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Abstract 
A model-based vision system attempts to f ind n corre- 
spondence between features of an object iiiotlel and 
features detected in an image. Most featurc-based 
matching schemes assume that a.11 the feat.urcs that 
are potentially visible in a view of an object will a.p- 
pear with equal probability. The resultant ” t h i n g  
algorithm have to  allow for “errors” without really un- 
derstanding what they mea.n. P R E M I O  is an object 
recognition/localization system under constmction at 
the University of Washington that atte1iipl.s t.o model 
some of the physical processes that can cause tliese 
”errors”. PREhlIO combines techniqiics of arialytic 
graphics and computer vision to predict, I i o \ v  hat,iires 
of t.he object will a.ppea.r in images uirt lcr \.;irioiis i1.s- 

sutnpt,ions of lighting, viewpoint., seiisor. ai i t l  iiiiage 
processing operators. These analyt.ic pretlichiis are 
used in a probabilistic matching algorithm t,o guide 
the search and to greatly reduce the sea.rcli s p c e .  In 
this paper, which is a discussion of work in progress, 
we describe the PREhlIO System. 

1 Introduction 
The desigii of a model-based vision s-vstein ahle to rec- 
ognize and loca.te an object in  an image is an nrtluous 
process that involves t8rial and error esperiiiir>iit,s and 
requires a great deal of expertise from tlic tlcsigncr. 
The a.utomation of the design process is liiglily clesir- 
able; it would produce more effective procedures in  less 
t.ime, reducing the softwa.re cost of vision sys tem a.nd 
expanding their use. Although previous work on au- 
tomatin the design of vision systems ha.ve hacl some 
success 86, 4,  16, 12, 171, t h e  is still mucli work to 
be done on the object recognition and pose est,iination 
problems. We believe that most of the limit,at,ions of 
the previous systems can be removed by t l i c  use of 
a more realistic model of the world. Hence, i i  bett.er 
way of representing t,he interactmioils I)ct,weeii [,lie oh- 
ject. reprcsenta.tion sclienies ancl t,he light soi irccs ailtl 

setisor properties must be found. 
A n  example of t.he dificullies that :I worliiiig vision 

system must address is illustra.ted in figure 1. Figure 
1 (a) sliows a grayscale image of a sc:iled-motl(~l ol‘ [.he 
satellite “Sola.rmas”. Figure 1 (b) shows a iinivc pre- 
clict.ion, which does not take into a.ccouut, t.hc light,ing 
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and sensor characteristics of the edges that would be 
detected by an edge detector applied on the image of 
figure 1 (a). Figure 1 (c) shows the actual output of 
an edge detector where several of the predicted edges 
are fragmented or missing altogether. Knowledge of 
the degree to which each edge boundary might break 
up under different lighting and viewing conditions is 
essential. This knowledge ensures that tlie inductive 
matching phase does not have incorrect expectations 
that cause the search to  look for something that does 
not exist and that t.he deductive hypothesis verification 
phase can employ a proper statistical test in which as- 
sumptions about what should be there match the real- 
ity of what is there. 

2 PREMIO: A Model-Based 
Vision System 

Most feature-based matching schemes assume that all 
the features that are potentially visible in a view of 
an object will appear with equal probability. The re- 
sultant matching algorithms have to  allow for “errors” 
without really understanding what they mean. PRE- 
M I 0  (PREdiction in Matching Images to  Objects) 
is an object recognition/localization system under con- 
struction a t  the University of Washington [SI tliat at- 
tempts to model some of the physical processes that 
can cause these “errors”. PREMIO uses CAD mod- 
els of 3D objects and knowledge of surface reflectance 
properties, light sources, sensors characterisf ICS ,  and 
the performance of feature detectors to  build a model 
called the Vision Model. The Vision Model is used to 
generaLe a model called the Prediction Model that is 
used to automatically generate vision algorithms. The 
s j d e m  is illustrated in Figure 2. PREMIO’s Vision 
Model is a more complete model of the world than the 
ones presented in the literature. It not only describes 
the object, light sources and camera geometries, but it 
also models their interactions. The Vision Model has 
five components: (1) a 3D topological model of the pos- 
sible objects, describing their gcometric propel t ies ai id  
the top~logic~il relations between their faccs, edges, 
and vertices; (2) a surface physical model, foi nted by 
a general model of the light reflection of surfaces and 
tlie physical characteristics describing their materials; 
(3) a light source and sensor geometrical moclcl, repre- 
senting their configuration in space; (4) a light source 
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(a) Solarmax grayscale image 

(b) Edge prediction without taking 
lighting and sensor into a.ccount. 

(c) Output of an edge operator 

Figure 1: Problems i n  Is.eature Pretlictioii. 

bject identity - Reliability 
Position - Accuracy 

Figure 2: PREMIO: A Model-Based Vision System 

and sensor physical model, describing their physical 
characteristics, arid (5) a detector model describing 
the performance of the feature detectors availahle to 
the system. 

The system has two major suhsystenis: an omine 
subsystem a.nd a online subsystem. The oflline sub- 
system, in turn, has three modules: a Visioii Model 
generator, a. feature predictor, aiid an aut,oiiiatic pro- 
cedure generator. The Vision Model generator trans- 
f o r m  the CAD moclels of the objects into tlieir topo- 
logical models and incorporates them into the Vision 
Model. The feature predictor uses the Vision Model 
to predict and evaluate the features that can be ex- 
pected to be detected in an image of an object. The 
output of the Prediction Module is organized as the 
Prediction Model. The automatic procedure generator 
takes as its input the Prediction Model and generates 
the mat,cliing procedure to be used. The online sub- 
system consists of the matching procedure generated 
by the offline subsystem. It  uses the Vision RiIotlel, 
the Feature Prediction Model, and the input. iinages, 
first, to liypotliesize the occurrence of an ohjcct and 
estimate the reliability of the hypotheses, and second, 
to determine the object position relative to thc camera 
and estimate the accuracy of the calculated pose. \l’e 
discuss ea.ch in turn. 

3 The Vision Model 
The Vision RZodel in a machine vision system is a. rep- 
resentation of the world where the system works. A 
representa.tioii is a set of conventions about how to tle- 
scribe entit,ies. Finding an appropriate representation 
is a ma<jor part of‘ any problem-solving elfort., and  iii 
particular in  t.lie design of a iii;ichine visioii systcrir. 

The entities that must I.)e described by our r~prescii- 
tation of the world are the objects to be imaged and  
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the characteristics that these images will have. These 
characteristics depend on: the geometry of the object.; 
the physical characteristics of the object surraces; the 
position of the object with respect to the sensors; t,he 
light sources and other objects; the characteristics of 
the light sources and the sensors, and ultimately, the 
characteristics of the device that “observes” the image. 

3.1 Object Models 
PREMIO assumes that it has available PADLP CAD 
models of all the possible 0bject.s to  be imaged. PADL2 
is a constructive solid geomet,ry (CSG) modeler de- 
signed by II. B. Voelcker and A. G.  Requichn at  the 
University of Rochester. Its primitives are splieres, 
cylinders, cones, rectangular parallelepipecls, w.xlges 
and tori. 

PREh4IO’s object model is a hierarchical, relational 
model similar to  the one proposed in [ 2 i ] .  The object 
inodel is called a topological object model because it not 
only represents the geometry of the objects but, also the 
relations among their faces, edges, and verticcs. 

