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Abstract— This paper addresses the problems of track stitch-
ing and dynamic event detection in a sequence of frames.
The input data consists of tracks, possibly fragmented due
to occlusion, belonging to multiple targets. The goals are to
(i) establish track identity across occlusion, and (ii) detect
points where the motion modalities of these targets undergo
substantial changes. The main result of the paper is a simple,
computationally inexpensive approach that allows achieving
these goals in a unified way. Given a continuous track, the
main idea is to detect changes in the dynamics by parsing it into
segments according to the complexity of the model required to
explain the observed data. Intuitively, changes in this complexity
correspond to points where the dynamics change. In turn,
the problem of estimating the complexity of the underlying
model can be reduced to estimating the rank of a Hankel
matrix constructed from the observed data, leading to a simple
algorithm, computationally no more expensive that a sequence
of SVDs. Proceeding along the same lines, fragmented tracks
corresponding to multiple targets can be linked by searching
for sets corresponding to minimal complexity joint models. As
we show in the paper, this problem can be reduced to a semi-
definite optimization and efficiently solved.

I. INTRODUCTION

Dynamic vision and imaging – the confluence of dy-

namics, computer vision, image processing and control – is

uniquely positioned to enhance the quality of life for large

segments of the general public. Aware sensors endowed with

tracking and scene analysis capabilities can prevent crime,

reduce time response to emergency scenes and allow el-

derly people to continue living independently. Moreover, the

investment required to accomplish these goals is relatively

modest, since a large number of imaging sensors are already

deployed and networked. The challenge now is to develop a

theoretical framework that allows for robustly processing this

vast amount of information, within the constraints imposed

by the need for real time operation in dynamic, partially

stochastic scenarios. The objective of this paper is to illus-

trate the central role that control theory can play in achieving

these goals. In particular, we concentrate in a problem that

must be solved in all of the applications mentioned above:

tracking objects in a sequence of frames, establishing, if

needed, track identity across occlusion. Challenges in design-

ing a robust tracking algorithm arise from several factors,

e.g. changing appearances, changes in illumination, clutter

and occlusion. During the past decade extensive research has
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been carried out in this area, leading to several techniques

that address these effects (see for instance [1], [7], [8], [17],

[18], [9] and references therein). In particular, a class of

dynamics based trackers has been developed that combine

simple dynamic models of the target motion with optimal

filtering –(unscented) Kalman, particle– [14], [10], [11] to

track in the presence of occlusion. In order to further improve

robustness, Camps et. al. [2] use interpolation theory to

learn the dynamics of the target, thus removing a potential

source of fragility arising from a mismatch between the

assumed and actual dynamics. The implicit assumption in

all these methods is that the dynamics of the target do

not change, e.g. the underlying model is time invariant. In

principle, as pointed out in [2], changes in this model could

be detected by performing a model (in)validation step. The

main advantage of this approach resides in its ability to

unequivocally establish that a change in the dynamics has

taken place. However, the entailed computational complexity

is not small, specially in the case of long sequences. In

addition, this approach cannot handle cases where the events

occur while the target is occluded, which requires, as a pre-

requisite, being able to match tracklets across the occlusion.

The problem of tracklet matching has been addressed in a

number of recent papers, e.g. [12], [19], [16], [3]. However,

while successful, these methods are fairly involved.

This paper shows that well known ideas from control

theory can be exploited to obtain a computationally inex-

pensive approach that allows for both stitching tracklets

across occlusion and detecting changes in the dynamics of

the target. Given a continuous track, the main idea is to

detect changes in the dynamics by parsing it into segments

according to the complexity of the model required to explain

the observed data. Intuitively, changes in this complexity

correspond to points where the dynamics change. In turn,

estimating the order of the underlying model reduces to

estimating the rank of a Hankel matrix constructed from the

observed data. Proceeding along the same lines, fragmented

tracks corresponding to multiple targets can be linked by

searching for sets corresponding to minimal complexity joint

models. In this case, this is accomplished by estimating the

missing points corresponding to the lowest order model that

jointly explains a given set of candidate tracks. As shown in

the paper, this leads to a rank minimization problem, which

in turn can be relaxed to a semi-definite optimization.
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II. BACKGROUND RESULTS

