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Abstract— The classical approach to system identification is
based on statistical assumptions about the measurement error
and provides estimates that have stochastic nature. Worst-case
identification, on the other hand, only assumes the knowledge of
deterministic error bounds and provides guaranteed estimates.

The focal point of this paper is to provide a rapproachement
between these two paradigms and propose a novel probabilistic
framework for system identification. The main idea in this line
of research is to “discard” sets of measure at most ǫ, where ǫ is
a probabilistic accuracy, from the set of deterministic estimates.
Therefore, we are decreasing the so-called worst-case radius of
information at the expense of a given probabilistic “risk.”

The main results of the paper establish rigorous theoretical
properties of a trade-off curve, called optimal violation function,
which shows how the radius of information decreases as a func-
tion of the accuracy. In the companion paper [8], we develop
algorithms (randomized and deterministic) which exploit these
theoretical results for efficiently computing the optimal violation
function.

Keywords: System identification, optimal algorithms, uncer-

tain systems

I. INTRODUCTION AND PRELIMINARIES

In the last decades, several authors focused their attention

on the so-called set-membership identification which has the

objective to compute so-called optimal estimators, as well as

hard bounds on the estimation error, see for instance [19],

and [15]. Set-membership identification has been formulated,

see e.g. [18], [26], [14], [23], in the general framework

of information-based complexity (IBC), which is a theory

developed in the computer science area for studying the

complexity of problems approximately solved due to the

presence of partial and/or contaminated information; see [29]

and [30]. Classical applications of IBC include distributed

computations, clock synchronization and computer vision.

In the worst-case setting, the noise is a deterministic

variable bounded within a set of given radius. The objective

is to derive optimal algorithms which minimize (with respect

to the noise) the maximal distance between the true-but-

unknown system parameters and their estimates. The draw-

back of the hard bound approach is that these bounds on

the estimation errors may be too large in many instances,

in particular when the goal is to use system identification

in the context of closed-loop control. On the other hand,

the mainstream stochastic approach to system identification,

see [16] and the special issues [17], [25], assumes that the
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available observations are contaminated by random noise,

and has the goal to derive soft bounds on the estimation

errors.

The focal point of this paper is to study a rapprochement

between these two settings, see [21], [13], [22], [5], [11] for

earlier work in this direction. That is, the measurement noise

is confined within a given set (as in the worst-case setting),

but it is also a random variable with given probability

distribution (so that statistical information is used). We recall

that this rapprochement has been also studied in the context

of control design in the presence of uncertainty, see [27],

[4], [3], and [2] which provide a rigorous methodology

for deriving controllers satisfying the desired performance

specifications with high level of probability.

The specific problem formulation we consider in this

paper is the probabilistic setting of IBC. The objective is

to compute the so-called probabilistic radius of information,

and the related probabilistic optimal estimate, when the noise

is uniformly distributed. We remark that, contrary to the

statistical setting which mainly concentrates on asymptotic

results, the probabilistic radius introduced in this paper

provides a quantification of the estimation error based on

a finite number of observations. In this sense, this approach

has close relations with the works [6], [7], where noise-free

non-asymptotic confidence sets for the estimates are derived.

Furthermore, the paper is also related to the work [28], where

a probabilistic density function over the consistency set is

considered.

We now provide a brief overview of information-based

complexity, see II for formal definitions (this section also

contains an illustrative example dealing with system parame-

ter identification). We are interested in computing an optimal

approximation of Sx ∈ Z where S is a given linear mapping

S : X → Z ⊆ R
s, and x ∈ X ⊆ R

n; x and S are

called, respectively, problem element and solution operator

(that is, Sx represents a linear combination of the unknown

parameters of the system to be identified). The element x
is not exactly known. Rather, only approximate information

y = Ix+ q is available, where I, the so-called information

operator, is linear, and the noise q is confined within a norm-

bounded set Q ⊂ R
m. An approximation to Sx is provided

by an algorithm (or estimator) A, generally nonlinear, acting

on the information y. Optimal algorithms minimize the

maximal distance between the true-but-unknown solution Sx
and the estimated solution A(y) for the worst-case noise

q ∈ Q. The error of an optimal algorithm is called the

worst-case radius of information. Section II also contains
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the formal definition of the consistency set I−1(y) which

plays a major role in this paper. Roughly speaking, this is

the set of all parameters x which are compatible with the

given data y, the model y = Ix+ q and the noise q ∈ Q.

