
Functional Parts Detection in Engineering Drawings:
Looking for the Screws

Maria A. Capellades z and Octavia I. Camps z,2

t Dept. of Electrical Engineering
Dept. of Computer Science and Engineering

The Pennsylvania State University
University Park, PA 16802

Abst rac t . Functional parts - i.e. mechanical parts with intrinsic func-
tionality - such as screws, hinges and gears, are appealing high level en-
tities to be used in line drawing understanding systems. This is because
their functionality can be used by a reasoning agent to infer surrounding
objects and because they are usually drawn following standards making
them easier to be detected. In this chapter, an algorithm for the auto-
matic detection of the schematic representation of screws in mechanical
engineering drawings is being presented as a first step towards a function-
based line drawing understanding system. All the running parameters
required by the algorithm are set according to the American National
Standards Institute standards and by using a rigorous experimental pro-
tocol characterizing the algorithm performance in the presence of image
degradation, thus eliminating the need for ad hoc parameter tuning. Ex-
perimental results on several real line drawings are also presented.

1 Introduction

The automatic interpretation of engineering drawings remains a difficult task
due to their complexity and diversity. In particular, the dual nature of engineer-
ing drawings, carrying information in both graphical and textual form, coupled
together with the fact that images of paper drawings are, in general, of poor qual-
i ty and vary with the different individual's drawing styles add more difficulty to
the analysis.

We propose to bridge the gap currently existing between the early segmen-
tat ion stage (lexical stage) and the final interpretation stage (semantic stage)
of the interpretation process by using functional models as high-level reason-
ing entities and pl~./sics-based degradation models to eliminate =d ~oc tuning of
parameters.

Most man-made objects are made to perform one or more functions, and
these functions dictate their shape. The concept of function-based vision is not
new. It can be found in the literature since the late 70's [15, 19, 2, 3, 6, 14]
and has received significantly more attention [7] after the work by Stark and
Bowyer [17]. However, until now, line drawings understanding systems have not
incorporated any of these advances.

247

The use offur~ction rea~onir~g in line drawing understanding will not only ease
the interpretation task, but it will also help to create more complete models with
functional information. Thus, we use as high-level reasoning entities mechanical
parts with intrinsic functionality. We call these parts, functional par~. Examples
are screws (tie parts together), hinges (provide articulations between parts),
gears (convert power ratios), etc. Functional parts are particularly appealing
since:

1. their functionality and inter-relationships with surrounding parts can be used
by a high-level reasoning agent to infer the remaining objects in the drawing;

2. they are usually drawn following standard representations, thus they are
potentially easier to identify using pattern recognition techniques than arbi-
trary parts;

3. they provide logical units that can be used to query a database of drawings
(consider for example, the task of recalling all parts that have a given type
of screw, known to be defective).

However, before a system can reason on any high-level entity, it must first
segment the drawing to extract these entities. The results obtained at this first
stage, on which all following stages rely on, are highly dependent on the image
quality of the document. This quality is degraded by processes commonly used
on documents such as printing, photocopying, and scanning. Thus, it is impor-
tant to take these problems into account when designing the feature extraction
algorithms. This is usually done in an ad hoc manner by performing expensive
trial and error runs to tune the running parameters of the algorithms. Recently,
Kanungo e~ al [9] have proposed a physics-based model for the local distortions
introduced by printing and scanning processes. We use this model to generate
degraded synthetic data to characterize the performance of the detection algo-
rithms and to automatically select their optimal running parameters.

In this chapter, we focus in developing a tool for the recognition of screws
in mechanical engineering drawings following the American National Standards
Institute (ANSI) standards for schematic thread representation [13], as a first
step towards a function-based line drawing understanding system. The input to
the algorithm consists of a list of all the lines found using a modified version
of the Orthogonal Zig-Zag (OZZ) algorithm [4]. The screws are detected using
knowledge about their standard representation (shown in Fig. 1). All the running
parameters required by the algorithm are set according to the ANSI standards
and by using a rigorous experimental protocol characterizing the algorithm per-
formance in the presence of image degradation.

2 S c r e w - D e t e c t i o n A l g o r i t h m

The screw-detection algorithm takes advantage of the unique structure of the
schematic representation of threads in section in standard drawings [13]. In this
representation (see Fig. 1), the threads are drawn as parallel lines separated all
by a fixed distance, and with a periodicity in width and length. The difference in

248

il
EXTERNAL

Mayor Diameter

INTERNAL

Crest Lines (thin)

INTERNAL

Fig. 1. Schematic Representation of Threads in Section

the lengths of two consecutive lines cannot exceed a given value, and the same
applies for the distance between them. All these features must be taken into
account when looking for parallel lines that match this pattern. If the number of
the consecutive lines that meet the requirements specified above is larger than
a threshold, then a screw is said to be found.