The model has six levels. A world level t.liat is con- 
cerned with the arrangement of the different objects in 
t.he world. -411 object level that is concerned wit.11 the 
arrangement of the different faces, edges aiitl vcrtices 
t.hat form the objects. A face level that cl 
face in terms of it.s surfaces and its boiindaries. .4 sur- 
face level that specifies the elemental pieces t,lint form 
those surfaces and the arcs that forni the boundaries. 
Finally, a 1D piece level tlia,t specifies the elemental 
pieces tha.t, form the arcs. 

The type of surfa.ces t,hat a PADL2 niodel can  have 
are the surfaces of its primitives: planes, spheres, cylin- 
ders, cones and tori. To represent these surfaces PRE- 
MI0 uses the same representa.tion that, PADL2 uses: 
an implicit matheniatical expression that represents 
the corresponding primitive in a “natural” coorclina.te 
system tha.t makes this expression a s  simple as possi- 
ble. An object modeled with PADL2 can only present 
boundary arcs that result, from the intersection of its 
primitives. To represent these curves we also followed 
PADL2 choice: a parametric expression for each coor- 
dinate, with a range interval for each paramctcr, t1ia.t 
represents the curve in a “natural” coordin;it.e system 
t.1ia.t makes these expressions a.s simple a.s possible. 

To create the topological object model froin the 
PADL2 model, PREMIO uses t,he boundary file rou- 
tines provided by PADL2. These routiiies give access 
to all the information concerning the face surfaces and 
tlie boundary arcs of the objects, but do 1 1 0 1 .  1)rovide 
a. direct way to extra.ct the boundary, etlgc i i i i i l  vcrt.es 
information that we need. To find tlie boui~daries of a 
face, its arcs must be grouped together to form closed 
loops. This can be done using the dgorithm developed 
by Welch [31] to find closed loops in a.n iintlirecbed 
graph. At the same time the edge and the vert.es in- 
formation can be upda.ted. The edge relatioil provides 
a way t o  rela.t,e two fa.ces that. have an arc in ~oiiiinon, 
while the vertex rela.tion relates all the arcs t,liat. have a. 
vertex in common. These two relat,ions are very useful 
in  the prediction of iinage features. 
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3.2 Object Surface Model 
Given the physical properties of a material, it is possi- 
ble to  predict the properties of images of this material. 
Different materials reflect the light in different ways, 
producing different intensity values in the image. A 
reflection niodel of a surface is a series of equations 
designed to  predict the intensity values of points in a 
scene. Given the light sources, the surface, and the PO- 
sition of the observer, the model describes the intensity 
and spectral composition of the reflected light reach- 
ing the observer. The intensity of the reflected light 
depends on the intensities, sizes, and positions of the 
light sources and on the reflecting ability and surface 
properties of the material. The spectral composition of 
the reflected light depends on the spectral composition 
of the light sources and on the wa~~elengtli-selective re- 
flection of t,he surface. 

The light reflected by a small region of a material can 
be broken down into three components: ambient, dif- 
fuse and specular. The ambient component describes 
the amouiit of light reaching the surface by reflection 
or scattering of the light sources or other background 
illuminators. Usually, ambient light can be assumed to 
be equal for all points on the surface and is reflected 
equally in  all directions. 

Most real surfaces are neither ideal specular (iiiirror- 
like) reflectors nor ideal difluse (Lambertian) reflectors. 
Buchanan [7] has evaluated several reflectance models 
and concluded that Cook and Torrance’s model [lo] is 
the most accurate when the incident light is completely 
unpolarized. IIowever, in general light is partially po- 
larized. Yi [32] derived an extension of Cook’s model 
for polarized light. PREhlIO uses this model. 

3.3 Light Sources aiid Seiisors Models 
Image formation occurs when a sensor registers radia- 
tion that has interacted with physical objects. Hence, 
it is important to  include the light sources and sen- 
sor models in our vision model. A light source model 
must describe it,s position in space, its size and  sliape, 
and its wavelength components. A sensor model inust 
describe its position in space, its response to the radi- 
ation input, and its resolution. In the offline system 
of PREhfIO, the sensor and the light source positions 
are known. The sensor and light sources are placed on 
the surface of a sphere centered at  the origin of the 
object coordinate system, called the reference sphere. 
The points on the reference sphere constitute a con- 
tinuous viewing space. The viewing space is sampled 
[32] in a way such that tlie distance between any two 
neighboring points in the discrete viewing space is ap- 
proximately the same. 

The image intensity of a given point P in a given 
surface is given by [32]: 

I = G‘SQ(A)CL~~. Z(Rll(X)Ji(A) + Ri(X)J i (X))dA 

where fl is the unit normal to thc given surface at  P ,  
I? is the unit vector in the direction of the light source 

(1) 
J 



from P ,  C is the lens collection factor, S is the sensor 
responsivity, Q is the spectral distribution of the illu- 
mination source, w is solid angle, J i  and J i  are the 
illumination intensities of the parallel and perpendic- 
ular polarized incident light, and RI, and RI are tlie 
bi-directional functions for the parallel and perpendic- 
ular polarized incident light. 

The lens collection factor, C, is given by [32]: 

1 r a 2  c = -(-) cos4 (Y . 
4 f  

where f is the focal distance of the lens, a is the diame- 
ter of the lens, and a is the angle between t,he ray from 
the object patch to  the cent,er of t.he lens. 7’hc sensor 
responsivity S, is in general a function of tlit: wave- 
length of the incident light. However, for monochro- 
matic sensors it can be approximated to one, regardless 
of the wavelength of the incident light. 

4 Feature Prediction Module 
Given a vision model representing the worltl. t I I C  goal 
of the prediction module is threefoltl: ( I )  i t  has to 
predict the features that will appear on an iinage taken 
from the object from a given viewpoilit and under given 
lighting conditions; (2) it has to evaluate the usefulness 
of the predicted features, and (3) it has to organize 
the data produced by (1) and (2) in  a efficient and 
convenient way for later use. Our approach to this is 
analytic. 

4.1 Predicting Features 
There are two different approaches to  the use of CAD- 
Vision models for feature predict,ion: syntlietic-image- 
based prediction and model-based feature prediction. 

Synthetic-image-based fea.ture prediction consists of 
generat,ing synthetic inmges and extracting t.licir fea- 
tures by applying the same process that will lie applied 
to t.he rea.1 images. Ama.natitles [l] recenl.ly surveyed 
different, techniques used in realistic image goneration. 
A pa.rticula.rly powerful technique used to achieve re- 
a.lism is ra.y casting: cast a ray from tlie cent.er of pro- 
jection through each picture element and ideiit.ify the 
visible surface as the surface that intersects the ray 
closer to the center of projection. Bhanu et a1 [;i] used 
ra.y casting to simulate ra.nge images for flieir vision 
model. 

