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Abstract— In this paper, we develop randomized and deter-
ministic algorithms for computing the probabilistic radius of
information associated to an identification problem, and the
corresponding optimal probabilistic estimate. To compute this
estimate, in the companion paper [11] the concept of optimal
violation function is introduced. Moreover, for the case of
uniform distributions, it is shown how its computation is related
to the solution of a (quasi) concave optimization problem, based
on to the maximization of the volume of a specially constructed
polytope. In this second paper, we move a step further and
develop specific algorithms for addressing this problem. In
particular, since the problem is NP-hard, we propose both
randomized relaxations (based on a probabilistic volume oracle
and stochastic optimization algorithms), and deterministic ones
(based on semi-definite programming). Finally, we present a
numerical example illustrating the performance of the proposed
algorithms.

Keywords: System identification, optimal algorithms, ran-

domized algorithms, uncertain systems

I. INTRODUCTION

In the companion paper [11], a probabilistic framework

has been introduced in dealing with system identification in

the presence of bounded errors for which statistical informa-

tion is available. The proposed approach provides a rigorous

rapproachement between the classical paradigm, based on

statistical assumptions on the error, and the set-membership

approach, based on a purely deterministic description of the

error. The main idea in this rapprochement is to discard sets

of measure at most ǫ, where ǫ is a probabilistic accuracy,

from the set of deterministic estimates, thus decreasing the

so-called worst-case radius of information at the expense of

a given probabilistic risk. This approach may be embedded

in the probabilistic setting of information-based complexity

(IBC), a theoretical framework developed within computer

science, see e.g. [25].

The main theoretical results have been established in [11];

here we concentrate instead in developing computationally

efficient algorithms for obtaining probabilistic estimates. In

particular, we introduce specific algorithms for computing

the optimal violation function vo(r) for the case when the

uncertainty is uniformly distributed. First, in Section III we

observe that the exact computation of vo(r) requires the eval-

uation of the volume of polytopes, which could be performed

only for small dimensions. Since this problem is NP-Hard

[17], in Section IV we propose to use suitable probabilistic
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relaxations. More precisely, we present a randomized algo-

rithm based upon the classical Markov Chain Monte Carlo

method [23], [22], which has been studied in the context of

randomized stochastic approximation methods [18]; see also

[24] and [7] for further details about randomized algorithms.

Then, in Section V, we present a deterministic relaxation of

vo(r) which is based upon the solution of a semi-definite

program (SDP). The performance of both algorithms is

tested using the example of identification of a FIR(3) system

presented in Section VI.

A. Notation

In this section, we provide the notation used in this paper.

We write ‖ · ‖, ‖ · ‖2 and ‖ · ‖∞ to denote the ℓp, ℓ2 and

ℓ∞ norms, respectively. The ℓp norm-ball of center ξc and

radius r is denoted by B(ξc, r)
.
= {ξ | ‖ξ − ξc‖ ≤ r}, and

we write B(r)
.
= B(0, r). We denote by B2(ξc, r) and by

B∞(ξc, r) the ℓ2 and ℓ∞ norm-balls, respectively. We use

the notation x ∼ pA to indicate that the random vector x has

probability density function (pdf) pA(x) with support set A.

The uniform density UA over the set A ⊂ R
n is defined as

UA(x)
.
=

{
1/vol [A] if x ∈ A;

0 otherwise
,

where vol [A] represents the Lebesgue measure (volume) of

the set A, see [15] for details regarding volumes of sets.

The (univariate) unilateral Gamma density with parameters

a, b ∈ R is defined as Ga,b(x) =
1

Γ(a)bax
a−1e−x/b, x ≥ 0,

where Γ(·) is the Gamma function. We denote by I (·) the

indicator function, which is equal to one if the clause is true,

and it is zero otherwise. The n×n identity matrix is indicated

by In.

II. SUMMARY OF THE IBC SETTING

In [11] we formally introduced the information-based

complexity framework and its specific connections to system

identification. In this section, for completeness and self-

consistency, we provide a brief summary of the IBC setup.