The main idea underlying this paper is to model the

evolution of target features as the output of (a possibly

piecewise) linear time invariant model whose order must be

estimated from the available experimental data. Specifically,

following [2], we will collect the position of all relevant

features of the target in a vector f and assume that its

evolution is governed by a model of the form:

xk+1 = Axk + Bek

fk = Cxk, yk = Cxk + ηk

(1)

where A ∈ Rn×n, with n ≤ Nf , the number of frames1, and

where x(.), e(.), f(.) and y(.) represent the states, an exoge-

nous stochastic input with appropriate statistics, the actual

value of the feature vector at time k, and its measurement,

corrupted by additive noise η, repectively. Our goal is, given

y, to estimate the minimum n such that the model (1) holds.

To this effect, we recall the following result [4]:

Theorem 1: Given an input/output sequence {et, ft} cor-

responding to the model (1), form the (Hankel) matrices:

Hf (k, l)
.
=











f1 f2 · · · fl
f2 f3 · · · fl+1

...
...

. . .
...

fk fk+1 · · · fk+l−1











He(k, l)
.
=











e1 e2 · · · el

e2 e3 · · · el+1

...
...

. . .
...

ek ek+1 · · · ek+l−1











Hf,e
.
=

[

Hf (k, l) He(k, l)
]

(2)

where l ≥ k >> n. Then, if the input sequence {et} is

sufficiently rich, i.e. rank[He(k, l)] ≡ k, the order n of the

model (1) satisfies:

rank[Hf,e] = k + n (3)

.

Remark 1: In the sequel, we will assume, by absorbing

if necessary the dynamics of the stochastic input e into the

dynamics of the plant, that e is an impulse, e.g. e1 = 1,

ei = 0, i > 1. With this assumption (3) above reduces to

rank[Hf (k, l)] = n (4)

III. A RANK CRITERION FOR FAST EVENT DETECTION

Theorem 1 can be used to perform fast detection of

changes in the motion modality of the target by simply

searching for points where the rank of the Hankel matrix

abruptly changes after having remained approximately con-

stant. This corresponds to a formalization of the intuitive fact

that trying to explain two different modalities (distinguished

either by different dynamics or different inputs) using a

1Note that this can be always assumed without loss of generality, since
given N measurements of f(.) and e(.), there always exists a linear operator
such that (1) is satisfied (Chapter 10 of [15])

single model will require considerable more complexity than

that required to explain each modality alone. Note that the

approach outlined above does not require explicitly finding

the models (computationally expensive).

A potential difficulty here is that, rather than the actual

feature positions f , only the measurements y = f + η

corrupted by noise are available, and it is well known

that rank computation is very sensitive to noise. To avoid

this difficulty, begin by noting that the Hankel matrices

corresponding to the actual and measured position are related

by: Hy = Hf + Hη, where Hη denotes the Hankel matrix

associated with the noise sequence η(.). Under ergodicity

assumptions, HT
η Hη is an estimate of the covariance matrix

of the noise[13]. Thus, noise measurements can be robustly

handled by simply replacing rank(Hy) by NSVση
(Hy),

the number of singular values larger than ση, the standard

deviation of the measurement noise. Dynamic events can

then be robustly detected by searching for points where

NSVση
(Hy) changes. The efficiency of this approach is

illustrated next with several examples.
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Fig. 1. Detecting events using the rank criterion. Top row: input sequence
showing dynamic events at frames 10, 23, 34 and 43. Second row:
corresponding NSV plot

Example 1. Consider the bouncing ball shown in Fig. 1. The

dynamics change at frames 9, 22, 33 and 43, with the first

3 changes due to impact with the table and the last to the

transition from bouncing to rolling motion. All these changes

are clearly evidenced by the jumps in NSV(H)
Example 2: Change in human activity: This example consists

of 78 frames of the sequence shown in Figure 2 of a moving

person that abruptly switches from walking to jumping,

starting at frame 51. As illustrated in the second row of the

figure, this change is clearly shown in the plot of NSV(H).