Model-based feature predictmion uses niotlcls of t,lie 
object, of the light sources and of thc reflect,ancc prop- 
erties of the materials together with the laws of physics 
to analytically predict those features that will appear 
in the ima.ge for a given view without. actually gei1era.t- 
ing the gray-tone images. Inutea.d, only daki st,ructures 
are generated. This is a imrr difficiilb apprmcl i ,  hit, 
it provides a more computationally eficient frainework 
suitable for deductive and inductive reasoning. This is 
t.he a,pproach used by PREMIO. 
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4.2 Model-Based Feature Prediction 
The model-based feature prediction task can be di- 
vided into three steps: The first step is to  find the edges 
that would appear in the image, taking into account 
only the object geometry and the viewing specifica- 
tions. The result is similar to  a wireframe rendering of 
the object, with the hidden lines and surfaces removed. 
The second step is to  use the material reflectance prop- 
erties and the lighting knowledge to  find the contrast 
values along the edges in a perspective projective im- 
age, and t o  predict any edge that may appear due to 
highlighted or shaded regions on the image. The third 
and last step is to interpret and group the predicted 
edges into more complex features such as triplets, cor- 
ners, forks, lioles, etc. 

4.2.1 Wireframe Prediction 

The problem of determining which parts of an object 
should appear and which parts should be omitted is 
a well-known problem in computer graphics. A com- 
plete survey of algorithnls to  solve the “Hidden-Line, 
Hidden-Surface” problem can be found in [as] .  A par- 
ticularly efficient way of solving this prohlcm is using 
an analytical approach, by projecting the objcct sur- 
face and boundary equations oiito the image plaiie and 
determining whether the resulting edges are visible or 
not. This approach obtains the edges as a whole, as 
opposed to  the ray casting approach, which finds the 
edges pixel by pixel. The aim of tlie solution is to com- 
pute “exactly” what the image should be; it will be 
correct even if enlarged many times, while ray casting 
solutions are calculated for a given resolntion. Hence 
this is the preferred method for our application. 

In order to analytically predict a wireframe we need 
to introduce the following definitions: 

Def. 4.1 A boundary is a closed curve formed by 
points on the object where the surface normal is dis- 
continuous. 

Def. 4.2 A limb is a curve formed by points OIL the 
surface of the object where the line of sight is t,angent 
to the surface, i.e. perpendicular to  the surface normal. 

Def. 4.3 A contour is the projection of a limb or a 
boundary ont,o the image plane. 

Def. 4.4 A T-junction is a point where two contours 
intersect . 

Def. 4.5 A cusp poi i i l  is a limb point whcre the line 
of sight is aligned with the limb tangent. 

The edges in an image are a subset of the set of 
contours. A piece of a contour will not appear in the 
image if its corresponding boundary or limb is part of a 
surface t,liat is partially or totally occluded by another 
surface closer to the point of view. Since thc visibil- 
ity of a contour only changes a t  a cusp point or a T- 
junction point, it follows that to find the edges on the 
image the following steps have to be taken: (1) find all 



the limbs and cusp points, (2) project, tlir 1,ouiidaries 
and linibs to  find the contours and all the T-junctions 
and (3) determine the visibility of the contoiirs by find- 
ing the object surface closest to the point of view at  
each T-junction and cusp point. 
Finding Limbs and Cusp Points 

To find the analytical expressions for the limbs and 
cusp points, PREMIO uses an approach similar to the 
one used in [22], but designed for PADL’Z-modelable 
objects instead of generalized cylinders. 

Let PO with object coordinates (Xo,Yo,Zo) be tlie 
projection center and let P with object coordinates 
(X, Y, 2)  be a point on a limb on the surftace S defined 
by the implicit equation f ( S , E ’ ,  Z )  = 0. 7’1ien, the 
vector of sight v’ from Po to P is given by: 

v’ = (x - xo, 2’ - Yo, z - Z”) (3) 

and the normal fi to the surface S is given by: 

(4) 

In orcler for P to belong t,o tlie limb curv(~,  I’ must 
tie on the surfa,ce S and the line of siglit i i i i i h t  Iw per- 
pendicu1a.r to the normal ” a.t. P.  ~ c n c c  I 11c’ IiiiiIi 
equations are given by: 

(5) 
a.” = 0 { f ( X , Y , Z )  = 0 

Once the limb equations are solved, a liml.) can be 
expressed in a parametrized form: 

x = X ( 2 )  
Y = Y ( t )  L i r a  5 t L tn,,, (6 )  { z = Z ( t )  

-. 
Then, the tangent vector 5” to the limb is: given hy: 

F =  (%,%,%) (7)  

Since a cusp point C is a limh point, where tlie line of 
sight is aligned with the limb ta,ngent,, it,s coordinates 
must sa.tisfy the following equations: 

T x G  = 0 

(8) x = X ( t )  
Y = E’(!) t t n i 7 ,  5 1 I I , , , , , .  { -  z = Z(1)  

Tliis procedure is performed in O(s) time where s is 
t,he nuniber of curved surfaces of the object.. 

Finding the contours and T-junctioiis 
To find the contours, the limbs and boundaries of 

the object a.re projected onto t,he imnge plane; t.0 find 
the T-junctions the intersections of the coiit.ours are 
found. The intersection detection problem for n pla- 
nar objects has beeii est,ensively studied and it can be 

solved in  O(nlogn+s)  time [23] ,  where s is the nuinher 
of intersections. In our case, the objects are the set of 
contours. For PADL2 primitives, the limb curves are 
either circles or straight lines, while the boundaries can 
be either straight lines, conics or more complex curves. 
Since the perspective projection of a straight line is an- 
other straight line, and the perspective projection of a 
conic is another conic, we can find a closed form so- 
lution for the intersections between the contours that 
result from projecting straight lines and conics. To find 
other type of T-junctions, a numerical approach must 
be used. 

Deteriiiining Visibility 
The next step is to determine the edges and surfaces 

that are hidden by occlusion. Appel [ 2 ] ,  Loutrel [19], 
and Galiinberti and Montanari [ll] have presented sim- 
ilar algoritlim for analytical hidden line removal for 
line drawings. Tliey define the quantilnlzve znvzszbzl- 
zty of a point as the number of relevant faces that lie 
between the point and the camera. Theri, the prob- 
lem of hidden line removal reduces to computing the 
quantitative invisibility of every point on each relevant 
edge. The computational effort involved in this task is 
dramatically reduced by the fact that an object’s visi- 
bility in the image can change only at  a T-junction ~r 
at a cusp point. At such points, the qiiaiititative in-  
visibility increases or decreases by 1. This cliange can 
be determined by casting a ray through the point and 
ordering the correspondiirg object surfaces in a “tooth- 
pick” manner along the ray. Hence, if the invisibility 
of an initial vertex is known, the visibility of each heg- 
inent can be calculated by summing the quantitative 
invisibility changes. 

The quantitative invisibility of the initial vertex is 
determined by doing an exhaustive search of all rel- 
evant ohject faces in order to  count how many faces 
hide the vertex. An object face is considered relevant 
if it “faces” tlie camera, i.e. its outside surface norinal 
points towards the camera. A face hides a vertex if 
the line of siglit to the vertex intersects the face sur- 
face and if the intersection point is inside the boundary 
of tlie face. To propagate the quantitative iiivisibility 
from o i e  edge to another edge starting at  its ending 
vertex, a correction must be applied to  tlie quniitita- 
tive invisibility of the starting point of the new edge. 
The complication arises from the fact that faces that 
intersect a t  the considered vertex may hide edges ema- 
nating from the vertex. This correction factor involves 
only those faces that intersect at the vertex. For an 
object with e edges, f faces, and with an average of 3 
faces meeting at each vertex, tlie computational time 
needed to reinove its hidden lines using this algorithm 
is O(f + 2 x 3 x e ) .  