In Section III we introduce the probabilistic setting where

we “discard” sets of (probabilistic) measure at most ǫ from

the consistency set with the objective to decrease the worst-

case radius. Therefore, we obtain a new error which repre-

sents the probabilistic radius of information. This approach

may be very useful, for example, for system identification in

the presence of outliers [1], where “bad measurements” may

be discarded.

In Section IV we present the main results of the paper

for uniformly distributed noise. Theorem 1 shows that the

induced measure (through the inverse of the operator in-

formation I) over the consistency set I−1(y) is uniform

and the induced measure of the set SI−1(y) (which is

the transformation of the consistency set I−1(y) through

the solution operator S) is log-concave. Theorem 2 proves

crucial properties, from the computational point of view, of

the so-called optimal violation function vo(r), which shows

how the risk ǫ decreases as a function of the radius r. In

particular, this result shows that vo(r) is non-increasing, and

for fixed r > 0, it can be obtained as the maximization of a

specially constructed unimodal function.

The companion paper [8] presents (deterministic and ran-

domized) algorithms for computing the optimal violation

function. In this paper, the properties of the violation func-

tion are exploited to derive deterministic and randomized

relaxations by means of low complexity algorithms. In the

same paper, the effectiveness of the proposed methodology

is demonstrated using an application example of parameter

estimation of an FIR system.

A. Notation

We write ‖ · ‖, ‖ · ‖2 and ‖ · ‖∞ to denote the ℓp, ℓ2 and

ℓ∞ norms, respectively. The ℓp norm-ball of center ξc and

radius r is denoted by

B(ξc, r)
.
= {ξ | ‖ξ − ξc‖ ≤ r} ,

and we write B(r)
.
= B(0, r). We denote by B2(ξc, r) and

by B∞(ξc, r) the ℓ2 and ℓ∞ norm-balls, respectively. We use

the notation x ∼ pA to indicate that the random vector x has

probability density function (pdf) pA(x) with support set A.

The uniform density UA over the set A ⊂ R
n is defined as

UA(x)
.
=

{
1/vol [A] if x ∈ A;

0 otherwise

where vol [A] represents the Lebesgue measure (volume)

of the set A, see [12] for details regarding volumes

of sets. The uniform density UA generates a uniform

measure µU(A) such that, for any measurable set B,

µU(A)(B) = vol [B ∩ A] /vol [A]. The n× n identity matrix

is indicated by In. A set H is said to be centrally symmetric

with center x̄ if x ∈ H implies that its reflection with

respect to x̄ also belongs to H , i.e. (2x̄− x) ∈ H .

II. INFORMATION-BASED COMPLEXITY

This section provides a formal overview of the

information-based complexity definitions used in the paper

and an introductory example illustrating the main concepts

in a system identification context. An introduction to the IBC

framework is given in [30] and in [23]; see the monograph

[29] for an advanced treatment of the topic.

Let X be a linear normed n-dimensional space over the

real field, which represents the set of (unknown) problem el-

ements x ∈ X . Define a linear operator I, called information

operator, which maps X into a linear normedm-dimensional

space Y

I : X → Y.

In general, exact information about the problem element x ∈
X is not available and only perturbed information, or data,

y ∈ Y is given. That is, we have

y = Ix+ q (1)

where q represents uncertainty which may be deterministic

or random. In either case, we assume that q ∈ Q, where Q ⊆
R

m is a bounding set. Due to the presence of uncertainty q,

the problem element x ∈ X may not be easily recovered

from the data y ∈ Y . Then, we introduce a linear operator

S, called a solution operator, which maps X into Z

S : X → Z

where Z is a linear normed s-dimensional space over the

real field, where s ≤ n. Given S, our aim is to estimate an

element Sx ∈ Z knowing the corrupted information y ∈ Y
about the problem element x ∈ X .