Example 3: Normal versus abnormal car slowdown. This

example consists of two sequences showing a car undergoing
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deceleration, as a result of a crash (Figure 3) (top row)

and during normal braking (second row). The NSV plot

corresponding to the crash exhibits a large jump starting

around frame 45, indicating the occurrence of a dynamic

event, while the NSV plot for normal deceleration, has a

much smaller jump, around frame 50, as the car slows down

to a stop.

IV. HANKEL MATRIX BASED TRACK MATCHING

In this section we turn our attention to the problem of

establishing track identity across occlusion. As part of the

process of solving this problem we develop an algorithm

that allows for efficiently estimating the missing data that

connects tracklets.

A. Track stitching: Estimating missing data.

Consider first the problem of estimating the missing data

connecting two segments of the same track. Formally, this

can be stated as:

Problem 1: Given two segments of a track, {yo
i }, 1 ≤ i ≤

r and {yo
j}, s + 1 ≤ i ≤ NF , with r < s and s − r ≪ NF ,

estimate the missing values y∗

k, r + 1 ≤ k ≤ s that are

maximally consistent with the existing data, in the sense that

the complete sequence is explained by the lowest possible

order model.

From Theorem 1 it follows that the missing values y∗

can be optimally estimated by minimizing the rank of the

corresponding Hankel matrix Hy formed by combining yo

and y∗. A potential problem here is that rank minimization

problems are known to be generically NP-hard. Thus, moti-

vated by [5], [6], we will replace the rank minimization step

by a convex relaxation that only entails solving a tractable,

convex Linear Matrix Inequality (LMI) optimization, leading

to the following Algorithm:

Algoritm 1: HankelBasedTrackStitching

Input: N observed values of y,

Np, estimated number of missing points.

Output: Estimates y∗ of the missing data.

1. Form a Hankel matrix Hŷ , where ŷ is the sequence

formed by combining y and y∗,

Hy
.
=













ŷ1 ŷ2 · · · ŷNF
2

ŷ2 ŷ3 · · · ŷNF
2

+1

...
...

. . .
...

ŷNF
2

· · · · · · ŷNF













,

where NF
.
= N + Np.

2. Obtain the best prediction y∗ by solving the LMI

optimization problem as follows.

minimize Tr(Y) + Tr(Z)

subject to

[

Y Hy

Hy
T Z

]

≥ 0

{y∗ ∈ R2}

where YT = Y, ZT = Z, and Hy ∈ R2NF ×
NF
2 .

Example 4: Detecting dynamic events under occlusion. This

example illustrates the ability of the proposed methods to

detect event changes, even if these events occur while the

target is occluded. In this example, a jumping ball exhibits

different dynamics in frames 1–42 and 43–59. The available

data consists of 4 tracklets, labeled W1−4 in Fig. 4(a), with

estimated noise level ση = 7.75. Applying Algorithm 1 to

stitch the track led to the connecting trajectories shown in

red in the figure. Finally, the NSV plot shown in Figure 4(b),

clearly indicates points at where dynamic events take place.

B. Multiple Track Matching and Stitching.

The ideas discussed above can also be used to match and

stitch tracks across occlusion. The main idea is to group

tracks according to the complexity of the simplest model that

explain the joint data. Specifically, given two measurement

matrices Wi and Wj corresponding to two tracklets, and

where NSj
> NFi

the starting and ending frame indexes

in Wj and Wi, respectively, a similarity measure between

tracks can be defined proceeding as follows:

1) Use Algorithm 1 to stitch the tracklets. Define Wij
.
=

[

Wi W∗ Wj

]

where W∗ denotes the estimates of

the missing measurements.

2) The similarity measure Γi,j between tracklets {i, j} is

defined as:

Γi,j
.
=

{

−∞, if temporal conflict exists;
NSVση (HWi

)+NSVση (HWj
)

NSVση (HWi,j
) − 1

(5)

Intuitively, if Wi and Wj are samples of the same trajectory,

then rank(HWi
) = rank(HWj

) = rank(HWij
) and hence

Γi,j = 1. On the other hand if Wi and Wj are uncorrelated,

Γi,j ≈ 0. The definition above formalizes this idea, using

NSVσ in lieu of rank(.) to improve robustness against

measurement noise. Once Γi,j is computed for all pairs that

do not exhibit temporal conflicts (e.g. one track starting

before the end of the second), tracks can be matched by

simply looking for pair (i, j) corresponding to the largest

values Γi,j . These ideas are summarized in Algorithm 2.