4.2.2 Using Material and Lighting Kirowlcdge 

Boundaries of objects sliow u p  as intensity discontinu- 
ities in an image. A line segment that is potentially 
visible in a set of views of an object may appear as n 
whole, disappear entirely, or break up into small seg- 
ments under various lighting assumptions depending 
upon the contrast along the edges and the detector 
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Figure 3: Feature and relationships example 

characteristics. Hence, to  complete the predictim pro- 
cess PREMIO needs t o  calculate the intensity values 
along the predicted wireframe. 

The contrast at an edge point is computed as the 
difference in the intensity of the reflected light from 
two small neighboring patches at  each side of tlie edge. 
These intensities, in turn, are obtained by ii.;rng ray 
casting and the surface reflectioti inotiel H I  (I fiiiite 
number of points along the edges. To reprcmit  the 
contrast along the edge, a contrast graph is fitted with 
piece-wise continuous polynomials using a regression 
analysis technique [32]. 

4.2.3 Interpreting and Grouping Features 

A feature is an entity that describes a part of an ob- 
ject or an image. Simple features such as edges can 
be interpreted by themselves, or can be groiipcd to  be 
considered as higher-level features. Matching percep- 
tual groupings of features was suggested first. I>y Lowe 
[20]. Henikoff and Shapiro [15] have found iiscfiil for 
object matching arrangements of triplet,s of line seg- 
ments called inferesting patterns. Other usehl higli- 
level features are junctions, a.nd closed loops ['LI]. 

In PREMIO a feature is an abstract concept,; it can 
be a point, an edge, a triplet,, a hole, a junct,ion, or 
a higher-level combination of any of t,hese. A feature 
has a type tliat identifies it,  a vect,or of a t t~ ibu fe s  tliat 
represent its global properties, and a real number be- 
tween 0 a,nd l called its strength,. Tlie strength is a 
measurement of the confidence of tlie feature being of 
a particular type. 

A fea.ture participates in spat,ial relat.ionsliips \ ~ i t , h  
other features. Each s u c h  relationsliip is 1~~1) i~sc~i t .e t l  
hy a. relaiional tuple, which coiisists of' a f y p c  specify- 
ing the relationship and a. vect80r of relaiedfea/ trres  t ha t  
partricipate in that rela.tionsliip. hssocia.ted wi t  11 every 
rehtional tuple of features tliere is a real number be- 
tween 0 and l called tlie strength of the rela,tional tuple. 
'rhe strength is a measurement of tlie confidence of the 
feature vect.or sa.tisfying tlie specified relat.ionship. 

As a simple example, consider tlie pa.rallelogram 
shown in figure 3. It can be described in tcriiis of 
its four sides and the relationships a.mong them. In 

this case, the features are the four sides of the par- 
allelogram i ~ ,  12,  13 and 14. Each side has associated 
tlie attribute length and it is related t o  the other tliree 
features by the relationships adjacent and parallel. 

4.3 Evaluating Predicted Features 
After a feature is predicted its potential utility must be 
evaluated. PREMIO uses the concepts of detectability, 
reliability and accuracy of a feature. Tlie detectabil- 
ity of a feature is defined as the probability of finding 
t.lie featmure using a given detector on an image taken 
with a given sensor. Therefore, its value depends not 
only on the feature, but also on tlie sensor and detector 
models. Tlie reliability of a feature is the prolmbility 
of correctly inatclling the detect,ed feature to  the cor- 
responding one in tlie model. Two features that look 
very siiiiilar to each other, should not be considered as 
very reliable since each of them can be mistakenly iden- 
tified as the other. In general, the reliability is closely 
related to the distinguishability power of the feature; 
i.e. a unique feature immediately matches the model, 
and therefore is highly reliable. The feature accuracy 
is a measure of the error or uncertainty propaga.ted 
froin t.lre detected feature to a geomet.ric property of 
the object. 'This ineatis t h a t  if', for esan i i~ ie ,  \ y e  tlel.c:ct 
a. slraiglit line i i i  the image, we want to I,ouiid the error 
of its location and orienta.tion. Hence, the accuracy is 
calcula.t,ed taking into account the sensor and detector 
models. 

4.4 Output of the Predictor Module 
For a given object and a given configuration of light 
sources, and sensors, the output of the predictor mod- 
ule is a hierarcliical relational data  structure similar to 
the one defined in section 3. This structure is called a 
predicfion of thc object. Each prediction contains a set 
of feat tires, their attribute values such as detectability, 
reliability, and accuracy, and their originating tliree- 
dimensional features. Tlie prediction has a t  least five 
levels: the image level, an object level, one or more fea- 
ture levels, an arc level and a 1D piece level. Tlie image 
level a t  the top of the hierarchy is concernetl with the 
imaging conditions that generated tlie prediction, the 
general object position, and the background inforina- 
tion. The object level is concerned with the different 
features that will appear on the image and their inter- 
relationships. The feature levels describe the features 
in terms of simpler features, down to the arc level. The 
arc level describes the arcs in terms of 1D pieces. Fi- 
iiiilly, the ID-picce level specifies the elemotilal pieces 
tliat form the arcs. 

5 Using Prediction in 
Matching 

The predict,ions trliat PREMIO produces arc powerful 
ncw tools in recognizing and determining the pose of a 
3D object. In order to take advantage of these tools, we 
have developed an entirely new matching algorithm, a 



branch-and-bound search that explicit,ly takes advan- 
tage of the probabilities obtained during the predic- 
t.ion stage to guide the search and prune the tree. The 
matching algorithm represents a large theoretical ef- 
fort that is actually independent of the PR.ERlIO sys- 
tem, and it is fully described in [9]. The algorithni has 
been implemented as a C program a.nd tested indepen- 
dently on data  specifically genera.ted to fit the ’ 1 )&act 
paradigm for the probabilistic search. 

The mat,ching algorithm can be thought, of in  two 
ways, as a relational matching algorithm a.iitl a s  a con- 
strained branch-and-bound sexch.  The theory behind 
branch-and-bound search is well known [IS]. &la- 
tional matching has been expressed in several different 
formalisms. Early papers concent,rated on graph or 
subgraph isomorphisms [30]. This led to many algo- 
rithms for discrete relaxa.tion and the introduction of 
probabilist,ic relaxation [24]. The exact mat,ching prob- 
lem was generalized to  the consistent labeling problem 
[14] a.nd to  the inexact matching problem [26]. This 
was extended further to tlie problem of determining the 
rehtional distance between two struct.ura.1 descriptions 
[28, 251. Some recent relat,ed work includes st.ructura1 
stereopsis using information theory [5]  . Tlic present 
algorithm differs from all of these i n  il,s atteri i l)~ 1,o pro- 
vide a solid theoretica.1 probabilistic f r i i i i i r \vor I i  Ihr t lie 
mat,ching problem and the search. 

5.1 Defiiiitioiis aiid Notation 
Models and images are represented by their features, 
the relationships among them, and the measurements 
associated with them. As in the consistent labeling 
formalism [14], we will call the image fea.tures units 
and the model features labels. The matching algorithm 
mist  determine the correspondences between tlie units 
a.nd the labels. Formally, a m o d e l  A! is a qiiadriiple Ad 
= ( L ,  R ,  f ~ ]  QR) where L is the set of model fcatirres or 
labcls, R is a. set of relatioiial tuples of labcls, 1~ is the 
a.ttribute-value ma.pping that associates a vdue with 
each attribute of a label of L ,  and QR is the strengt,h 
mapping that, associates a strength wilh each r(:lat.ional 
tuple of R. Similarly, an i m a g e  I is a quadruple I = 
(U,S,  fu,gs) where U is the set of image features or 
nnits, S is a set of relational tuples of units, fu is t,he 
attribute-value mapping associa.ted with U ,  a.nd QS is 
the strength mappiiig aqsociat.ed with S .  

