: (i) find a set of descriptors that encapsulate the
information necessary to reconstruct a frame, (ii) find an
optimal estimate of the value of these descriptors for the
missing/corrupted frames, and (iii) use the estimated val-
ues to reconstruct the frames. The main result of the pa-
per shows that the optimal descriptor estimates can be effi-
ciently obtained by minimizing the rank of a matrix directly
constructed from the available data, leading to a simple,
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computationally attractive, dynamic inpainting algorithm.
The proposed method has the following advantages over
currently existing techniques:

1. It leads to a non–iterative, computationally attrac-
tive algorithm that optimizes the use of (global) spa-
tio/temporal and dynamics information and has a mod-
erate computational burden.

2. It is not restricted to the case of periodic motion, static
background or stationary cameras.

3. It can be used to extrapolate frames, that is extend a
given video sequence, and, in the case of dynamic tex-
tures, to artificially generate other textures from the
same family.

These results are illustrated with several examples that
include reconstructing missing portions of dynamic textures
and object disocclusion in cases involving a moving target
and camera.

2. Rank minimization approach to inpainting
In this section we outline the basic ideas that allow for

recasting the inpainting problem into a rank–minimization
one. For the sake of clarity, the technical details are rele-
gated to the Appendix.

2.1. Spatio–temporal descriptor modelling

As indicated before, the main idea of the proposed ap-
proach is to, rather than directly attempt to interpolate
missing pixels, estimate, based on all available spatio–
temporal information, the value of a set of descriptors that
encapsulate the information necessary to reconstruct miss-
ing/corrupted frames. The specific definition of these de-
scriptors is problem dependent and will be discussed in Sec-
tion 3.

In order to estimate the values of missing descriptors, we
will collect the values of all the descriptors corresponding to
the kth frame in a vector fk and assume that these values are
generated by a stationary Gauss–Markov random process.
This is equivalent to assuming that fk is related to its values
in previous frames by an ARMAX model of the form:

fk+1 =
m−1∑
i=0

gifk−i + hiek−i (1)

where gi, hi are fixed coefficients and e(.) denotes a
stochastic input. Note that this can be always assumed
without loss of generality, since given NF measurements
of f(.), e(.), there always exists a linear operator such that
(1) is satisfied ([24], Chapter 10). Finally, by absorbing if
necessary the spectral density of e in the coefficients gi and
hi, it can always be assumed that e(.) is an impulse.

It is worth emphasizing that we are not simply express-
ing each pixel as a linear combination of surrounding pix-
els lagged both in space and in time, as in [34]. Rather,
the model (1) represents the present value of a descriptor
(which may be related in a nonlinear way to the values of the
pixels) as a linear combination of its past values. In this con-
text, if the coefficients hi and gi of the model and the inverse
mapping from descriptors to pixels are known, then the in-
painting problem can be trivially solved by using the model
(1), along with the available measurements of f , to recon-
struct the missing data. In principle one could try to use a
two–tiered approach, where the model that best explains the
available data is first extracted from the uncorrupted frames
and then used to inpaint the missing values. However, as we
show next, finding an explicit model is unnecessary: miss-
ing values of each descriptor in f can be directly found by
solving a rank–minimization problem, obviating the need
for finding an explicit model. As illustrated with several
examples, this observation leads to simple, computationally
tractable inpainting algorithms.

2.2. Completing Descriptor Sequences via Rank
Minimization

The main idea behind the proposed approach is to find
the set of values of the missing descriptors that maximizes
the smoothness of the resulting inpainted sequence. Equiv-
alently, denoting by fo

k the observed descriptors and by fm
k

the missing ones, the idea is to find the values of fm that
are maximally consistent with fo, in the sense that the re-
sulting inpainted sequence is described by the simplest (e.g.
most compact) possible model of the form (1). Specifically,
as briefly described in the Appendix, the minimum value
of m such that the model (1) explains the observed data is
given by the rank of a matrix constructed from the mea-
surements. Thus, the simplest model that explains this data
corresponds to the values of the missing pixels that mini-
mize this rank. Since it is well known that rank minimiza-
tion problems are NP hard, rather than minimizing rank, we
will relax this problem to a convex semi-definite program-
ming problem, with the additional advantage of improving
robustness against noise. These ideas lead to the following
Algorithm:

Algorithm 1

1.- Given the observed values of the descriptors fo, form
the following (Hankel) matrix:

Hf
.=


f1 f2 · · · fn/2

f2 f3 · · · fn/2+1

...
...

. . .
...

fn/2 fn/2+1 · · · fn−1

 (2)

Here f denotes either the observed data fo
k , if the k

frame is present, or the unknown value fm
k , if the frame



needs to be inpainted, and n denotes the total number
of frames.