The starting point is a set of (unknown) problem elements

x ∈ X ⊆ R
n, of which corrupted information, or data,

y ∈ Y ∈ R
m is available, i.e.

y = Ix+ q (1)

where I is a linear information operator, and q represents

uncertainty. In particular, in this paper we assume that q ∈
Q, where Q ≡ B(ρ) ⊆ R

m is an ℓp-norm ball. Moreover,
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we assume that q is uniformly distributed over Q, that is

q ∼ UQ.
Secondly, the solution operator S : X → Z is introduced,

where Z ⊆ R
s with s ≤ n. Given S, our aim is to estimate an

element Sx ∈ Z knowing the corrupted information y ∈ Y
about the problem element x ∈ X . That is, we construct

an algorithm A : Y → Z mapping the data y into an

(approximate) solution z = A(y), called an estimator.

Next, we define the so-called consistency set

I−1(y)
.
= {x ∈ X | there exists q ∈ Q : y = Ix+ q} (2)

representing the set of all problem elements x ∈ X com-

patible with (i.e. not invalidated by) Ix, uncertainty q and

bounding set Q. Similarly, the set SI−1(y) is defined as

the mapping of I−1(y) through the solution operator. The

following assumptions are made in [11] without loss of

generality, see this paper for further discussions.

Assumption 1 (Sufficient information and feasibility):

We assume that the information operator I is a one-to-one

mapping, i.e. m ≥ n and rank I = n. Similarly, n ≥ s
and S is full row rank. Moreover, we assume that the set

I−1(y) has non-empty interior.

Assumption 2 (Regularized solution operator): In the se-

quel, we assume that the solution operator is regularized, so

that S =
[
S̄ 0s,n−s

]
, with S̄ ∈ R

s,s.

A. Optimal algorithms and violation functions

Based on these definitions, in the classical set-membership

setup, given corrupted information y ∈ Y , a worst-case

optimal algorithm minimizes the maximum distance between

the estimate and the true-but-unknown solution. In [11], an

alternative probabilistic notion is introduced. Namely, given

an accuracy level ǫ ∈ (0, 1), we define the probabilistic error

(to level ǫ) rpr(A, y, ǫ) of the algorithm A as

rpr(A, y, ǫ)
.
= inf
Xǫ such that µ̃

I−1(Xǫ)≤ǫ
max

x∈I−1(y)\Xǫ

‖Sx−A(y)‖

(3)

where the notation I−1(y) \ Xǫ indicates the set-theoretic

difference between I−1(y) and Xǫ. Then, a probabilistic

optimal (to level ǫ) algorithm Apr
o is the one that minimizes

the error rpr(A, y, ǫ) for any y ∈ Y and ǫ ∈ (0, 1). That is,

given data y ∈ Y and accuracy level ǫ ∈ (0, 1), we have

rpro (y, ǫ)
.
= rpr(Apr

o , y, ǫ) = inf
A

rpr(A, y, ǫ). (4)

The minimal error rpro (y, ǫ) is called the probabilistic radius

of information (to level ǫ) and the corresponding optimal

estimator is given by

zpro (ǫ)
.
= Apr

o (y, ǫ). (5)

In [11] we analyze the problem of computing the proba-

bilist optimal radius of information, and the corresponding

probabilistic optimal estimate. In particular, we show that

rpro (y, ǫ) is the solution of the following chance-constrained

optimization problem

rpro (y, ǫ) = min {r | vo(r) ≤ ǫ} , (6)

where the optimal violation function for a given radius r is

defined as

vo(r)
.
= inf

A
µ̃I−1

{
x ∈ I−1(y) : ‖Sx−A(y)‖ > r

}
. (7)

Note that the optimal violation function vo(r) plays a key

role in our setup. Indeed, in [11, Theorem 2] we prove that,

for r > 0, vo(r) is right-continuous and non-increasing.

Moreover, in the same theorem we show that vo(r) can

be computed by maximizing a specially constructed volume

function φ(z, r). More precisely, for given center z ∈ Z and

radius r > 0, we introduce the cylinder in X as follows

C(z, r)
.
= {x ∈ R

n | ‖Sx− z‖ ≤ r} ⊂ X, (8)

and the corresponding intersection set between C(z, r) and

the consistency set I−1(y)

Φ(z, r)
.
= I−1(y) ∩ C(z, r) ⊂ X. (9)

Then, the function φ(z, r) is defined as the volume Φ(z, r),
i.e.