The relational matching problem is a special case of 
the pattern complex recognition problem [13]. An im- 
age is an observation of a particular model. 1,ct. A// = 
( L ,  R, f ~ ,  QR) be the model, and I = ( U ,  S ,  / ( ; ,  !/..;),be 
tlie observed image. Not all the 1;ilx~ls iii I, Imrt,ici- 
pate i n  the observation, only a subset of 1al)c:ls I /  L 
is actually observed. Furthermore, only t.he rc:lational 
tuples of labels representing relationships aniong labels 
in  H can be observed, and only a. subset. of them a.re 
actually observed. The set U consists of t,he unrecog- 
nized units. Some of the units observed in U conic from 
labels in H ;  others are unrelated and can he thought 
of as clutter objects. 

The relational matching problem is to find an un- 
known one-to-one correspondence 11: L + U between a 

subset of L ,  II ,  and a subset of U ,  associating some la- 
bels of L with some units of U .  The mapping h is called 
the observat ion mapping, and it must satisfy that the 
number of labels associated with units and the num- 
ber of relations preserved in the observation are max- 
imized. Notice that the matching process consists not 
only of finding the model M ,  but also of finding the 
correspondence h and its domain H ,  which are the ex- 
planation of why the model A4 is the most likely model. 
In general we seek to maximize the a posferiori prob- 
ability P MI h I . That is, we want to maximize the 
probability of the model being A4 and the observation 
mapping being h,  given that the image I is observed. 

The relational matching problem requires a search 
procedure that can identify the model A4 and the map- 
ping h such that P M ,  h I is maximized. If the re- 
lational ntatching cost of an observation mapping h ,  
C( M ,  h ,  I )  is defined by, 

( I )  

( I )  

C ( M ] h , I )  = -1ogP 0 M , h , I  , (9) 

then maximizing P A//, h ,  I is eqitivalent to ~ninimize 
the relational cost of‘ h.  

The relatioiial cost C can be broken dowii into fivc 
tcrnls, each oiie representing a diKerent aspect of the 
cost of the mapping [9]: 

0 

where 

cj, = - log P(fulU, AI ,  I ) . )  , 

c s  = -1ogP s U,AI , I l  , ( 1  1 
cg,  = - logP(8s Iu , fu ,A4 , l~ )  . 

The cost CA{ is the m o d e l  cost. This is the cost 
associated with the model being considered, and it pe- 
nalizes the seleclion of models whose prior probability 
of occurring, P(Arl), is low. 

The costs Crr and Cf ,  are the lnbef-iin?t crssignmenl 
costs, and they evaluate liow well the labels aiid units 
inatcli througli the mapping h .  Cu is the part of the 
cost that penalizes for the differences of sizes between 
the set of observed features U and the set of features of 
the model L .  C f ,  is the part of the cost that penalizes 
the “differences” between labels and their correspon- 
dent units. The costs Cu and C,, are given by [9]: 

Cu = - log k j  - N j  log k j q ,  , 



where NJ = #L +#U - 2 # H ,  X, > 0 and 0 < Q J  < 1 
are constants and are determine1 for ea.ch model from 
the predictions using regression analysis techniques, p 
is a suitable metric function, fu o h is the composition 
of fu with h,  and f ~ l ~  represents the attribute-value 
mapping f~ restricted to the labels in the domain H .  

The costs Cs and C,, are the relational strrrctural 
costs and they evaluate how well the relationships 
a.mong the labels are preserved by the mapping h. Cs 
is the part of the cost that accounts for the tlilferences 
between the set of observed relationships S and t,he 
set of'relationships of the model R. C,, is t*lie part of 
the cost that penalizes the "differences" between the 
relational tuples of labels and their correspondent rela- 
tiona.1 tuples of units. The costs Cs and C,, a,re given 
by ~91: 

c s  = - log L, - N' log Q ,  , 
c g s  = -1% ( P ( P ( h 7 S , g n ) J A ~ ) )  I (12) 

where N,. = # ( R  - S o  h - l )  + #(S - 1Zo / I ) ,  k,. > 0 
a.nd 0 < yr < 1 are constants and are det,cri~riiietl for 
each model from the predictions usiiig rcgrcssioii anal- 
ysis, S O  h-' is the composition of s with t I i c :  iiivcrse 
mapping of h,  / $ - I ,  R o h  is the compositioti or R \ v i t , l i  
/ I ,  p is a suitable metric function, and 9s o / I  is t,lie 
composition of gs with h.  

5.2 Partial Matching 
Finding the full mapping h would require a full tree 
search. But, only a few correspondencco between unit,s 
and labels are needed to hypothesize a match between 
an object and a model and to estimate t>he object's 
pose. The number of correspo~idences iieetletl is tle- 
terniined by the number of degrees of freedoin that 
the matched features fix. Instead of finding (.lit, eirt.ire 
mapping h,  we would like to find a. part,ial inatch ? I t .  
that is a restriction of h,  in  tlie follo~ving sell- 

Def. 5.1 Given two one-to-one ma.ppings h and 1 1 1 ,  

such that Dom(m) C Dom(h), and ~ ( 1 )  = h(1) for all 
1 E Dom(m), we say that the function h is an exten- 
sion of the function m, and that the function n z  is a 
restriction of the function h. The order of the exten- 
sion h with respect to nz is the difference bet,ween the 
cardinalities of the se& Dom(/i.) and Doni( 171.). 

Let m: L - U be a partial ma.pping assigiiiiig some 
labels to some units. The mapping n 2  paitit.ioiis tlie 
WI.S of features L and U into the set. of i r .qct /  f ; ~ ; i ~ ~ i i w s  iii 
(.lie match and the set of residual fea.f,uws i.v., (I iosc~ 
not used in the match. Figure 4 gives ti. diiigrain of 
the sets L and U showing the part,itions induced by a 
partial match m. 

Let L" be the set of used labels, L' the set, of resid- 
ual labels, U" the set of used units, and U' t,he set 
of residual units induced by the partial mapping m. 
Consider the set E, = {ezt . (m)} ,  of a.11 the possible 
extensions of 7n of order j &at assign some labels to 
some units. The maximum possible order of an est.en- 
sion of nz is given by: J = min{#L', # U ' }  . The set 

Figure 4: Partition of the sets of features induced by 
a partial match. 

E = {ez t (m)}  of all possible extensions of m can be 
expressed as the union of all the extensions of different 
orders: E = uo<j< Ej,  and its cardinal is given by: - _  

The probability that the "true" observation iiiapping 
h is an extension of a partial mapping m - that is the 
probabili ty that the observation mapping h that max- 
imizes the probability P(A4, h, I )  belongs to the set 
E = {ez t (m)}  of all possible extensions of the partial 
mapping m is given by [9]: 

N J ~  = # L r + # U ' - 2 j  

N,.j = # ( R - S o h F ' ) + # ( S - R o h j ) .  