2.- Estimate the values fm which are maximally consis-
tent with fo by solving the following Linear Matrix In-
equality (LMI) optimization problem,

minimize w.r.t fm Tr(Y ) + Tr(Z)

subject to
[

Y Hf

(Hf )T Z

]
≥ 0

where Y T = Y ∈ Rn×n, ZT = Z ∈ Rn×n and
Hf ∈ Rn×n.

Note that this optimization problem can be efficiently
solved using both commercially and freely available soft-
ware. For the sake of clarity, the proof that the above algo-
rithm leads to the simplest model explaining the observed
data, and an explanation of the rationality for choosing this
criteria for inpainting are relegated to the Appendix.

3. Application: Video inpainting
In this section we address the problem of filling-in dam-

aged/missing parts of video clips. The approach that we
propose to video inpainting is loosely related to the one
proposed in [37] and [23], in the sense that we also use in-
formation from unoccluded frames to complete the missing
information. However, rather than searching for the “best”
matching patch, we use the interpolated/extrapolated val-
ues of the descriptors to reconstruct the missing informa-
tion using a (nonlinear) combination of these pixels. The
advantages of this approach are twofold: (i) it does not re-
quire that portions of the missing patch be (approximately)
present in the unoccluded frames, effectively removing the
constraint of (quasi) periodic motion in severe occlusion
cases; and (ii) results in substantial computational complex-
ity reduction vis-a-vis direct pixel reconstruction.

Figure 1. A general model for video inpainting by nonlinear di-
mensionality reduction, rank minimization and nonlinear recon-
struction. zt and yt represent the appearance in the image and
descriptor space respectively.

The approach outlined above leads to the following al-
gorithm, illustrated in Figure 1:
Algorithm 1: Rank Minimization Based Inpaiting:

0. Data: A sequence of frames It, t = {1, T}. The target
is occluded/corrupted in r ≤ t ≤ s.

1. Extract the target zt in the unoccluded frames, 1 ≤ t <
r and s < t ≤ T . This step can be accomplished for
example using the approach proposed in [23].

2. At each time t, t = {1, · · · , r, s, · · · , T}, map the
pixel targets, zt to a point yt in a low dimensional
manifold, using a Nonlinear Dimensionality Reduc-
tion (NDR) method such as Local Linear Embeddings
(LLE) [35, 11, 21], described in the Appendix.

3. Find the descriptor values {yr, · · · , ys} corresponding
to missing/occluded frames by minimizing the rank of
the corresponding Hankel matrix.

4. Reconstruct the pixels zt from the points yt using a
nonlinear mapping that approximately inverts the pro-
jection onto the low dimensional manifold. This in-
verse mapping can be obtained by using Radial Basis
Functions (RBF) [25, 21], trained using data from the
unoccluded frames.

5. Use a robust tracking method such as the approach pro-
posed by Camps et al. [5] to estimate the position of
the centroid of the target ct in the occluded frames.

6. Inpaint the reconstructed appearance in these positions
to accomplish the final result.

Example 1: Quasi Periodic Motion. Consider the se-
quence shown at the top of Figure 2, consisting of 78 frames
captured with a stationary camera. The goal is to unocclude
the person walking in the background, occluded in frames
37 through 49.

Figure 3. Mapping from image space to descriptor space via LLE.
Top: sample appearances from walking motion. Bottom: Corre-
sponding representation on a three dimensional manifold obtained
via LLE.

The results of applying Algorithm 1 are shown in Figure
2, with the details of steps 2 (LLE learning) and 3 (inter-
polation) illustrated in Figures 3 and 4 respectively. As
shown there, in this case the proposed algorithm resulted in
virtually perfect inpaiting.
Example 2: Non Periodic Motion 1. Consider now the
non–periodic motion shown in Figure 5. The total lenght of



Figure 2. Applying Algorithm 1 to Inpaint Quasi Periodic Motion. Top row frames 17, 38, 43, 48, and 54 of the original sequence (from
left to right). Second row: Learning the low dimensional manifold using unoccluded frames. Third row: Reconstructed target using Radial
Basis Functions. Bottom row: Resulting inpainted sequence.

Figure 4. Top: low dimensional (3-D) representation of a walk-
ing sequence on an LLE manifold; frames 37-49 have occlusion.
Bottom: Descriptor sequence interpolated via rank minimization.

this sequence is 25 frames, with frames 16–18 missing. The
results of applying Algorithm 1 are shown at the bottom of
the figure. In this case, the algorithm achieved good recon-
struction, with some blurring appearing around the hands,
due to a relative short training sequence and reconstruction
error from the Radial Basis Functions. It is worth empha-
sizing the fact that the missing information is not available
anywhere else in the sequence, and thus cannot be recon-
structed by finding suitable patches. Rather, reconstruc-
tion is made possible in our framework by simultaneous ex-
ploitation of spatial correlation and temporal dynamics.