2.1 Line Detection: T h e OZZ Algorithm

The first step towards detecting the screws is to find all the lines in the drawing.
This task can be accomplished by using a modified version of the Orthogonal
Zig-Zag (OZZ) algorithm [4] briefly described next.

The OZZ algorithm for line detection was developed by Dori e~ =/.[4]. The
main reason why we use this algorithm is because it is sparse pixel: it avoids
massive pixel addressing, visiting some of the pixels in the image only once and
never visiting the rest of them. The image is scanned horizontally and then
vertically skipping a number of pixels between one scanning cycle and the next.
The number of pixels to be skipped is a parameter called screen-skip, and its
value is determined depending on the minimum line length to be recognized in
the drawing.

The implementation of the OZZ algorithm used in this work differs in certain
aspects from the original one described in [4]. One of the problems with the
OZZ, and with almost any line detection algorithm, is that under the presence
of noise it may break a line into shorter segments. In [4], a series of tests are
performed to merge line segments. This is done for every possible pair of lines,
until no more merging can be done. This results in a computational complexity
quadratic in the total number of lines N, that can be devastating if the drawing
in consideration is fairly complex. Instead, we have developed a new merging
algorithm with complexity proportional to N log N, described next.

2.2 M e r g i n g M u l t l p l e - S e g m e n t D e t e c t e d Lines

As it was mentioned before, some lines will be broken by the OZZ algorithm into
several shorter segments due to noise and other artifacts. In order to correct this,

249

a merging procedure was developed that does not require to check every possible
pair of lines. The procedure takes advantage of the fact that the several segments
in which a line breaks into are approximately collinear and have more or less the
same width.

The procedure is slightly different depending on the direction of the lines to
be merged. Say that we are interested in merging horizontal segments. The list of
horizontal segments detected by the OZZ is stored in a heap and sorted by their
row coordinates using a heapsort [16] with complexity N log N. A checking pro-
cedure is then performed for every group of segments that have row coordinates
differing by no more than a threshold mazdizpersiom This parameter accounts
for the maximum shifting in the row coordinates of the multiple segments into
which a line was broken by the OZZ. Then, the algorithm goes through every
group of segments that have the row coordinates within mazdispersio~, sorts
the segments by the column coordinates of one of their endpoints, also using
a heapsort, and checks if the column coordinates of opposite endpoints of con-
secutive segments in the list differ within a tolerance. If they do, then the two
segments are merged, and the checking continues. This is illustrated in Fig. 2a,
where checking is performed only in the small square regions between segments.

rnaxd~enr~

~rnage
colurnrts / ~l'm~di1'l~er$~

I I i

\ maxtlisperrao~ ~ ~.. "~

.<- - .

m~iot~ Of toler'~mge for ~

m~lge

-i i
~ !!~hl

~lllllrltl i..':ii~':;

. . . ~':>"" : :

>5 "

mAxd~pemion Cm
(~) (b)

Fig. 2. (a) Merging multiple-segments procedure (b) Screw-detection procedure

For the vertical lines the procedure is identical, only interchanging rows and
columns. The process is slightly more complicated for slanted lines, although
the philosophy is the same. In this case, one more step is needed before the
procedure described above can be applied: the slopes of all the slanted lines
found in the drawing need to be sorted using a heapsort. Then, the lines are
grouped according to their slope and the previous procedure is applied to each
of these groups (Fig. 2a).

250

2.3 De tec t ing Hor izonta l Screws

We describe the algorithm for finding screws with horizontal axes. The algo-
rithms for the other directions are similar. Potential screws with their main axes
in the horizontal direction have their root and crest lines vertical. The algorithm
first finds groups of vertical lines that have the row coordinate of their midpoints,
R~, within mazdispersion. For every one of these groups, the segments are then
sorted by the column coordinates of one of their endpoints (both endpoints have
the same value for the column coordinate in this case). The algorithm then goes
through this sorted list, and for every two consecutive segments in the list three
tests are performed. If the width of the segments is less than a threshold ~h~,
then the algorithm checks if the distance between the two segments is less than a
threshold ~hd. The third test consists on checking if the difference in the lengths
of the two segments is less than a threshold th[. If the three tests are passed,
then a counter is incremented and the checking continues; if not, then it checks
if the counter value is larger than the. In the case that the counter is greater
than the, then the hypothesis that a screw has been found is validated, the
coordinates of the starting endpoint of the first line meeting the requirements
and the ending endpoint of the last line are stored in a file, and the search
continues until no more segments in the list of vertical lines are left. All the
thresholds, ~h~, Shd, Shz, and ~h~ are set according to the ANSI standards for
screw thread representations[l]. The procedure is graphically shown in Fig. 2b
and the pseudo-code is given in Fig. 3.