Although the terms Ps,  Pju,  and Pg, cannot be 
calculated unless all the possible extensioiis hi E E 
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Figure 5: Partition of the sets of relat,ional t>uples in- 
duced by a partial match. 

are considered, they can be upper bounded by values 
depending only on m and not on its extensions [ O ] .  
These upper bounds can be found by noticing that 
the partial mapping m induces a partition of tlie sets 
of relational tuples S and R into three t y p a  of sets: 
the set of used relational tuples, the set of par2zally 
used relational tuples, and the sets of resztlunlrelatioiial 
tuples, depending on whether all, some, or none of the 
features in the feature vector of the t,uple have been 
associated a correspondent through the iiiapping v i .  

Figure 5 gives a diagram of the sets R and S showing 
the partitions induced by a partial match m. Then, it 
can be shown [9] that  

where 

where Nrmax, = # R + # S - R m a x j - S n 1 a x j ,  ailcl R n i a x j  
and SmaZj  are the total number of relational tuples of 
labels and units with at  most j labels or units without 
a correspondent in the mapping m. 

5.2.1 Matching by Tree Search 

The matching process can be thought of as a s h t e  
space search through the spa.ce of all possible iiiterpre- 
tations C. The stsate space C is called t,he i j t t r l c h i v g  
space and it, is defined as follows: 

DeE 5.2 The ma2chiny  space, C,  is t.lie st.at,e s ~ m c e  ol' 
all possible interpretations, i n  which each s ta t ,e  (T is 
defined by an observation niappiiig h, with degree of 
match k,, = #Dom(h,,). 

The search through the state space C can be 
a.chieved by doing an ordered search on a. tree 7 such 
as the one shown in figure 6. Each node in 7 rep- 
resents a unit and each of it,s branches represents an 

unit 

d 

Search Space: All possible interpretations 
Search State: 

Figure 6: Search tree 7. 
A path in the tree 

assignment of the unit to a label. A search state U in 
C is represented by a path P in the tree 7. In the rest 
of th- paper, the terms "path" and "partial mapping" 
will be used interchangeably. 

A path P defines an observation mapping m ~ ,  and 
it has an associated cost C, = C(mp,  Ad, I )  defined in 
equation (9). The matching process consists of find- 
ing the path P* such that its associated observation 
mapping nip. has the least cost. 

A mat,cli can be found by usiiig the well I ~ u o \ \ ~ I ~  
branch-ayid-bouud tree search technique. 111 t,lie stan- 
dard branch and bound approach during search there 
are many incomplete paths contending for further con- 
sideration. The one with tlie least cost is extended one 
level, creating its many new incomplete paths as there 
are branches. This procedure is repeated until the tree 
is exhausted. 

5.2.2 Improved Branch-and-Bound Searcli 

Branch and bound search can be improved greatly if 
llie path to be ext,ended is selected such that a l ower  
bouiid estimate of its the total cost is minimal. Those 
branches that have an estimated total cost greater tllan 
the maximum cost allowed can be pruned. 

Let nz be a partial mapping and ml be an extension 
of m. The relational matching cost of nil is given hy 
C,,,, = - log P M, ml,  I . An underestiinatt of C,,,, 

is found by finding an upper bound of P A d ,  17x1 , I . 
Let h* be the true observation mapping. Since h' E 
E is one of a set of disjoint events, the probability 
P ( M ,  m , h *  E E ,  I )  can be expressed as the sum of 
the probabilities of these events: 

0 
0 

Hence, for ail extension ml we have 
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Step  1: Initialization. 
Fonn a queue Q p  of partial matches, and let PO be the 
initial partial match. 
S t ep  2: Iterate over current  paths. 
Until 00 is emptv. d o  - ,  - _ ,  
Begin 

P := FRONT(Qp) 
m := partial ma ping associated wit.11 P 
cm := relationai'cost of m 
Step 2.1: Test if P can be extended. 
If the path P can be extended, 

Begin 
S t e  2.1.1: Select next label. 
LOOK for two tuples, one from R and one 
from S whose components are not all 
matched, that are compatible. T w o  relational 
tuples are compatible if they have the same 
number of features and they agree on the 
features that have been already matched. 
The relational tuples that are 
matched should be checked bek%t't"itk those 
that are not. 
S t ep  2.1.2 Extend the  path 
For each U E U', do 
Begin 

hl := path m extended with the pair 
(1.u). 

P' := path associated with the 
mapping hl . 

Chl := relational cost of h l .  
rhl := underestimate of the 

cost of the extensions of h l .  
S t e p  2.1.2.1 Compare with c.  

Begi; - 
If rh < 

Step  2.1.2.1.1 Finished? 
If FP(P ' )  = 6 and Ch, 5 c 
Benin - 

P' is a satisfactory match. 
Exit. . 

End if. 
S t ep  2.1.2.1.2 Add F ' .  
BACI<(Qp) := P'. 

End  if. 
End for. 
S t e p  2.1.3 Resort  t,lie queue. 
Sort Q p  by underestimated cost. 

End if. 
Enduntil .  

S t ep  3: End  of Algorithm 
Announce failure. 

Figure 7: kIatching Algorithm 

The matching algorithm is given in figure 7 .  The al- 
gorithm is being independently tested using controlled 
experiments designed under a rigorous experimental 
protocol [9]. So far, it has been tested on more than 
4000 runs for models with five and seven labels, and 
with ordered binary and ternary relational tuples. Fig- 
ure 8 is a plot of the ratio of the number of paths 
pruned to the total number of paths opened during 
the search. The graph shows that the use of the un- 
derestimate bound of the cost results in  a high pruning 
ratio (from 30% to  nearly 80% of the tree), and  hence 
greatly reduces the computational time. 

6 Summary and Future Work 
Our research consists of two parallel activities: theoret- 
ical developments, and test of the resulting theory by 

Pruning Ratio 
#L = 7, Order = 3. Threshold = 0 3 

E 080  c 
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Figure 8: Pruning Ratio 

the implementation of the PREMIO system, which 
is implemented as a set of routines with over 30000 
lines of C language on a S U N  system running Unix. 
PREMIO has two major subsystems: an offline sub- 
system and a online subsystem. The offline subsystem, 
in turn, has three modules: a vision model genera- 
tor, a feature predictor, and an automatic procedure 
generator. We have proposed the use of a complete 
model of the world, the Vision Model, that incorpo- 
rates PADL2 CAD models, surface reflectance proper- 
ties, light sources, sensors, and processing models to 
symbolically predict the features that will appear on 
the images of the objects being modeled. The pre- 
dictions are organized in a Prediction Model that pr+ 
duces the knowledge base of the probabilistic matching 
algorithm. 

For the vision model, we have implemented a hier- 
archical, topological representation of tlie objects in 
the world, using as input their PADL2 CAD models. 
The prediction module can now predict line segments 
feature for objects with planar surfaces. The prob- 
abilistic matching algorithm is being tested indepea- 
dently using artificial data generated under a rigorous 
experimental protocol. The results obtained so far are 
promising in that a large percentage of the tree be- 
ing searched is pruned by the matching procedure pro- 
posed. The remaining work is to  integrate the parts 
of the system and test it on real image data. On the 
basis of our results so far, we expect PREMIO, when 
fully integrated, to solve many of the difficulties that 
most CAD-based vision systems encounter. 

References 
[l]  J .  Amanatides. Realisin i n  computer graphics: A SIII'- 

vey. IEEE Cornpiter Grophics arid Appttcu/ioiis,  7.4.1- 
56, January 1987. 

