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Abst rac t .  Functional parts - i.e. mechanical parts with intrinsic func- 
tionality - such as screws, hinges and gears, are appealing high level en- 
tities to be used in line drawing understanding systems. This is because 
their functionality can be used by a reasoning agent to infer surrounding 
objects and because they are usually drawn following standards making 
them easier to be detected. In this chapter, an algorithm for the auto- 
matic detection of the schematic representation of screws in mechanical 
engineering drawings is being presented as a first step towards a function- 
based line drawing understanding system. All the running parameters 
required by the algorithm are set according to the American National 
Standards Institute standards and by using a rigorous experimental pro- 
tocol characterizing the algorithm performance in the presence of image 
degradation, thus eliminating the need for ad hoc parameter tuning. Ex- 
perimental results on several real line drawings are also presented. 

1 Introduction 

The automatic interpretation of engineering drawings remains a difficult task 
due to their complexity and diversity. In particular, the dual nature of engineer- 
ing drawings, carrying information in both graphical and textual form, coupled 
together with the fact that  images of paper drawings are, in general, of poor qual- 
i ty and vary with the different individual's drawing styles add more difficulty to 
the analysis. 

We propose to bridge the gap currently existing between the early segmen- 
tat ion stage (lexical stage) and the final interpretation stage (semantic stage) 
of the interpretation process by using functional models as high-level reason- 
ing entities and pl~./sics-based degradation models to eliminate =d ~oc tuning of 
parameters. 

Most man-made objects are made to perform one or more functions, and 
these functions dictate their shape. The concept of function-based vision is not 
new. It can be found in the literature since the late 70's [15, 19, 2, 3, 6, 14] 
and has received significantly more attention [7] after the work by Stark and 
Bowyer [17]. However, until now, line drawings understanding systems have not 
incorporated any of these advances. 
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The use offur~ction rea~onir~g in line drawing understanding will not only ease 
the interpretation task, but it will also help to create more complete models with 
functional information. Thus, we use as high-level reasoning entities mechanical 
parts with intrinsic functionality. We call these parts, functional par~. Examples 
are screws (tie parts together), hinges (provide articulations between parts), 
gears (convert power ratios), etc. Functional parts are particularly appealing 
since: 

1. their functionality and inter-relationships with surrounding parts can be used 
by a high-level reasoning agent to infer the remaining objects in the drawing; 

2. they are usually drawn following standard representations, thus they are 
potentially easier to identify using pattern recognition techniques than arbi- 
trary parts; 

3. they provide logical units that can be used to query a database of drawings 
(consider for example, the task of recalling all parts that have a given type 
of screw, known to be defective). 

However, before a system can reason on any high-level entity, it must first 
segment the drawing to extract these entities. The results obtained at this first 
stage, on which all following stages rely on, are highly dependent on the image 
quality of the document. This quality is degraded by processes commonly used 
on documents such as printing, photocopying, and scanning. Thus, it is impor- 
tant to take these problems into account when designing the feature extraction 
algorithms. This is usually done in an ad hoc manner by performing expensive 
trial and error runs to tune the running parameters of the algorithms. Recently, 
Kanungo e~ al [9] have proposed a physics-based model for the local distortions 
introduced by printing and scanning processes. We use this model to generate 
degraded synthetic data to characterize the performance of the detection algo- 
rithms and to automatically select their optimal running parameters. 

In this chapter, we focus in developing a tool for the recognition of screws 
in mechanical engineering drawings following the American National Standards 
Institute (ANSI) standards for schematic thread representation [13], as a first 
step towards a function-based line drawing understanding system. The input to 
the algorithm consists of a list of all the lines found using a modified version 
of the Orthogonal Zig-Zag (OZZ) algorithm [4]. The screws are detected using 
knowledge about their standard representation (shown in Fig. 1). All the running 
parameters required by the algorithm are set according to the ANSI standards 
and by using a rigorous experimental protocol characterizing the algorithm per- 
formance in the presence of image degradation. 

2 S c r e w - D e t e c t i o n  A l g o r i t h m  

The screw-detection algorithm takes advantage of the unique structure of the 
schematic representation of threads in section in standard drawings [13]. In this 
representation (see Fig. 1), the threads are drawn as parallel lines separated all 
by a fixed distance, and with a periodicity in width and length. The difference in 
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Fig. 1. Schematic Representation of Threads in Section 

the lengths of two consecutive lines cannot exceed a given value, and the same 
applies for the distance between them. All these features must be taken into 
account when looking for parallel lines that match this pattern. If the number of 
the consecutive lines that meet the requirements specified above is larger than 
a threshold, then a screw is said to be found. 