φ(z, r)
.
= vol [Φ(zc, r)] . (10)

Then, [11, Theorem 2] states that

vo(r) = 1−
φo(r)

vol [I−1(y)]
, (11)

where φo(r) is the solution of the optimization problem

(P-max-int) : max
z∈H(r)

φ(z, r) (12)

and H(r) is the set of all centers z ∈ R
s for which the

intersection set Φ(z, r) is non-empty.

The aim of this paper is to discuss different algorithmic

approaches for the solution of problem (P-max-int) . First,

note that this problem is very hard in general. For instance,

for ℓ1 or ℓ∞ norms, the consistency set I−1(y) is a polytope

and C(z, r) is a cylinder parallel to the coordinate axes

whose cross-section is a polytope. Hence, even evaluating

the function φ(z, r) appearing in (12) amounts to computing

the volume of a polytope, and this problem has been shown

to be NP-hard in [17]. This is further discussed in the next

section, which deals with “exact” computational solutions.

III. VOLUME ORACLE AND ORACLE-POLYNOMIAL-TIME

ALGORITHM

For the case of polytopic sets, the papers [1], [14] study

the problem (P-max-int) in the hypothetical setting that an

oracle exists which satisfies the following property: given

r > 0 and z ∈ H(r), it returns the value of the function

φ(z, r), together with a sub-gradient of it. In this case, in [1]

a strongly polynomial-time (in the number of oracle calls)

algorithm is derived. Note that, even if the problem is NP-

hard in general, one can compute the volume of a polytope

in a reasonable time for considerably complex polytopes in

modest (e.g. for n ≤ 10) dimensions, see [4]. In this partic-

ular case, for ℓ∞ norms, the method proposed by [14] may

be used. For instance, in the example discussed in Section

VI, all relevant quantities have been computed exactly by
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employing this method. However, it should be remarked that,

for larger dimensions, the curse of dimensionality makes the

problem computationally intractable, and alternative methods

need to be devised.

In the next sections, we develop randomized and determin-

istic relaxations of problem (P-max-int) which do not suffer

from these computational drawbacks.

IV. RANDOMIZED ALGORITHMS FOR COMPUTING

(P-MAX-INT)

In this section, we propose randomized algorithms based

on a probabilistic volume oracle and a stochastic optimiza-

tion approach for approximately solving problem (P-max-int)

for generic ℓp norms. First of all, we compute a bounded

version of the cylinder C(z, r). To this end, we note that

bounds x−
i , x+

i on the variables xi, i = s+1, . . . , n, can be

computed as the solution of the following 2(n − s) convex

programs,

x−
i = min xi

subject to x ∈ I−1(y)
(13)

x+
i = max xi

subject to x ∈ I−1(y)
(14)

for i = s + 1, . . . , n. These problems are convex, and

for generic ℓp norms can be solved by any gradient-based

method. In particular, problem (13)-(14) reduces to the

solution to 2(n− s) linear programs in the case of ℓ1 or ℓ∞
norms. Then, under Assumption 2, we define the cylinder

C(z, r)
.
=

{
x ∈ R

n |

∥∥∥∥∥S̄
[

x1

...
xs

]
− z

∥∥∥∥∥ ≤ r,

x−
i ≤ xi ≤ x+

i , i = s+ 1, . . . , n
}
.

Note that the cylinder C(z, r) is bounded, and has volume

equal to

vol
[
C(z, r)

]
=

(2r)sΓs (1/p+ 1)

| det(S̄)|Γ (s/p+ 1)

n∏

i=s+1

(x+
i −x−

i )
.
= VC .

(15)

We also remark that, by construction, for any r > 0 and

z ∈ H(r)

Φ(z, r) = I−1(y) ∩ C(z, r).

Note also that independent and identically distributed (iid)

random samples inside C(z, r) can be easily obtained from

iid uniform samples in the ℓp-norm ball, whose generation

is explained in [6]. Then, a probabilistic approximation of

the volume of the intersection Φ(z, r) may be computed by

means of the randomized oracle presented in Algorithm 1,

which is based on the uniform generation of iid samples in

C(z, r).
Then, note that the expected value of the random variable

φ̂N (z, r) with respect to the samples χ(1), . . . , χ(N) ∈
C(z, r) is exactly the volume function φ(z, r) appearing in

(P-max-int)

E

[
φ̂N (z, r)

]
= φ(z, r).