[2] A. Appel. The notion 
In Proc. ACM National 
1967. 

20 

of quantitative invisibility. 
Conference, pages 387-393, 

Tll 1 



[3] B. Bhanu, T.Henderson, and S.Thomas. 3-D model 
building using CAGD techniques. In Proc. IEEE 
Computer Vision and Pattern Recognition, pages 234- 
239, June 1985. 

[18] Richard E. Korf. Search: A survey of recent results. 
In Howard E. Shrobe and The American Association 
for Artificial Intelligence, editors, Exploring Artificial 
Intelligence, chapter 6, pages 197-237. Morgan Kauf- 
mann Publishers, Inc., 1988. 

[4] R.C. Bolles and R.A. Cain. Recognizing and locat- 
ing partially visible objects: ~l~~ loc&feature focus 
method. Int. J. Robot. Res., 1(3):57-82, Fall 1982. 

[19] P. P. Loutrel. A solution to  the hidden-line problem 
for computer-drawn polyhedra. IEEE Trans. on Com- 
puters, 19(3):205-210, March 1970. 

[5i L. Boyer and A* c' Kak' Structural for [20] D. G. Lowe. Three-dimensional object recognition 
from single two-dimensional images. Artificial Intel- 
ligence, 31:355-395, 1987. 

[21] H. LU and L. G. Shapiro. Model-based vision using 
relational summaries. In SPIE Conference on Appli- 
cations of Artificial Intelligeizce VII ,  hlarcli 3989. 

3-d vision. IEEE Transactions on Systems, Man and 
Cybernetics, PAMI-10(2):144-166, March 1988. 

[6] R.A. Brooks. Symbolic reasoning among 3-D models 
and 2-D images. Artificial Intelligence, 17( 1-3):285- 
348, 1981. 

[7] C.G. Buchanan. Determining surface orientation from 
specular highlights. Master's thesis, Dep. Comp. Sc., 
Univ. of Toronto, Toronto, Ontario, Canada, 1986. 

[22] J .  Ponce and D. Chelberg. Finding the limbs and 
cusps of generalized cylinders. Int. J. C O ~ I J P .  Vision, 
April 1987. 

[8] Octavia I. Camps, Linda G. Shapiro, and Robert M. 
Haralick. PREMIO: The Use of Prediction in a CAD- 
Model-Based Vision System. Technical Report EE- 
ISL-89-01, Department of Electrical Engineering, Uni- 
versity of Washington, 1989. 

[9] Octavia I. Camps, Linda G. Shapiro, and Robert M. 
Haralick. A probabilistic matching algorithm for 
object recognition. Technical Report EE-ISL-90-08, 
Department of Electrical Engineering, University of 
Washington, 1990. 

[lo] R.L. Cook and K.E. Torrance. A reflectance model for 
computer graphics. ACM Trans. on Graphics, 1( 1):7- 
24, January 1982. 

[ I l l  R. Gaiimberti and U. Montanari. An algorithm for 
hidden-line elimination. Comm. ACM, 12(4):206-211, 
April 1969. 

[23] F. P. Preparata and M. I. Shamos. Computational Ge- 
ometry: An Introduction. Springer-Verlag New York 
Inc., 1985. 

[24] A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene 
labeling by relaxation operations. IEEE Trans. Syst. 
Man Cybern., SMC-06, June 1976. 

[25] A. Sanfeliu and K. S. Fu. A distance measure between 
attributed relational graphs for pattern recognition. 
IEEE Transactions on Systems, MAn and Cybernet- 
ics, SMC-13(13):353-362, May 1983. 

[a61 L.G. Shapiro and R.hf. IIaralick. Structiiral desciip- 
ticns and inexact matching. IEEE Trans. on Pattern 
Analysis and Machine Intelligence, PAMI-3(5):504- 
519, September 1981. 

[27] L.G. Shapiro and R.M. Haralick. A hierarchical rela- 
tional model for automated inspection tasks. In Proc. 
1st IEEE Iirt. Conf. on Robotics, Atlanta, hIarch 1984. 

[28] L.G. Shapiro and R.M. Haralick. A metric for compar- 
ing relational descriptions. IEEE Trans. on Pattern 
Analvsis and Machine Intelligence, PAMI-7, 1985. 

[12] C. Goad. Special purpose aut,omatic programming for 
3D model-based vision. In Proc. of the Image Under- 
standing Workshop, pages 94-104, June 1983. 

[13] R.M. Haralick. The pattern complex. In Roger Mohr, 
The0 Pavlidis, and Albert0 Sanfeliu, editors, Struc- 
tural Pattern Analysis, pages 57-66. World Scientific 
Public. CO, 1989. 

[14] R.M. Haralick and L. G. Shapiro. The consistent 
labeling problem: part i. IEEE Trans. on Pattern 
Analysis and Machine Intelligence, PAMI-1(2):173- 
184, April 1979. 

[15] J. Henikoff and L. Shapiro. Interesting patterns for 
model-based matching. In ICCV, 1990. 

[29] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. 
A characterization of ten hidden-surface algorithms. 
Computing Surveys, 6(1), March 1974. 

[30] J .  R. Ullman. An algorithm for subgraph hoinonior- 
phisms. J. Assoc. Compttt. Mach., 23:31-4?, January 
1976. 

[31] J. T. Jr. iVelcli. A mechanical analysis of the cyclic 
structure of undirected linear graphs. Journal of the 
Association for Computing Machinery, 3(2):?05-210, 
April 1966. 

[IC] p. Horaud and R.C. Bolles. 3DPO: A system for 
matching 3-D objects in range data. In A.P. Pent- 
land, editor, From Pixels to Predicates, pages 359-370. 
Ablex Publishing Corporation, Norwood, New Jersey, 

[32] Senngku Yi. nliimination Control Evert  for Machine 
Vision: A Goal Driven Approach. PhD thesis, Depart- 
meiit of Electrical Engineering, University of Wasliing- 
ton, Seattle, Washington, 1990. 

1986. 

[17] I<. Ikeuchi. Generating an interpretation tree from a 
CAD model for 3D-Object recognition in bin-picking 
tasks. Int. J. Comp. Ifision, 1(2):145-165, 1987. 

21 



Automatic Camera and Light-Source Placement Using 
CAD Models 

Cregg K. Cowan 
Advanced Automation Technology Center 

Information, Telecommunications, and Automation Division 
SRI International, Menlo Park, California 94025 

Abstract 
This paper describes model-based methods to deter- 
mine the region where a camera and light source should 
be placed. We present new techniques that determine 
the region of light placements that guarantee specified 
object edges will be detected. These methods use geo- 
metric models of the objects and the characteristics of 
the camera, lens, digitizer, and edge detector to deter- 
mine the region of acceptable camera and light-source 
locations. Other recent work in automatic camera and 
light-source placement is also described. 

1 Introduction 
One of the main limitations in applying machine vision 
to industrial automation is the high cost of designing, 
installing, and debugging each system. Developing a 
successful vision system for a given task is as much 
art  as science, because it often depends on poorly un- 
derstood "rules of thumb." Furthermore, in current 
practice it is all too common that a system must be 
redesigned due to initial failure on installation. 