Example 3: Non Periodic Motion 2.

Figure 5. Video inpainting of target with non-periodic motion.
From the top to bottom: original sequence and inpainting results

Consider the sequence shown at the top of Figure 6, con-
sisting of 243 frames of a sequence of a toy Robot on top
of a slowing down turntable, with occlusion in frames 76–
105. The inpainting results obtained using Algorithm 1 and
graphcut [18] are shown in the middle and bottom of the
figure, respectively. As illustrated there, although both ap-
proaches lead to smooth reconstruction, graphcut results in
an incorrect reconstruction of the pose of the object. The
original and interpolated LLE sequences are shown in Fig-
ure 7 (a) and (b).

Example 4: Moving Camera. This example illustrates the
ability of Algorithm 1 to deal with sequences captured us-



Figure 6. Applying Algorithm 1 and graphcut to inpaint non-periodic motion. Top row frames 75, 76, 90, 105, and 106 of the original
sequence (from left to right). Second row: Inpainting result via Algorithm 1. Third row: Inpainting result via graphcut.

(a) (b)
Figure 7. (a) The original LLE sequence, where frame 76-105 have occlusion. (b) The interpolated LLE sequence obtained via rank
minimization.

ing a moving camera, possibly undergoing both rotation and
translation, as long as the dynamics of the camera motion
can be described by a linear time invariant model (which
can be learned from the data). In this case, inpainting is ac-
complished by separately learning the dynamics of the fore-
ground and background descriptors. In the case of the fore-
ground, the dynamics of the moving camera are absorbed
into the dynamics of the descriptors. In the case of the (sta-
tionary) foreground1, estimating descriptor evolution is ef-
fectively equivalent to estimating camera motion.

Figure 8 shows an application of the ideas outlined
above. For the sake of simplicity, here we have chosen
as descriptors the position of the 6 joints indicated in red,
and used rank minimization to estimate their position (blue
dots). Reconstruction was accomplished by finding the best
match (in the minimal distance sense) to these descriptors
in the unoccluded frames and cloning the corresponding tar-
get.

1a class of dynamic backgrounds will be addressed in the next section.

Example 5: Dynamic Texture. In this example we con-
sider the problem of inpainting dynamic textures, e.g. se-
quences whose frames are relatively unstructured, but pos-
sessing some overall stationary properties. The proposed
approach can be applied to these cases by first extrapolating
the values of the missing Fourier descriptors[1] and then
recreating the missing frames via a simple inverse FFT. In
this case, the inpainting algorithm consists of the follow-
ing steps: (i) Find the Fourier descriptors in the unoccluded
frames by performing a 2-D DFT of each frame, (ii) Esti-
mate the values of these descriptors in the missing frames
by minimizing the rank of the corresponding Hankel ma-
trix; and (iii) Recreate the missing frames by simply taking
the inverse FFT of these descriptors.

The same ideas can also be used to restore frames hav-
ing both, a dynamically textured background, and moving
objects in the foreground. An example of this situation is
shown in Fig. 9, where frames 10 and 24 are missing. Here
the 1st row is the original sequence, and the 2nd row is the



Figure 8. Inpainting results for the case of a moving camera. from left to right: frame 7, 11, 13, and 17, where frame 11-13 have occlusions.
Top: descriptor definition (red points) and estimation (blue points) via rank minimization; Bottom: inpainting results.

Figure 9. Inpainting results of moving person in front of a dy-
namic texture background. From left to right: frame 11, 10, 17,
24, and 31, where frame 10 and 24 are missing. First row: original
sequence. Second row: restoration of the moving person (fore-
ground layer). Third row: restoration of the river dynamic texture
(background layer). Fourth row: final inpainting results.

moving person sequence generated by the process outlined
Example 1. Note that the Fourier descriptors can no longer
be used for background restoration, since the black region
will significantly affect the Fourier transform. Following an
idea from [8], we considered the gray value along the frame
sequence corresponding to each pixel as a descriptor se-
quence. Since the object is moving, the number of missing
descriptors in each sequence is far smaller than the amount
of known ones and thus the computational complexity of
the overall process remains moderate. The reconstructed
background is shown in the 3rd row of Fig. 9, and the final
restoration result is shown in the 4th row.