Algoritm 2: HANKEL MATRIX BASED TRACK MATCHING

Input: measurements matrices Wi;

nT , total tracklet number;

noise standard deviation ση.

Output: Similarity matrix Γ

for all i 6= j ∈ {1, · · · , nT } do

if there exists temporal conflict

Set Γi,j as -∞.

else

Apply Algorithm 1 to Wi and Wi to find Wi,j .

Use (5) to calculate Γi,j .

end if

end for

Find the best correspondence guided by Γ.

Example 5: Multi-target track matching under occlusion.
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TABLE I

SIMILARITY MATRIX FOR THE TWO BALLS EXAMPLE.

i Γi,1 Γi,2 Γi,3 Γi,4

1 NA
2 −∞ NA

3 1† -0.17 NA

4 -0.29 0.14† −∞ NA

TABLE II

SIMILARITY MATRIX FOR THE CAR AND BALL EXAMPLE.

i Γi,1 Γi,2 Γi,3 Γi,4

1 NA
2 −∞ NA

3 1† -0.38 NA

4 0 0.33† −∞ NA

Figure 5 shows 34 frames of a partially occluded sequence

of two balls with different dynamic behavior. Applying

Algorithm 2 to the 4 tracklets (using ση = 3.5) yields

NSV(W1) = NSV(W3) = 1, NSV(W2) = NSV(W4) = 4,

NSV(W1,3) = 1, NSV(W2,4) = 7, NSV(W1,4) = 7, and

NSV(W2,3) = 6. The resulting similarity matrix Γ is given

in Table I. As shown in Fig. 5 grouping tracks according to

this matrix indeed leads to the correct assignments.

The next example illustrates the ability of the method to

exploit dynamical information to match partially overlapping

tracks. It consists of 49 frames of the sequence shown in

Figure 6, containing two moving objects: a ball and a car,

the latter appearing only after frame 16. The similarity matrix

Γ shown in Table II shows that W1,3 and W2,4 are the most

consistent tracklets.

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper we addressed the problem of multi–target

dynamical event detection using fragmented tracks. In order

to solve this problem, we introduced algorithms for (i)

establishing track identity across occlusion, (ii) estimating

missing data and (iii) analyzing the (reconstructed) track

to establish points where dynamical events took place. The

underlying idea in all cases is that tracks corresponding

to a single target who is not undergoing dynamic events

can be explained by a model whose complexity is lower

than that required to jointly explain different dynamics. The

latter situation can be due for instance to having different

targets or a single target performing different activities.

In turn, by exploiting well known results from Systems

Theory, the problem of estimating the order of the model,

can be reduced to computing the rank of a Hankel matrix

constructed from the experimental data. This observation

leads to fast, computationally simple algorithms that do not

require finding explicit models. The effectiveness of this

technique was illustrated using several examples.

These results point out to the central role that control

theory can play in developing a comprehensive framework

leading to robust dynamic vision systems. In turn, dynamic

vision can provide a rich environment to both draw inspira-

tion from and test new developments in systems theory. For

instance, the applications addressed in this paper point out,

among others, to the need for further research into low com-

plexity nonlinear identification methods and the development

of worst-case identification methods for switched systems

that are not necessarily ℓ2 stable (to allow for parsing video

sequences into different activities).
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Fig. 2. Event detection. Top: transition from walking to jumping. Bottom: Corresponding NSV plot.
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(a) (b)

Fig. 3. Event detection. Top row: car crashing. Middle row: normal deceleration. Bottom row. (a) NSV plot for the crash case. (b) NSV plot for normal
deceleration.
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Fig. 4. Event detection: (top) Detecting occluded events. (bottom) NSV plot showing events.

Fig. 5. Multi-target track matching.

Fig. 6. Track matching with partially overlapping tracks.
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