An algorithm A is a mapping (in general nonlinear) from

Y into Z , i.e.

A : Y → Z.

An algorithm provides an approximation A(y) of Sx using

the available information y ∈ Y of x ∈ X . The outcome of

such an algorithm is called an estimator z = A(y).
We now introduce a set which plays a key role in the

subsequent definitions of radius of information and optimal

algorithm. Given data y ∈ Y , we define the consistency set

as follows

I−1(y)
.
= {x ∈ X | there exists q ∈ Q : y = Ix+ q} (2)

which represents the set of all problem elements x ∈ X com-

patible with (i.e. not invalidated by) Ix, uncertainty q and

bounding set Q. Note that, under the sufficient information

assumption stated next, the set I−1(y) is guaranteed to be

bounded. For the sake of simplicity, we assume that the three

sets X,Y, Z are equipped by the same ℓp norm, and that the

set Q is an ℓp norm-ball of radius ρ, that is Q ≡ B(ρ). Note

that in this case the set I−1(y) can be written as

I−1(y) = {x ∈ X | ‖Ix− y‖ ≤ ρ} . (3)

The following assumption regarding the operators I and S
is now introduced.
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Assumption 1 (Sufficient information and feasibility):

We assume that the information operator I is a one-to-one

mapping, i.e. m ≥ n and rank I = n. Similarly, n ≥ s
and S is full row rank. Moreover, we assume that the set

I−1(y) has non-empty interior.

Note that, in a system identification context, the assump-

tion on I and on the consistency set represent necessary

conditions for identifiability of the problem element x ∈ X .

The assumption of full-rank S is equivalent to assuming that

the elements of the vector z = Sx are linearly independent

(otherwise, one could always estimate a linearly independent

set and use it to reconstruct the rest of the vector z). We

now provide an illustrative example showing their role in

the context of system identification.

Example 1 (System parameter identification): Consider a

parameter identification problem which has the objective to

identify a linear system from noisy measurements. In this

case, the problem elements are represented by the trajectory

ξ = ξ(t, x) of a dynamic system, parametrized by some

unknown parameter vector x ∈ X . The system trajectory

may for instance be represented as follows

ξ(t, x) =
n∑

i=1

xiψi(t) = Ψ⊤(t)x,

with given basis functions ψi(t), and Ψ⊤(t)
.
=

[ψ1(t) · · · ψn(t)]. We suppose that m noisy

measurements of ξ(t, x) are available for t1 < t2 <
· · · < tm, that is

y = Ix+ q = [Ψ(t1) · · · Ψ(tm)]
⊤
x+ q. (4)

In this context, we usually assume unknown but bounded

errors, such that |qi| ≤ ρ, i = 1, . . . ,m, that is Q = B∞(ρ).
Then, the aim is to obtain a parameter estimate using the

measured data y. Hence, the solution operator is given by

the identity,

Sx = x

and Z ≡ X . The consistency set is sometimes referred to as

feasible parameters set, and is given as follows

I−1(y) =
{
x ∈ X : ‖y − [Ψ(t1) · · · Ψ(tm)]

⊤
x‖∞ ≤ ρ

}
.

(5)

In the case of time series prediction, we are interested on

predicting s future values of the function ξ(t, x) based on m
past measurements, and the solution operator takes the form

z = Sx = ξ(tm+1, x) = Ψ⊤(tm+1)x

for a one-step prediction, and by

z = Sx = {ξ(tm+1, x), · · · , ξ(tm+s, x)}

= [Ψ(tm+1) · · · Ψ(tm+s)]
⊤
x,

for a s steps prediction. ⋄
Next, we define approximation errors and optimal algo-

rithms when q is deterministic or random.