2.1 Line Detection: T h e  OZZ Algorithm 

The first step towards detecting the screws is to find all the lines in the drawing. 
This task can be accomplished by using a modified version of the Orthogonal 
Zig-Zag (OZZ) algorithm [4] briefly described next. 

The OZZ algorithm for line detection was developed by Dori e~ =/.[4]. The 
main reason why we use this algorithm is because it is sparse pixel: it avoids 
massive pixel addressing, visiting some of the pixels in the image only once and 
never visiting the rest of them. The image is scanned horizontally and then 
vertically skipping a number of pixels between one scanning cycle and the next. 
The number of pixels to be skipped is a parameter called screen-skip, and its 
value is determined depending on the minimum line length to be recognized in 
the drawing. 

The implementation of the OZZ algorithm used in this work differs in certain 
aspects from the original one described in [4]. One of the problems with the 
OZZ, and with almost any line detection algorithm, is that  under the presence 
of noise it may break a line into shorter segments. In [4], a series of tests are 
performed to merge line segments. This is done for every possible pair of lines, 
until no more merging can be done. This results in a computational complexity 
quadratic in the total number of lines N, that  can be devastating if the drawing 
in consideration is fairly complex. Instead, we have developed a new merging 
algorithm with complexity proportional to N log N, described next. 

2.2 M e r g i n g  M u l t l p l e - S e g m e n t  D e t e c t e d  Lines  

As it was mentioned before, some lines will be broken by the OZZ algorithm into 
several shorter segments due to noise and other artifacts. In order to correct this, 
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a merging procedure was developed that does not require to check every possible 
pair of lines. The procedure takes advantage of the fact that the several segments 
in which a line breaks into are approximately collinear and have more or less the 
same width. 

The procedure is slightly different depending on the direction of the lines to 
be merged. Say that we are interested in merging horizontal segments. The list of 
horizontal segments detected by the OZZ is stored in a heap and sorted by their 
row coordinates using a heapsort [16] with complexity N log N. A checking pro- 
cedure is then performed for every group of segments that have row coordinates 
differing by no more than a threshold mazdizpersiom This parameter accounts 
for the maximum shifting in the row coordinates of the multiple segments into 
which a line was broken by the OZZ. Then, the algorithm goes through every 
group of segments that have the row coordinates within mazdispersio~, sorts 
the segments by the column coordinates of one of their endpoints, also using 
a heapsort, and checks if the column coordinates of opposite endpoints of con- 
secutive segments in the list differ within a tolerance. If they do, then the two 
segments are merged, and the checking continues. This is illustrated in Fig. 2a, 
where checking is performed only in the small square regions between segments. 
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Fig. 2. (a) Merging multiple-segments procedure (b) Screw-detection procedure 

For the vertical lines the procedure is identical, only interchanging rows and 
columns. The process is slightly more complicated for slanted lines, although 
the philosophy is the same. In this case, one more step is needed before the 
procedure described above can be applied: the slopes of all the slanted lines 
found in the drawing need to be sorted using a heapsort. Then, the lines are 
grouped according to their slope and the previous procedure is applied to each 
of these groups (Fig. 2a). 
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2.3 De tec t ing  Hor izonta l  Screws 

We describe the algorithm for finding screws with horizontal axes. The algo- 
rithms for the other directions are similar. Potential screws with their main axes 
in the horizontal direction have their root and crest lines vertical. The algorithm 
first finds groups of vertical lines that have the row coordinate of their midpoints, 
R~, within mazdispersion. For every one of these groups, the segments are then 
sorted by the column coordinates of one of their endpoints (both endpoints have 
the same value for the column coordinate in this case). The algorithm then goes 
through this sorted list, and for every two consecutive segments in the list three 
tests are performed. If the width of the segments is less than a threshold ~h~, 
then the algorithm checks if the distance between the two segments is less than a 
threshold ~hd. The third test consists on checking if the difference in the lengths 
of the two segments is less than a threshold th[. If the three tests are passed, 
then a counter is incremented and the checking continues; if not, then it checks 
if the counter value is larger than the. In the case that the counter is greater 
than the, then the hypothesis that a screw has been found is validated, the 
coordinates of the starting endpoint of the first line meeting the requirements 
and the ending endpoint of the last line are stored in a file, and the search 
continues until no more segments in the list of vertical lines are left. All the 
thresholds, ~h~, Shd, Shz, and ~h~ are set according to the ANSI standards for 
screw thread representations[l]. The procedure is graphically shown in Fig. 2b 
and the pseudo-code is given in Fig. 3. 

As in the previous section, heaps are used to store the point coordinates and 
the sort algorithm used is a heapsort. For the cases where the main axis of the 
screw is vertical or slanted, the procedure is identical, only the coordinates being 
used need to be changed. 