Algorithm 1 Probabilistic Volume Oracle

1. RANDOM GENERATION

Generate N iid unifom samples ζ(1), . . . , ζ(N) in the

s-dimensional ball B(z, r)

– For i = 1 to N

- Generate s iid scalars according to the unilateral

Gamma density γj ∼ G1/p,1

- Construct the vector η ∈ R
n of components

ηj = sjγ
1/p
j , where sj are iid random signs

- Let ζ(i) = z + r w1/n η
‖η‖p

where w is uniform

in [0, 1]

End for

Generate N iid uniform samples ξ(1), . . . , ξ(N)

– For i = 1 to N

- Generate ξij uniformly in the interval

[x−
s+j , x

+
s+j ], j = 1, . . . , n− s

End for

Construct the random samples in C(z, r) as follows

χ(i) =

[
S̄−1ζ(i)

ξ(i)

]
, i = 1, . . . , N

2. CONSISTENCY TEST

– Compute the number of samples inside I−1(y) as

follows

Ng =

N∑

i=1

I

(
‖I χ(i) − y‖ ≤ ρ

)

3. PROBABILISTIC ORACLE Return an approximation of

the volume φ(z, r) as follows

φ̂N (z, r) =
Ng

N
VC

where VC is defined in (15)

This immediately follows from the linearity of the expecta-

tion

E

[
φ̂N (z, r)

]
= E

[
1

N

N∑

i=1

I

(
χ(i) ∈ I−1(y)

)
VC

]

=
1

N

N∑

i=1

E

[
I

(
χ(i) ∈ I−1(y)

)]
VC .

Then, we have

E

[
I

(
χ(i) ∈ I−1(y)

)]

= 1 · Prob
{
χ(i) ∈ I−1(y)

}
+ 0 · Prob

{
χ(i) 6∈ I−1(y)

}

= vol [Φ(z, r)] /vol
[
C̄(z, r)

]
= φ(z, r)/VC .

Hence, we reformulate the problem (P-max-int) as the fol-

lowing stochastic optimization problem

max
z∈H(r)

E

[
φ̂N (z, r)

]
.
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This problem is classical and different stochastic approx-

imation algorithms have been proposed, see for instance

[18], [20] and references therein. In particular, in this paper,

we use the SPSA (simultaneous perturbations stochastic

approximation) algorithm, first proposed in [21], and fur-

ther discussed in [23]. Convergence results under different

conditions are detailed in the literature, see in particular the

paper [16] which applies to non-differentiable functions. This

approach is outlined in Algorithm 2.

Algorithm 2 SPSA approach to (P-max-int)

1. INITIALIZATION Let k = 0, choose initial feasible

center z0 ∈ H(r) and stepsize sequences {ak}, {ck}
satisfying ak → 0,

∑
k ak = ∞, ck → 0,

∑
k ck = ∞

2. BERNOULLI GENERATION

- Generate s iid Bernoulli points ∆k ∈ {0, 1}
s

- Define [∆−1
k ]

.
=

[
∆−1

k,1 · · · ∆−1
k,n

]⊤

3. APPROXIMATE GRADIENT

- Compute the two perturbed values φ̂±
N

.
= φ̂N (zk ±

ck∆k, r)
- Compute an approximate (sub)gradient as

∂̂φN (zk, r) = [∆−1
k ]

φ̂+
N − φ̂−

N

2ck

4. SUBGRADIENT ASCENT

zk+1 = zk + ak ∂̂φN(zk, r)

5. ITERATION Let k = k + 1 and goto 2

Remark 1 (Scenario-based algorithms): An alternative

approach based on randomized methods can be also devised

employing results on the scenario optimization method intro-

duced in [5]. In particular, exploiting the results on discarded

constraints, see [8], [10], an alternative algorithm can be

constructed. The idea is as follows: (i) generate N samples

χ(i) in I−1(y) according to the induced measure µ̃I−1, ii)

solve the discarded-constraint random program

min
z,γ

γ (16)

s.t.
1

L

∑

i∈IL

I

(
‖Sχ(i) − z)‖ ≥ γ

)
≤ ǫ (17)