As in the previous section, heaps are used to store the point coordinates and
the sort algorithm used is a heapsort. For the cases where the main axis of the
screw is vertical or slanted, the procedure is identical, only the coordinates being
used need to be changed.

3 Pe r fo rmance Charac ter iza t ion

In order to run the screw detection algorithm given above, five parameters must
be set: ~h~, ~hd, Shz, Sh~ and mazdispersion. The first four parameters correspond
to the width, interdistance, length and number of lines in a schematic represen-
tation of a screw, respectively. Thus, they are easily set by following the ANSI
standards. The fifth parameter mazdispersion is the tolerance for the misalign-
ment of the midpoints of the lines representing the screw. Since the alignment
of these points is severely affected by the image quality, setting this parameter
to a suitable value requires more care.

In the sequel, an experimental protocol for the performance characterization
of the algorithm when the image is increasingly degraded and the parameter
mazdispersion is varied is presented. This characterization not only shows the
validity of the algorithm by illustrating how it behaves in the presence of image
degradation, but also provides a tool to select the optimal value of the parameter
mazdispersion to minimize the probabilities of misdetection and false alarm.

251

S C R E W D E T E C T I O N A L G O R I T H M

For every vertical line in the image
do
Store its midpoint row R~ in a heap
e n d do

Sort the heap
Group the lines with R,~ within ma~dispersion
For every group of lines

do
Store the column of one endpoint in a heap
Sort the heap
Initialize search
For every two consecutives lines in the heap

do
If theix widths < t/z~

a nd
the distance between them < tha
and
the difference in their lengths < thz

t hen
increment counter

else
end search

If the search ended
t h e n
Initialize search
I f counter is > th,~

then
store results in output file

unt i l no more lines are left in the heap

Fig. 3. Pseudo-code of the detection algorithm for horizontal screws.

3.1 E x p e r i m e n t a l P r o t o c o l

The performance characterization of the algorithm was done following the guide-
lines given in [51 and {10]. In particular, the methodology in [101 is very useful
because it allows to integrate a large number of operating curves relating the
probabilities of mis-detection and false alarms for each parameter setting into a
single performance curve.

The methodology consists of two steps of standard decision analysis and two
steps inspired by psycophysical methods [10].

S t e p 1: First, the two noise-free images shown in Fig. 4a and Fig. 4b were gen-
erated. Fig. 4a is a targe~ image consisting of an ideal screw drawing and it will
be used to est imate the probabili ty of a misdetection. Fig. 4b is a no-~arget im-

252

age consisting of a drawing closely resembling the one shown in (a) but that
does not follow the ANSI standards. This image was designed to estimate the
probability of false alarm.

The images were then degraded to simulate an increasing number of du-
plication using the perturbation model given in [0]. According to this model,
foreground and background pixels are changed following exponential distribu-
tions. The probability of a foreground pixel changing to the background was set
to P(0] d, f) = exp(-0.Od 2) and the probability of a background pixel changing
to the foreground was set to P(1 [d, b) = exp(-2d 2) where d is the inverse
distance, f is foreground and b is background. A total of 1000 perturbed images
were generated, divided in five sets corresponding to five different levels of per-
turbation. The level of perturbation was varied by changing the threshold value
thb (thf) used to decide if a background (foreground) pixel is actually changed
given that its probability of changing indicates it should. The values used for
these thresholds were: level 1, thb=thl=0.9; level 2, thb=0.8, thl=0.9; level 3,
~hb=0.8, t/zl=0.7; level 4, the=0.8, t/zl=0.5; and level 5, t/zb=0.8, t/zf=0.3. Im-
ages for levels 1 and 5 are shown in Fig. 4. Note that as the perturbation level
is increased the target and no target images become more and more similar.

, II I I II
i I i , - I i i i i i - I I

(~) (b)

il i l, - l l
It ' i ' i ' t ' / t l

(e) (d)

(~) (0

r ig .4 . Test im,~g~, level O: (~)t~g~t (b)no-ta,g~t, l~wl 1: (~) t~,g~t (d) no-t~get,
�9 n,t lev~l S: (e)t~zg~t (f)~o-t~get

Step 2: The detection algorithm was run on the test images for all the perturba-
tion levels and for values of the parameter mazdispersior~ equal to 0.01, 0.02, 0.04,
0.06 and 0.08 inches. Operating curves of the probability P(misde~ec~ion) =
P(rm-~arge~ [~arge~) plotted against the probability P(f~lseaMrrn) = P(~aT'ge~ [

253

no - target) for each of the perturbation levels and mazdispersiou values were
generated.