3 Pe r fo rmance  Charac ter iza t ion  

In order to run the screw detection algorithm given above, five parameters must 
be set: ~h~, ~hd, Shz, Sh~ and mazdispersion. The first four parameters correspond 
to the width, interdistance, length and number of lines in a schematic represen- 
tation of a screw, respectively. Thus, they are easily set by following the ANSI 
standards. The fifth parameter mazdispersion is the tolerance for the misalign- 
ment of the midpoints of the lines representing the screw. Since the alignment 
of these points is severely affected by the image quality, setting this parameter 
to a suitable value requires more care. 

In the sequel, an experimental protocol for the performance characterization 
of the algorithm when the image is increasingly degraded and the parameter 
mazdispersion is varied is presented. This characterization not only shows the 
validity of the algorithm by illustrating how it behaves in the presence of image 
degradation, but also provides a tool to select the optimal value of the parameter 
mazdispersion to minimize the probabilities of misdetection and false alarm. 
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S C R E W  D E T E C T I O N  A L G O R I T H M  

For every vertical line in the image 
do 
Store its midpoint row R~ in a heap 
e n d  do  

Sort the heap 
Group the lines with R,~ within ma~dispersion 
For every group of lines 

do 
Store the column of one endpoint in a heap 
Sort the heap 
Initialize search 
For every two consecutives lines in the heap 

do 
If theix widths < t/z~ 

a nd  
the distance between them < tha 
and 
the difference in their lengths < thz 

t hen  
increment counter 

else 
end search 

If the search ended 
t h e n  
Initialize search 
I f  counter is > th,~ 

then  
store results in output file 

unt i l  no more lines are left in the heap 

Fig. 3. Pseudo-code of the detection algorithm for horizontal screws. 

3.1 E x p e r i m e n t a l  P r o t o c o l  

The performance characterization of the algorithm was done following the guide- 
lines given in [51 and {10]. In particular, the methodology in [101 is very useful 
because it allows to integrate a large number  of operating curves relating the 
probabilities of mis-detection and false alarms for each parameter  setting into a 
single performance curve. 

The methodology consists of two steps of standard decision analysis and two 
steps inspired by psycophysical methods [10]. 

S t e p  1: First, the two noise-free images shown in Fig. 4a and Fig. 4b were gen- 
erated. Fig. 4a is a targe~ image consisting of an ideal screw drawing and it will 
be used to est imate the probabili ty of a misdetection. Fig. 4b is a no-~arget im- 
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age consisting of a drawing closely resembling the one shown in (a) but that 
does not follow the ANSI standards. This image was designed to estimate the 
probability of false alarm. 

The images were then degraded to simulate an increasing number of du- 
plication using the perturbation model given in [0]. According to this model, 
foreground and background pixels are changed following exponential distribu- 
tions. The probability of a foreground pixel changing to the background was set 
to P(0 ] d, f )  = exp(-0.Od 2) and the probability of a background pixel changing 
to the foreground was set to P(1 [ d, b) = exp(-2d 2) where d is the inverse 
distance, f is foreground and b is background. A total of 1000 perturbed images 
were generated, divided in five sets corresponding to five different levels of per- 
turbation. The level of perturbation was varied by changing the threshold value 
thb (thf) used to decide if a background (foreground) pixel is actually changed 
given that its probability of changing indicates it should. The values used for 
these thresholds were: level 1, thb=thl=0.9; level 2, thb=0.8, thl=0.9; level 3, 
~hb=0.8, t/zl=0.7; level 4, the=0.8, t/zl=0.5; and level 5, t/zb=0.8, t/zf=0.3. Im- 
ages for levels 1 and 5 are shown in Fig. 4. Note that as the perturbation level 
is increased the target and no target images become more and more similar. 
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�9 n,t lev~l S: (e)t~zg~t (f)~o-t~get 

Step 2: The detection algorithm was run on the test images for all the perturba- 
tion levels and for values of the parameter mazdispersior~ equal to 0.01, 0.02, 0.04, 
0.06 and 0.08 inches. Operating curves of the probability P(misde~ec~ion) = 
P(rm-~arge~ [ ~arge~) plotted against the probability P(f~lseaMrrn) = P(~aT'ge~ [ 
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no - target) for each of the perturbation levels and mazdispersiou values were 
generated. 

S t e p  3: From the operating curves, the value of the probability of error P(E) 
was calculated for each level and each value of raazdispersion. The probability of 
error was taken as the average of the probabilities of false alarm and misdetection 
when the last one is equal to 0.2. 