A. Worst-Case Setting

Given data y ∈ Y , we define the worst-case error

rwc(A, y) of the algorithm A as

rwc(A, y)
.
= max

x∈I−1(y)
‖Sx−A(y)‖. (6)

This error is based on the available information y ∈ Y
about the problem element x ∈ X and it measures the

approximation error between Sx and A(y). An algorithm

Awc
o is called worst-case optimal if it minimizes rwc(A, y)

for any y ∈ Y . That is, given data y ∈ Y , we have

rwc
o (y)

.
= rwc(Awc

o , y)
.
= inf

A
rwc(A, y). (7)

The minimal error rwc
o (y) is called the worst-case radius of

information1.

This optimality criterion is meaningful in estimation prob-

lems as it ensures the smallest approximation error between

the actual (unknown) solution Sx and its estimate A(y)
for the worst element x ∈ I−1(y) for any given data

y ∈ Y . Obviously, a worst-case optimal estimator is given

by zwc
o = Awc

o (y).

We notice that optimal algorithms map data y into the ℓp–

Chebychev center of the set SI−1(y), where the Chebychev

center zc(H) of a set H ⊆ Z is defined as

max
h∈H

‖h− zc(H)‖
.
= inf

z∈Z
max
h∈H

‖h− z‖
.
= rc(H).

Optimal algorithms are often called central algorithms and

zc(SI−1(y)) = zwc
o . We remark that, in general, the Cheby-

chev center of a set H ⊂ Z may not be unique and not

necessarily belongs to H , for example, when H is not convex

or it is a discrete set.

Remark 1 (Interpretation of the Chebychev center):

Note that, by construction, for any given set H (not

necessarily convex, nor connected), the ℓp–Chebychev

center zc(H) of H and its radius rc(H) are given by the

center and radius of the smallest ℓp norm-ball enclosing the

set H . That is, we can compute zc(H) and rc(H) solving

the optimization problem

min
z,r

r subject to B(z, r) ⊇ H. (8)

Note that, as remarked above, the optimal ball B(z, r) need

not be unique. It follows immediately that if the set H is

centrally symmetric with center z̄, then z̄ is a Chebychev

center of H . ⋄

The computation of the worst-case radius of information

rwc
o (y) and of the derivation of optimal algorithms Awc

o

have been the focal point of several papers in a system

identification setting, see e.g. [18].

1In the IBC context, this error is usually referred to as “local” radius of
information, to distinguish from the so-called “global” radius, see [29] for
further details.
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III. PROBABILISTIC SETTING WITH RANDOM

UNCERTAINTY

In this section, we introduce a probabilistic counterpart

of the worst-case setting previously defined, that is we

define optimal algorithms Apr
o and the probabilistic radius

rpr(A, y, ǫ) for the so-called probabilistic setting when the

uncertainty q is random and ǫ ∈ (0, 1) is a given parameter

called accuracy. Roughly speaking, in this setting the error

of an algorithm is measured in a worst-case sense, but we

“discard” a set of measure at most ǫ from the consistency set

SI−1(y). Hence, the probabilistic radius of information may

be interpreted as the smallest radius of a ball discarding a

set whose measure is at most ǫ. Therefore, we are decreasing

the worst-case radius of information at the expense of a

probabilistic “risk” ǫ. In a system identification context, re-

ducing the radius of information is clearly a highly desirable

property. Using this probabilistic notion, we can compute a

trade-off function which shows how the radius of information

decreases as a function of the parameter ǫ.

We now state a formal assumption regarding the random

uncertainty q.

Assumption 2 (Random measurement uncertainty): We

assume that the uncertainty q is a real random2 vector with

given probability density pQ(q) and support set Q = B(ρ).
We denote by µQ the probability measure generated by

pQ(q) over the set Q.