where IL is a set of L indices constructed discarding in a

prescribed way N−L indices from the set 1, 2, . . . , N . Then,

in [8], [10] it is shown how to choose N and the discarded set

IL to guarantee, with a prescribed level of confidence, that

the result of optimization problem (16) is a good approxi-

mation of the true probabilistic radius rpro (y, ǫ). However,

this approach entails many technical difficulties, such as

the random sample generation in point (i) and the optimal

discarding procedure in point (ii), whose detailed analysis

goes beyond the scope of this paper, and it is studied in

[13]. We also point out that a different approach, also based

on scenario optimization and discarded constraints, has been

developed in [9] for identification and reliability problems,

introducing the concept of interval predictor models. ⋄

V. A DETERMINISTIC RELAXATION TO (P-MAX-INT)

In this section, we propose a deterministic approach to (P-

max-int) based on a semidefinite relaxation of the problem.

We develop our approach focusing on the ℓ∞ norm; exten-

sions to ℓ1 and ℓ2 norms are briefly discussed in Remark 2.

First, note that in the case of ℓ∞ norms Q is an hypercube

of radius ρ and therefore I−1(y) is the polytope PX defined

by the following linear inequalities

I−1(y) = {x ∈ R
n | ‖Ix− y‖∞ ≤ ρ} (18)

=

{
x ∈ R

n |

[
I
−I

]
x ≤

[
ρ1+ y
ρ1− y

]}

where 1 is a vector of ones, 1 = [1 1 · · · 1]⊤. Since

the exact computation of the volume of the intersection of

two polytopic sets is in general costly and prohibitive in

high dimensions, as discussed in Section III, we propose to

maximize a suitably chosen lower bound of this volume.

This lower bound can be computed as the solution of a

convex optimization problem. The idea is to construct, for

fixed r > 0, the maximal volume ellipsoid contained in the

intersection Φ(z, r), which requires to solve the optimization

problem

max
z,xE ,PE

vol [E(xE , PE)] (19)

subject to E(xE , PE) ⊆ Φ(z, r),

where the ellipsoid of center xE and shape matrix PE � 0 is

E(xE , PE)
.
= {x ∈ R

n |x = xE + PEw, ‖w‖2 ≤ 1} . (20)

The problem of deriving the maximum volume ellipsoid

inscribed in a polytope is a well-studied one, and concave

reformulations based on linear matrix inequalities (LMI) are

possible, see for instance [3], [2]. For completeness, we state

a result in the next theorem.

Theorem 1: Let q ∼ U(Q) with Q ≡ B(ρ), and S =[
S̄ 0s,n−s

]
, with S̄ ∈ R

s,s. Then, for given r > 0, a

center that achieves a global optimum for problem (19) can

be computed as the solution of the following semi-definite

programming (SDP) problem

zsdpo (r) ∈ argz min
z,xE ,PE

− log detPE

subject to PE � 0 and[
(ρ+ e⊤i (y − IxE ))In PEI

⊤ei
⋆ ρ+ e⊤i (y − IxE)

]
� 0,

i = 1, . . . ,m

[
(ρ− e⊤i (y − IxE))In −PEI

⊤ei
⋆ ρ− e⊤i (y − IxE )

]
� 0,

i = 1, . . . ,m[
(r + ē⊤i (z − SxE ))In PES

⊤ēi
⋆ r + ē⊤i (z − SxE )

]
� 0,

i = 1, . . . , s[
(r − ē⊤i (z − SxE ))In PES

⊤ēi
⋆ r − ē⊤i (z − SxE )

]
� 0,

i = 1, . . . , s,
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where ei and ēi are elements of the canonical basis of R
m

and R
s, respectively. Moreover, for all r > 0, vsdpo (r) ≥

vo(r), where we defined

vsdpo (r)
.
= 1−

φ
(
zsdpo (r), r

)

vol [I−1(y)]
.