S t e p  4: A plot of P(E) versus level of perturbation is then obtained for each 
value of rnazdispersion (Fig. 5a). From this plot, the critical signal variable de- 
fined as the maximum level of perturbation that  an image can have in order to 
get a probability of error P(E) less than 0.16 is measured. Finally, a plot of the 
critical signal variable versus the variable of interest, mazdispersion, is obtained 
(Fig. 5b). 
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Fig. 5. Results of the Performance Characterization. 

From the results shown in Fig.Sb, it is seen that  the optimal value for the 
mazd/slversior~ parameter - i.e. the mazdispersioa value corresponding to the 
maximum level of perturbation and P ( E )  - 0.16 - is between 0.02 and 0.04 
inches. In practice it is very difficult to find images degraded more than a level 
2~ Usually, we find images in the range between 1 and 2. 

4 Resul t s  with Real Images 

The screw-detection algorithm was also tested on fourteen scanned images of 
modified real mechanical engineering drawings from [121 with up to 10 screws. 
Some of the images were scanned at a resolution of 300 dpi while others with 
smaller details were scanned at 450 dpi. All of them were globally thresholded. 
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The running parameters for the algorithm were set as: mazdispersion=O.03", 
~h~=0.025 ~, ihd=0.15 ", thz=0.15 ", and th, ,=5.  Table 1 lists for each of the test 
images, the number of line segments output  by the OZZ algorithm, the number of 
screws in the drawing, the number of misdetections, the number of false alarms, 
and the running time on a SUN SparcStation 5. Although the number of real 
images is low since they are difficult to obtain, the overall misdetection and 
false alarm rates are also given. These rates were 17.6% and 9.8%, respectively. 
However, three of the false alarms in two of the tested images were found among 
the text in the drawing. Thus, if the algorithm were to be run after segmenting 
out the text,  the false alarm rate would go down to 3.9%. 

T a b l e  1. Results on Real Images 

Image Segments 

Air1 2311 
Air2 1607 

Air3 1243 
Assembly 798 

Bearings 1548 
Bolt 256 

Bplate 641 
Cast 870 
Collar 141 

Conveyor 978; 

Holes 508 
Joint 1069 
Liftl 1344 
IStand 1380 

TOTAL 

Screws MD 

9 3 

7 1 

1 0 
2 0 

i0 3 

1 0 

2 0 

0 0 2 
2 0 0 

2 0 0 
0 0 0 

4 0 0 

3 1 1 

8 1 0 

511 91 51 

FA Time (see.) 
1 10.3 
0 7.1 
0 3.6 
0 3.2 
1 5.9 
0 2.2 
0 3.2 

3.9 
1.4 
2.6 
2.0 
3.0 
5.2 
4.7 

Avcg. 4.2 

Three of the test images, their segmentation using OZZ and the bounding 
boxes of the detected screws are shown in Figs. 6-8. Fig. 6 is an example of a 
drawing where all screws were detected and there were no false alarms. Fig. 7 
is an example where there was one misdetection because the OZZ algorithm de- 
tected only four segments for the bot tom left screw. Finally, Fig. 8 is an example 
with no screws that  resulted in two false alarms. Interestingly enough, the false 
alarms are not located on the detail representation of the screw but on the text 
area, and could have been avoided by segmenting out the text first. 

5 I m p l e m e n t a t i o n  D e t a i l s  

The algorithms were implemented using the C language [11]. The input to the 
program is a bi tmap image in PBM format, or portable bitmap format. There axe 
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three different modules in the program, one for each one of the three main groups 
of lines: vertical~ horizontal and slanted lines. Each module performs the OZZ 
algorithm to detect the corresponding lines~ merges the segments and detects 
the presence of schematic representations of screws. At the end of each module~ 
the information extra,:ted is stored in an output file. For lines, the information 
consists of the endpoints and width of the line. For the screws, the information 
consists of the coordinates of the upper-left corner and bottom-right corner of 
the bounding box of the screw. 

(~) (S) 

(~) 

Fig. S..A~,,,~lyim~g~: (~)O~i~,~ (S)~t~ OZZ ( ~ ) ~  
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Fig. 7. Air~ image: (a)Original (b)after OZZ (c)screws 
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Fig. 8. Caat image: (a)Original Cb)after OZZ (c)screws 
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6 Summary 

Functional parts can be extracted taking advantage of their standard represen- 
tation. An algorithm to detect the presence of screws with schematic represen- 
tations in mechanical engineering drawings was presented. All the parameters 
needed to run the algorithm were set according to the ANSI standard or using 
a rigorous experimental protocol. The algorithm performance was characterized 
by running it through 1000 images under five different levels of degradation. The 
algorithm was also tested on fourteen real images of moderate complexity with 
overall misdetection and false alarm rates of 17.6% and 3.9%, respectively. 
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