Remark 2 (Induced measure over I−1(y)): We note that

the probability measure over the set Q induces, by means of

equation (1), a probability measure µ̃I−1 over the set I−1(y).
Indeed, for any measurable set B ⊆ X , we consider the

probability measure µQ as follows: µ̃I−1(B) = µQ(q ∈
Q | ∃x ∈ B∩I−1(y) | Ix+q = y). This probability measure

is such that points outside the consistency set I−1(y) have

measure zero, and µ̃I−1

(
I−1(y)

)
= 1, that is this induced

measure is concentrated over I−1(y). This induced measure

is formally defined in [29, Chapter 6], where it is shown

that it is indeed a conditional measure. Similarly, we denote

by p̃I−1 the induced probability density, having support over

I−1(y). We remark that Theorem 1 in Section IV studies

the induced measure µ̃I−1(·) over the set I−1(y) when q is

uniformly distributed within Q, showing that this measure is

still uniform. In turn, the induced measure µ̃I−1 is mapped

through the linear operator S into a measure over SI−1(y),
which we denote as µ̃SI−1. Similarly, the induced density

is denoted as p̃SI−1. In Theorem 1 in Section IV we show

that the induced measure µ̃SI−1 is log-concave in the case of

uniform density over Q. ⋄

Given corrupted information y ∈ Y and accuracy level

ǫ ∈ (0, 1), we define the probabilistic error (to level ǫ)
rpr(A, y, ǫ) of the algorithm A as

rpr(A, y, ǫ)
.
=

2For simplicity, in this assumption we consider the case when the density
of q exists (that is the distribution is differentiable).

inf
Xǫ such that µ̃

I−1(Xǫ)≤ǫ
max

x∈I−1(y)\Xǫ

‖Sx−A(y)‖ (9)

where the notation I−1(y) \ Xǫ indicates the set-theoretic

difference between I−1(y) and Xǫ,

I−1(y) \ Xǫ
.
=

{
x ∈ I−1(y) |x 6∈ Xǫ

}
.

Clearly, rpr(A, y, ǫ) ≤ rwc(A, y) for any algorithm A,

data y ∈ Y and accuracy level ǫ ∈ (0, 1), which implies

a reduction of the approximation error in a probabilistic

setting.

An algorithm Apr
o is called probabilistic optimal (to level

ǫ) if it minimizes the error rpr(A, y, ǫ) for any y ∈ Y and

ǫ ∈ (0, 1). That is, given data y ∈ Y and accuracy level

ǫ ∈ (0, 1), we have

rpro (y, ǫ)
.
= rpr(Apr

o , y, ǫ) = inf
A
rpr(A, y, ǫ). (10)

The minimal error rpro (y, ǫ) is called the probabilistic radius

of information (to level ǫ) and the corresponding optimal

estimator is given by

zpro (ǫ)
.
= Apr

o (y, ǫ). (11)

The problem we study in the next section is the computation

of rpro (y, ǫ) and the derivation of probabilistic optimal algo-

rithms Apr
o . To this end, as in [29], we reformulate equation

(9) in terms of a chance-constrained optimization problem

[20]

rpr(A, y, ǫ) = min {r | v(r,A) ≤ ǫ} ,

where the violation function for given algorithm A and radius

r is defined as

v(r,A)
.
= µ̃I−1

{
x ∈ I−1(y) | ‖Sx−A(y)‖ > r

}
.

Then, this formulation leads immediately to

rpro (y, ǫ) = min {r | vo(r) ≤ ǫ} , (12)

where the optimal violation function for a given radius r is

given by

vo(r)
.
= inf

A
µ̃I−1

{
x ∈ I−1(y) : ‖Sx−A(y)‖ > r

}
. (13)

IV. RANDOM UNCERTAINTY UNIFORMLY DISTRIBUTED

In this section, which contains the main technical results of

the paper, we study the case when q is uniformly distributed

over the ball Q ≡ B(ρ), i.e. q ∼ UQ and µQ ≡ µU(Q).

First, we address a preliminary technical question: If µQ is

the uniform measure over Q, what is the induced measure

µ̃I−1 over the set I−1(y) defined in equation (2)? The next

result shows that this distribution is indeed still uniform.

Furthermore, we prove that the induced measure on SI−1(y)
is log-concave.