The proof of this result is available in the paper [12]. Note

that, from this theorem, if follows that the SDP relaxation

leads to a suboptimal violation function vsdpo (r).
Remark 2 (SDP relaxations for ℓ1 and ℓ2 norms): An

approach identical to that proposed in Theorem 1 can be

developed for ℓ1 norm, considering that also in this case

the sets I−1(y) and C(z, r) are a polytope and a cylinder

with polytopic basis. Similarly, an analogous algorithm

can be devised for (weighted) ℓ2 norm. In this case, one

should maximize the volume of an ellipsoid contained in the

intersection of I−1(y) and C(z, r), which are respectively

an ellipsoid and a cylinder with spherical basis, see [12]

for a deeper analysis. Then, it can be easily seen, see e.g.

[3], that this latter problem easily rewrites as a convex SDP

optimization problem. ⋄

VI. NUMERICAL EXAMPLE

To study the performance of the (randomized and deter-

ministic) algorithms previously presented, we consider the

problem of estimating the parameters of a three-parameter

finite-impulse response (FIR) model

yk = x1uk + x2uk−1 + x3uk−2 + qk, k = 1, . . . ,m (21)

where the input uk is a known input sequence. The (un-

known) nominal parameters were set to [1.25 2.35 0.5]⊤,

and m = 200 measurements were collected generating the

input sequence {uk} according to a Gaussian distribution

with zero mean value and unit variance, and the measurement

uncertainty q as a sequence of uniformly distributed noise

with |qk| ≤ 0.5. Note that, in this example, we consider an

identity solution operator S, and thus X ≡ Y and the sets

I−1(y) and SI−1(y) coincide. That is, the solution coincides

with the parameters, and the goal is to estimate zi = xi,

i = 1, 2, 3.

First, the optimal worst-case radius and the corresponding

optimal solution have been computed by solving six linear

programs (corresponding to finding the tightest box contain-

ing the polytope SI−1(y), see [19]). The computed worst-

case optimal estimate is zwc
o = [1.239 1.788 0.521]⊤ and the

worst-case radius is rwc
o (y) = 0.0273., see Figure 1.

For comparison, we also computed the classical

least-squares estimate Als(y) = (I⊤I)−1I⊤y =
[1.265 1.816 0.542]⊤. Note that the least-square estimate

is worst-case optimal as expected, and it is not even

interpolatory, since it is outside the consistency set

SI−1(y) (see [25] for a formal definition of interpolatory

algorithm).

Subsequently, in order to apply our probabilistic frame-

work, we fix the accuracy level to ǫ = 0.1, and aim at

Fig. 1. Consistency set for the numerical example. The worst-case optimal
radius r

wc
o (y) corresponds to the radius of the box enclosing the polytope

SI−1(y). Its center, denoted by a diamond, represents the optimal worst-
case estimate z

wc
o . The least-squares estimate is reported for completeness

in the circle. Note that it falls outside of the polytope I−1(y).

computing a probabilistic optimal radius and the correspond-

ing optimal estimate according to definitions (4) and (5).

Since the size is rather small (n = 3), we use the techniques

discussed in Section III for computing (P-max-int) exactly,

obtaining the optimal violation function vo(r) depicted in

Figure 2.
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1

r

Fig. 2. Optimal violation function vo(r). To compute the probabilistic
radius of information r

pr
o (y, ǫ) corresponding to ǫ = 0.1, we “invert” the

plot as depicted in this figure.

By employing a simple bisection search algorithm over

vo(r), the probabilistic radius of information was com-

puted as rpro (y, 0.1) = 0.0190. The corresponding op-

timal probabilistic estimate is given by and zpro (0.1) =
[1.242 1.790 0.520]⊤. Note that the improvement in terms

of radius of information is quite significative, being of the

order of 30%.

The meaning of our approach is well explained in Figure
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3. Indeed, in this figure we see that we look for the optimal

“box” discarding a set of probability ǫ = 0.1.

Fig. 3. Consistency set, and optimal “box” discarding a set of measure
ǫ = 0.1. The probabilistic optimal radius r

pr
o (y, 0.1) corresponds to the

radius of this box. The center, denoted by a star, represents the optimal
probabilistic estimate z

pr
o (y).

Finally, to evaluate the quality of the randomized and

deterministic relaxations introduced in Sections IV and V,

we solved problem (P-max-int) for various values of radii in

the interval [0.015, rwc
o ], obtaining the results in Figure 4. It

can be observed that the randomized approximation behaves

quite well in this example, while the deterministic SDP

performs poorly. Preliminary experiments seem to testify the

fact that the quality of the SDP approximation increases

as the dimensions grow, while the randomized algorithms

tend to be less precise for larger dimensions, see e.g. the

numerical example reported in [12].