S t e p 3: From the operating curves, the value of the probability of error P(E)
was calculated for each level and each value of raazdispersion. The probability of
error was taken as the average of the probabilities of false alarm and misdetection
when the last one is equal to 0.2.

S t e p 4: A plot of P(E) versus level of perturbation is then obtained for each
value of rnazdispersion (Fig. 5a). From this plot, the critical signal variable de-
fined as the maximum level of perturbation that an image can have in order to
get a probability of error P(E) less than 0.16 is measured. Finally, a plot of the
critical signal variable versus the variable of interest, mazdispersion, is obtained
(Fig. 5b).

0.:

~0.:

g0

O.

2 4

Perturbation level

v

0.02 0.04 0.06 0.08
Maxdispersion (inches)

M o l .

0

ml.
0
4J

134
"I .L.

o

(s)

Fig. 5. Results of the Performance Characterization.

From the results shown in Fig.Sb, it is seen that the optimal value for the
mazd/slversior~ parameter - i.e. the mazdispersioa value corresponding to the
maximum level of perturbation and P (E) - 0.16 - is between 0.02 and 0.04
inches. In practice it is very difficult to find images degraded more than a level
2~ Usually, we find images in the range between 1 and 2.

4 Resul t s with Real Images

The screw-detection algorithm was also tested on fourteen scanned images of
modified real mechanical engineering drawings from [121 with up to 10 screws.
Some of the images were scanned at a resolution of 300 dpi while others with
smaller details were scanned at 450 dpi. All of them were globally thresholded.

254

The running parameters for the algorithm were set as: mazdispersion=O.03",
~h~=0.025 ~, ihd=0.15 ", thz=0.15 ", and th, ,=5. Table 1 lists for each of the test
images, the number of line segments output by the OZZ algorithm, the number of
screws in the drawing, the number of misdetections, the number of false alarms,
and the running time on a SUN SparcStation 5. Although the number of real
images is low since they are difficult to obtain, the overall misdetection and
false alarm rates are also given. These rates were 17.6% and 9.8%, respectively.
However, three of the false alarms in two of the tested images were found among
the text in the drawing. Thus, if the algorithm were to be run after segmenting
out the text, the false alarm rate would go down to 3.9%.

T a b l e 1. Results on Real Images

Image Segments

Air1 2311
Air2 1607

Air3 1243
Assembly 798

Bearings 1548
Bolt 256

Bplate 641
Cast 870
Collar 141

Conveyor 978;

Holes 508
Joint 1069
Liftl 1344
IStand 1380

TOTAL

Screws MD

9 3

7 1

1 0
2 0

i0 3

1 0

2 0

0 0 2
2 0 0

2 0 0
0 0 0

4 0 0

3 1 1

8 1 0

511 91 51

FA Time (see.)
1 10.3
0 7.1
0 3.6
0 3.2
1 5.9
0 2.2
0 3.2

3.9
1.4
2.6
2.0
3.0
5.2
4.7

Avcg. 4.2

Three of the test images, their segmentation using OZZ and the bounding
boxes of the detected screws are shown in Figs. 6-8. Fig. 6 is an example of a
drawing where all screws were detected and there were no false alarms. Fig. 7
is an example where there was one misdetection because the OZZ algorithm de-
tected only four segments for the bot tom left screw. Finally, Fig. 8 is an example
with no screws that resulted in two false alarms. Interestingly enough, the false
alarms are not located on the detail representation of the screw but on the text
area, and could have been avoided by segmenting out the text first.

5 I m p l e m e n t a t i o n D e t a i l s

The algorithms were implemented using the C language [11]. The input to the
program is a bi tmap image in PBM format, or portable bitmap format. There axe

255

three different modules in the program, one for each one of the three main groups
of lines: vertical~ horizontal and slanted lines. Each module performs the OZZ
algorithm to detect the corresponding lines~ merges the segments and detects
the presence of schematic representations of screws. At the end of each module~
the information extra,:ted is stored in an output file. For lines, the information
consists of the endpoints and width of the line. For the screws, the information
consists of the coordinates of the upper-left corner and bottom-right corner of
the bounding box of the screw.