Remark 3 (Log-concave measures): We recall that a mea-

sure µ(·) is log-concave if, for any compact subsets A, B
and λ ∈ [0, 1], it holds

µ(λA + (1− λ)B) ≥ µ(A)λµ(B)1−λ
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where λA + (1 − λ)B denotes the Minkowski sum3 of the

two sets λA and (1− λ)B. Note that the Brunn-Minkowski

inequality [24] asserts that the uniform measure over convex

sets is log-concave. Furthermore, any Gaussian measure is

log-concave. ⋄

Theorem 1 (Measures over I−1(y) and SI−1(y)): Let

q ∼ U(Q) with Q ≡ B(ρ), then, for any y ∈ Y it holds:

(i) The induced measure µ̃I−1 is uniform over I−1(y), that

is µ̃I−1 ≡ µU(I−1(y));

(ii) The induced measure µ̃SI−1 over SI−1(y) is log-

concave. Moreover, if S ∈ R
n,n, then this measure

is uniform, that is µ̃SI−1 ≡ µU(SI−1(y)).

The proof of this result is available in the paper [9].

The result in this theorem can be immediately extended

to the more general case when Q is a compact set. We now

introduce an assumption regarding the solution operator S.

Assumption 3 (Regularized solution operator): In the se-

quel, we assume that the solution operator is regularized, so

that S =
[
S̄ 0s,n−s

]
, with S̄ ∈ R

s,s.

Remark 4 (On Assumption 3): Note that the assumption

is made without loss of generality. Indeed, for any full row

rank S ∈ R
s,n, we introduce the change of variables T =

[T1 T2], where T1 is an orthonormal basis of the column

space of S⊤ and T2 is an orthonormal basis of the null space

of S (in Matlab notation, we write T1 = orth(S⊤) and

T2 = null(S) ). Then, T is orthogonal by definition, and it

follows

z = Sx = STT⊤x = S [T1 T2]T
⊤x

= [ST1 ST2]T
⊤x =

[
S̄ 0s,n−s

]
x̃ = S̃x̃,

where we introduced the new problem element x̃
.
= T⊤x

and the new solution operator S̃
.
= ST . Note that, with this

change of variables, equation (1) is rewritten as

y = Ĩx̃+ q,

by introducing the transformed information operator Ĩ
.
=

IT . We observe that any algorithm A, being a mapping from

Y to Z , is invariant to this change of variable. It is immediate

to conclude that the new problem defined in the variable x̃
and operators Ĩ and S̃ satisfies Assumption 3. ⋄

Instrumental to the next developments, we first introduce

the degenerate cone (cylinder) in the element space X , with

given center zc ∈ Z and radius r, as follows

C(zc, r)
.
= {x ∈ R

n | ‖Sx− zc‖ ≤ r} ⊂ X. (14)

Note that this set is the inverse image through S of the

norm-ball B(zc, r) ⊂ Z . Moreover, due to Assumption 3,

3The Minkowski sum of two sets A and B is obtained adding every
element of A to every element of B, i.e. A+B = {a+ b | a ∈ A, b ∈ B}.

the cylinder C(zc, r) is parallel to the coordinate axes, that

is any element x of the cylinder can be written as

x ∈ C(zc, r) ⇔ x =

[
S̄−1ζ
ξ

]
,

with ζ ∈ B(zc, r) ⊂ R
s and ξ ∈ R

n−s. Hence, for the case

s < n, the cylinder is unbounded, while for s = n it is

simply a linear transformation through S−1 of an ℓp norm-

ball. Next, for given center zc ∈ Z and radius r > 0, we

define the intersection set between the cylinder C(zc, r) and

the consistency set I−1(y)

Φ(zc, r)
.
= I−1(y) ∩ C(zc, r) ⊂ X (15)

and its volume

φ(zc, r)
.
= vol [Φ(zc, r)] . (16)

Finally, we define the set H(r) of all centers zc ∈ R
s for

which the intersection set Φ(zc, r) is non-empty, i.e.

H(r)
.
= {zc ∈ R

s |Φ(zc, r) 6= ∅} . (17)

Note that, even if the cylinder C(zc, r) is in general un-

bounded, the set Φ(zc, r) is bounded whenever zc ∈ H(r),
since I−1(y) is bounded.