0.016 0.018 0.02 0.022 0.024 0.026 0.028
0

0.05

0.1

0.15

0.2

0.25

r

v
o
(r
)

Fig. 4. Optimal violation function vo(r) computed by the different
algorithms presented in this paper: exact volume oracle (solid blue line),
randomized algorithm (dashed red line) and SDP relaxation (dash-dottet
green line).

VII. CONCLUSIONS

In this paper, randomized and deterministic algorithms for

computing the optimal violation function defined in [12] have

been presented. Their performance has been successfully

tested on a numerical example of parameter estimation of

a FIR(3) system.

REFERENCES

[1] H.K. Ahn, S-W. Cheng, and I. Reinbacher. Maximum overlap of
convex polytopes under translation. Algorithms and Computation,
2010.

[2] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathe-

matics of Operations Research, 23:769–805, 1998.
[3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix

Inequalities in System and Control Theory. SIAM, Philadelphia, 1994.
[4] B. Bueler, A. Enge, and K. Fukuda. Exact volume computation for

convex polytopes: a practical study. In G. Kalai and G. M. Ziegler,
editors, Polytopes Combinatorics and Computation, volume 30, pages
131–154. Birkauser, 2000.

[5] G. Calafiore and M.C. Campi. The scenario approach to robust control
design. IEEE Transactions on Automatic Control, 51(5):742–753,
2006.

[6] G. Calafiore, F. Dabbene, and R. Tempo. Radial and uniform dis-
tributions in vector and matrix spaces for probabilistic robustness. In
D.E. Miller and L. Qiu, editors, Topics in Control and its Applications,
pages 17–31. Springer-Verlag, New York, 1999.

[7] G. Calafiore, F. Dabbene, and R. Tempo. Research on probabilistic
methods for control system design. Automatica, 47:1279–1293, 2011.

[8] G.C. Calafiore. Random convex programs. SIAM Journal on Opti-

mization, 20(6):3427–3464, 2010.
[9] M.C. Campi, G.C. Calafiore, and S. Garatti. Interval predictor models:

Identification and reliability. Automatica, 45(2):382–392, 1990.
[10] M.C. Campi and S. Garatti. A sampling-and-discarding approach to

chance-constrained optimization: Feasibility and optimality. Journal

of Optimization Theory and Applications, 148(2):257–280, 2011 (pre-
liminary version available on Optimization Online, 2008).

[11] F. Dabbene, M. Sznaier, and R. Tempo. A probabilistic approach to
optimal estimation - Part I: Problem formulation adn methodology. In
Proceedings IEEE Conference on Decision and Control, 2012.

[12] F. Dabbene, M. Sznaier, and R. Tempo. Probabilistic optimal estima-
tion and filtering under uncertainty. arXiv:1203.1429v2, 2012.

[13] F. Dabbene, M. Sznaier, and R. Tempo. A randomized algorithm for
violation function approximation in system identification. CNR - IEIIT

Technical Report, CNR-IEIIT-12-01-15-TO, 2012.
[14] K. Fukuda and T. Uno. Polynomial-time algorithms for maximizing

the intersection volume of polytopes. Pacific Journal of Optimization,
2007.

[15] P.R. Halmos. Measure Theory. Springer-Verlag, New York, 1950.
[16] Y. He, M.C. Fu, and S. Marcus. Convergence of simultaneous per-

turbation stochastic approximation for nondifferentiable optimization.
IEEE Transactions on Automatic Control, 48(8):1459–1463, 2003.

[17] L.G. Khachiyan. Complexity of polytope volume computation. In
J. Pach, editor, New Trends in Discrete and Computational Geometry,
pages 91–101. Springer-Verlag, 1903.

[18] H.J. Kushner and G.G. Yin. Stochastic Approximation and Recursive

Algorithms and Applications. Springer-Verlag, New York, 2003.
[19] M. Milanese and R. Tempo. Optimal algorithms theory for robust

estimation and prediction. IEEE Transactions on Automatic Control,
30:730–738, 1985.

[20] A. Shapiro. Monte Carlo sampling methods. In A. Rusczyński and
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