4. Conclusions and Directions for Further Re-
search

In this paper we propose a new approach for video in-
painting based on the idea of completing the missing infor-
mation in such a way that it leads to the simplest (e.g. low-

Figure 10. Top: Jumping ball sequence. Bottom: Trajectory re-
construction result. Blue line: Rank Minimization Based. Green
line: PDE based approach [23]

est order) model explaining the spatio–temporal evolution
of the pixels in the sequence of frames. This was accom-
plished by exploiting spatial correlations to map suitable re-
gions of the image to descriptors in a lower dimensionality
manifold, where missing values were interpolated by solv-
ing a rank minimization problem. Finally, the missing por-
tions of the image are reconstructed from these interpolated
descriptors by using a radial–basis functions based expan-
sion, trained using data from the uncorrupted frames. When
compared with existing approaches, the combination spa-
tial dimensionality reduction/temporal dynamic modelling
allows for

1. Exploitation of the underlying temporal correlation to
handle cases where the motion of the target is not
quasi–periodic (as illustrated in Example 2, section 3).
In addition this leads to smoother results in the case of
severe occlusion. This effect is illustrated in Figure 10,
comparing the results of rank minimization against the
algorithm proposed in [23]. In addition to yielding bet-
ter reconstruction of the missing part of the trajectory,
rank minimization is computationally simpler, since it
involves solving a Linear Matrix Inequality optimiza-
tion problem rather than partial differential equations.



2. Smoothly interpolating missing frames in dynamic
textures, with moderate computational complexity.
For comparison the approach proposed in [8], has
higher computational cost, since it uses dynamical in-
formation at the pixel level, and albeit it can model
and extrapolate entire sequences, is not well suited for
smoothly interpolating missing frames.

The main shortcoming of the proposed approach is that it
cannot currently deal with cases involving scaling changes
or deformations. Efforts are currently underway to address
this problem by using results from nonlinear identification.

Appendix: Technical details related to Nonlin-
ear Embeddings and Linear Systems theory
4.1. Locally Linear Embeddings

In this section we provide a brief description of a nonlin-
ear dimensionality reduction method, Locally Linear Em-
beddings (LLE), that preserves local neighborhoods [35].
This method has been successfully used to model and learn
human appearance changes in [11, 21]. Given T frames of
a sequence, denote by zt the vector obtained by stacking
the pixels of the target at frame t. The goal is to associate
to each vector zt a point yt in a lower dimensional mani-
fold, e.g. dim(yt) � dim(zt), while preserving the local
structure. This is accomplished proceeding as follows:

1. Compute the neighbors set zj of each data point zt.

2. Calculate the weighs wij that best reconstruct zt from
its neighbors

zj , by minimizing
∑

t ‖zt −
∑

j wtjzj‖2,

where
∑

j wij = 1.

3. Compute the vector yi best reconstructed by the
weights wij ,

minimizing
∑

t ‖yt −
∑

j wtjyj‖2, subject to the con-
straint 1

N

∑
i yiy

T
i = I .

4.2. Model Order Estimation via Hankel Matrices:

In this section, we briefly discuss some results of Linear
Systems Theory related to the proposed approach and give
an intuitive explanation of the main idea behind the algo-
rithm. We begin by recalling the following result, relating
the rank of the Hankel matrix with the minimal order of the
corresponding model [38] [31].

Fact 1: Denote by fk the impulse response sequence of
the model (1). Then, the minimum order no of the linear
time invariant (LTI) system that has this impulse response
is related to the rank of the corresponding Hankel matrix
by:

rank[Hf ] ≤ n + n0, n ≥ n0. (3)

Moreover, if the impulse input is sufficiently rich, e.g. it ex-
cites all the modes of the system, and n >> n0, the equality
holds. �.

This result suggest the following procedure (loosely
related to subspace Identification methods) to interpolate
missing elements in the output sequence: Given a partial
sequence fg = {f1, · · · , fq, fq+r, · · · , fn}, fi ∈ R, of the
impulse response of a LTI system LTI system with McMil-
lan degree no � n, find the missing elements by solving
the following optimization problem:

~fo = argmin
fx

rank[Hf ]

where fx = {fq+1, . . . , fq+r−1} and Hf denotes the Han-
kel matrix associated with the entire sequence {fi}.

Intuitively, the procedure above can be understood as
simply indicating that the missing elements that best fit a
given sequence are those that require adding the least num-
ber of states to the existing model in order to explain the
new data. For instance, in the case of a sinusoidal wave,
this approach will reconstruct the missing portion by first
estimating its frequency and then adding points compatible
with it, rather than adding to the model components with
additional frequency content.

A potential difficulty with the approach outlined above is
that rank minimization is generically NP–hard [36]. How-
ever, there currently exist efficient tractable relaxations to
approach this problem. The one used in this paper, origi-
nally proposed in [13], recasts the rank minimization prob-
lem into the following (convex) trace minimization form:

minimize rank[X]
subject to X ∈ C =⇒

TMP :

minimize Tr(Y ) + Tr(Z)

subject to

[
Y X

XT Z

]
≥ 0

X ∈ C

where C is a convex set, X ∈ Rm×n, Y = Y T ∈ Rm×m

and Z = ZT ∈ Rn×n.
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