We are now ready to state the main theorem of this section,

that provides useful properties from the computational point

of view of the optimal violation function defined in (13).

Theorem 2: Let q ∼ U(Q) with Q ≡ B(ρ), and S =[
S̄ 0s,n−s

]
, with S̄ ∈ R

s,s. Then, the following statements

hold

(i) For given r > 0, the optimal violation function vo(r)
is given by

vo(r) = 1−
φo(r)

vol [I−1(y)]
, (18)

where φo(r) is the solution of the optimization prob-

lem

φo(r)
.
= max

zc∈H(r)
φ(zc, r) (19)

with φ(zc, r) and H(r) defined in (16) and (17),

respectively.

(ii) For given r > 0, the function (16) is continuous semi-

strictly quasi-concave4 in zc ∈ H(r);
(iii) The function vo(r) is right-continuous and non-

increasing for r > 0.

The proof of this result is available in the paper [9].

Remark 5 (Unimodality of the function φ(zc, r)):
Point (ii) in Theorem 2 is crucial from the computational

viewpoint. Indeed, as remarked for instance in [10], a semi-

strictly quasi-concave function cannot have local maxima.

Roughly speaking, this means that the function φ(·, r) is

unimodal, and therefore any local maximal solution of

problem (19) is also a global maximum. Note that from

4A function f defined on a convex set A ∈ R
n is semi-strictly quasi-

concave if f(y) < f(λx + (1 − λ)y) holds for any x, y ∈ A such that
f(x) > f(y) and λ ∈ (0, 1).
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the Brunn-Minkowski inequality it follows that, if there

are multiple points zo(i) where φ(·) achieves its global

maximum, then the sets Φ(z
(i)
o , r) are all homothetic, see

[24]. Further, from the definition of Φ(·, r), this implies that

Φ(z
(i)
o , r) = Φ(z

(j)
o , r) + z

(i)
o − z

(j)
o . ⋄

Remark 6 (Probabilistic radius): Theorem 2 provides a

way of computing the optimal probabilistic radius of infor-

mation rpro (y, ǫ). Indeed, for given r > 0, the probabilistic

radius of information (to level ǫ) is given by the solution of

the following one-dimensional “inversion” problem

rpro (y, ǫ) = min {r | vo(r) ≤ ǫ} . (20)

Note that point (iii) in Theorem 2 guarantees that such

solution always exists for ǫ ∈ (0, 1), and it is unique. The

corresponding optimal estimate is then given by

zpro (ǫ) = Apr
o (y, ǫ) = zo(r

pr
o (y, ǫ)),

where we denoted by zo(r) a solution of the optimization

problem (19).

⋄

Theorem 2 shows that the problem we are considering

is indeed a well-posed one, since it has a unique solution

(even though not a unique minimizer in general). However,

its solution requires the computation of the volume of the

intersection set Φ(zc, r), which is in general a very hard

task. A notable exception in which the probabilistic optimal

estimate is immediately computed for q uniformly distributed

in Q is the special case when the consistency set I−1(y) is

centrally symmetric with center x̄. Indeed, in this case it can

be seen that SI−1(y) is also a centrally symmetric around

z̄ = Sx̄, and so is the density µ̃SI−1. Hence, the optimal

probabilistic estimate coincides with the center z̄, since it

follows from symmetry that the probability measure of the

intersection of SI−1(y) with an ℓp norm-ball is maximized

when the two sets are concentric. Moreover, this estimate

coincides with the classical worst-case (central) estimate,

which in turn coincides with the classical least squares

estimates.

V. CONCLUSIONS

This paper deals with the rapproachement between the

stochastic and worst-case settings for system identification.

The problem is formulated within the probabilistic setting

of information-based complexity, and it is focused on the

approach to “discard” sets of small measure from the set

of deterministic estimates. The paper establishes rigorous

optimality properties of a trade-off curve, called violation

function, which shows how the radius of information de-

creases as a function of the accuracy.
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