(~) (S)

(~)

Fig. S..A~,,,~lyim~g~: (~)O~i~,~ (S)~t~ OZZ (~) ~

256

Fig. 7. Air~ image: (a)Original (b)after OZZ (c)screws

257

, 2S , :S 3 ,2S -

; ~5 .25 I - - - -

. - . + - u~',~'+,~L~+-'+,,+,3:~2,,?~,::::,,~
IX R ~ AND FILI.E*fS R,12

_ + _ _ , L ~ .,,++.. . + + + + .+~

- - I~.le.OOS ~ 1 A I" I I

J l aA~ rL - M I

(~)

. j r , + ,

'1 l~m~HumW?

(b)

(r

Fig. 8. Caat image: (a)Original Cb)after OZZ (c)screws

258

6 Summary

Functional parts can be extracted taking advantage of their standard represen-
tation. An algorithm to detect the presence of screws with schematic represen-
tations in mechanical engineering drawings was presented. All the parameters
needed to run the algorithm were set according to the ANSI standard or using
a rigorous experimental protocol. The algorithm performance was characterized
by running it through 1000 images under five different levels of degradation. The
algorithm was also tested on fourteen real images of moderate complexity with
overall misdetection and false alarm rates of 17.6% and 3.9%, respectively.

References

1. ANSI Y14.6: Screw Thread Representation. American National Institute of Stan-
dards, (1983)

2. Brady, M., Agre, P. E., Braunegg, D. J., Connell, J. H.: The mechanics mate. In
T. O'Shea, editor, Advances in Artificial Intelligence, pages 79-94. Elsevier, New
York (1985)

3. Di Munro, M., Trucco, E., Giunchiglia, F., Ricd, F.: FUR: Understanding FUnc-
tional Reasoning. International Journal on Intelligent Systems, 4 (1989) 159-183

4. Dori, D., Liang, Y., Dowell, J., Chai, I.: Sparse-Pixel Recognition of Primitives
in Mechanical Engineering Drawings. Machine Vision and Applications, 6 (1993)
69-82

5. Haralick, R.: Performance Characterization Protocol in Computer Vision. Proe. of
NFS/ARPA Workshop on Performance versus Methodology in Computer Vision,
June (1994)

6. Ho, S.: Representing and using functional definitiorts for visual recognition. PhD
thesis, University of Wisconsin, Madison, WI (1987)

7. IEEE Computer Society Technical Committee on Pattern Analysis and Machine
Intelligence. IEEE Computer Society Workshop on the Role of Functionality in
Object Recognition. june (1994).

8. Joseph, S. H., Pridmore, T. P.: Knowledge--Directed Interpretation of Mechanical
Engineering Drawings. IEEE Trans. on Pattern Analysis and Machine Intelligence,
14(9) (1992) 928-940

9. Kanungo, T., Haralick, R. M., Phil|]ps, I.: Global and Local Document Degrada-
tion Models. Proc. o] Second International Conference on Document Analysis and
Recognition, October (1993) 20-22

10. Kanungo, T., Jalsimha, M. Y., Palmer, J., Haralick, R.: A Methodology for An-
alyzing the Performance of Detection Algorithms. Proc. of the Jth International
Conference on Computer Vision, May (1993) 247-252

11. Kernighan, B. W., Ritchie, D. M.: The C Programming Language. Prentice Hall,
Murray Hill s NJ (1988)

12. Luzadder, W. J.: Fundamentals of Engineering Drawing. 8th edition, Prentice Hall,
Englewood Cliffs, NJ (1981)

13. Luzadder, W. J., Duff, J. M.: Fundamentals of Engineering Drawing. Prentice Hall,
Englewood Cliffs, NJ (1993)

14. Minsky, M.: The Society of Mind. Simon and Schuster, New York (1985)

259

15. Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D., Boyes-Braem, P.: Basic objects
in natural categories. Cognitive Pspchology, 8 (1976) 382--439

16. Sedgewick, R.: Algorithms. Addison-Wesley Publishing Co., New York (1988)
17. Stark, L., Bowyer, K.: Achieving generalized object recognition through reasoning

about assodation of function to structure. IEEE Transactions on Pattern Analysis
and Machine Intelligence, October (1991) 1097-1104

18. Vsxivi4re, P., Tombre, K.: CELESSTIN: A System for Conversion of Mechanical
Engineering Drawings into CAD format. IEEE Computer: Special Issue on Docu-
ment Image Analysis Systems, July (1992) 46-54

19. Winston, P. H: Learning structural descriptions from examples. In P. H. Winston,
editor, The Psychology of Computer Vision. McGraw-Hill, New York (1975)