To address these concerns, a few researchers 
have recently begun investigating the relationship be- 
tween a vision task and acceptable sensor configura- 
tions for executing it. The ultimate goal of this line 
of research is the ability use models of the objects and 
a description of the vision task to generate a complete 
vision system, including placement of the required sen- 
sors and light sources and selection of appropriate im- 
age analysis procedures (e.g., object recognition pro- 
grams). Such a capability will form the core of future 
systems for vision system design. For example, a vi- 
sion system engineer could interactively evaluate many 
alternative designs, each one of which is guaranteed 
to satisfy the task requirements. Such operation is in 
contrast to the current trial-and-error practice where 
task requirements are sometimes overlooked, requiring 

costly system redesign. A second potential application 
of this research is to control sensors on an autonomous 
vehicle-e.g., t o  determine the appropriate sensor and 
light-source locations for performing a visual inspec- 
tion in the presence of environmental obstacles that 
were not known a priori (and therefore could not have 
been accounted for in any preplanned strategy). 

Given computer-aided design (CAD) models of 
a set of objects, a camera model and viewpoint, and 
a light-source model and location, it is possible to cal- 
culate the expected appearance of the objects. This is 
precisely the approach taken in graphical simulation. 
In contrast, we are developing techniques that use the 
desired characteristics of the resulting image and a par- 
tially specified Sensor system to solve for the remaining 
sensor parameters. In particular, this paper describes 
methods for using models of polyhedral objects in con- 
junction with models of the camera, light-source, and 
surface reflectance to determine the three-dimensional 
(3-D) regions where a camera and light source can be 
placed to satisfy the requirements of a vision task. The 
camera and light-source regions are calculated by find- 
ing their bounding surfaces, thereby describing their 
3-D shape. The remainder of this section describes 
important considerations for CAD-based sensor place- 
ment and summarizes prior work in the field. Section 
2 describes methods for placing a given camera for a 
vision task. Section 3 describes a method that inte- 
grates camera and light-source placement and presents 
a method for selecting the camera lens aperture set- 
ting. 

Limitations and Special Considerations 
An important consideration in this research area is 
the accuracy of model-based vision system configura- 
tions. In particular, no model-based technique can 
be expected to evaluate configurations to  arbitrarily 
fine accuracy because geometric models are not per- 
fectly accurate. Imperfect models are even more of a 
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problem for predicting radiant flux from light sources, 
surface reflectance, and camera sensitivity. There- 
fore, precise and time-consuming calculations for sen- 
sor placement are less important than fast, conserva- 
tive approximations.’ For example, it would not be 
appropriate to use computationally intensive graphi- 
cal rendering techniques, such as ray tracing, for ex- 
haustive examination of all possible light-source and 
camera locations. 

When selecting an “optimum” camera or light- 
source location, many criteria may need to be con- 
sidered, such as convenient mounting, traffic patterns, 
and access for maintenance. It would be extremely dif- 
ficult to construct a system that accounted for all such 
criteria. Consequently, we prefer techniques that cal- 
culate entire regions where the camera and light source 
may be placed, from which one or two are automati- 
cally or interactively selected. 

Related Work 
A system for determining unoccluded camera locations 
for a visual task was developed by Sakane et al. [l, 21. 
Their technique is to choose the radius of a sphere cen- 
tered on the object that is to be observed and to tes- 
selate the sphere such that the centroids of the regions 
on the spherical surface represent all possible camera 
locations. For each location, graphical projection is 
used to determine if the object is occluded. Groups of 
adjacent tessels are combined into regions. The center 
of the largest region is chosen as the desired viewpoint. 

A method to synthesize the entire 3-D region 
of acceptable camera locations for a visual task were 
described by Cowan et al. [3, 4, 51. The technique 
first generates a 3-D region satisfying each of the vi- 
sual requirements: spatial resolution, field of view, fe 
cus, and visibility. A special-purpose representation is 
then used for fast intersection of these regions to de- 
termine the space of possible viewpoints for the visual 
task. Improved methods for calculating the visibility 
region using hierarchical object models were developed 
by Tarabanis and Tsai [SI. These authors also devel- 
oped methods to directly calculate the optical settings 
for satisfying the spatial resolution for a vision task [7]. 

Methods to automatically determine the loca- 
tion for a light source based on the camera dynamic 
range were developed by Cowan and Bergman [8]. 
These techniques are described in Section 3 of this pa- 
per. 

Sakane et al. developed a method for selecting 
each location for a mobile light source in a photometric 

Conservative approximations guarantee that any calculated 
Some valid solutions may exist outside the solution is valid. 

region of calculated solutions. 

stereo system [9]. The technique constrained both the 
camera and light source to  enumerated locations on a 
sphere. Pairs of light-source and camera locations were 
evaluated to determine the best combination. 

The ICE system was developed by Yi et al. [lo] 
to determine an optimal sensor and light-source config- 
uration for a vision task. Their approach is to constrain 
the sensor and light source to a sphere and formulate 
the vision task as an optimization problem. Mathe- 
matical programming techniques are used to maximize 
the length of an edge that appears in the resulting im- 
age. 

2 Model-Based Camera 
Placement 

In this section we summarize our method to  deter- 
mine the region of acceptable camera locations using 
CAD models of the objects. For a given set of ob- 
ject surfaces, called the target surfaces, the 3-D view- 
point regions that satisfy the resolution, field of view, 
focus, and visibility (nonocclusion) requirements are 
determined. The 3-D region for each requirement is 
found by calculating the locus of viewpoints where the 
achieved performance equals the requirement. This 10- 
cus is a surface forming the boundary of the region of 
acceptable viewpoints. The intersection of these re- 
gions is the space where the camera can be placed to 
simultaneously satisfy all requirements. 

Spatial Resolution 
Given a minimum required spatial resolution on each 
target surface, the camera must be placed within a re- 
gion defined by the intersection of spheres. For each 
sphere the diameter depends on the required resolu- 
tion for the surface, and its center lies along the nor- 
mal vector located at each vertex of the surface’s con- 
vex hull [5]. For example, the viewpoint region that 
satisfies the resolution constraint for a square surface 
is simply the intersection of the resolution spheres for 
the square’s four vertices. The region that simultane- 
ously satisfies the resolution requirement for multiple 
surfaces is the intersection of the resolution regions for 
each surface. 

Field of View 

Since cameras have a limited field of view, there is a 
surface of minimum distance, called the field-of-view 
constraint surface, outside of which the camera’s field 

23 



of view is sufficient to contain all of the target sur- 
faces. For the simple case of an orthogonal view of a 
fixed planar surface, we determine the minimum cam- 
era distance by observing that the image pixel array 
and the minimum rectangle that bounds the surface 
form similar triangles with respect t o  the lens center. 
If we ignore perspective effects, which is appropriate to 
do when using a telephoto lens, the minimum camera 
distance is also valid for viewing directions that are not 
orthogonal to the surface. 

For target surfaces whose orientation is not 
fixed, we calculate their minimum circumscribing 
sphere and then find the field-of-view constraint such 
that the entire sphere lies in the field of view. This 
guarantees that the target surfaces will lie in the cam- 
era field of view irrespective of their orientation. 

Focus 

For any camera and lens setting there is only one d i s  
tance, called the focus distance, at which a point is 
perfectly focused on the image plane. In addition, we 
consider points within a range of distances to be in ac- 
ceptable focus if the diameter of their blur circle is less 
than the minimum pixel dimension [5] .  This range of 
dist.ances is known as the depth of field (DOF). The 
locus of viewpoints for which the extent of a target 
surface S equals the DOF forms a constraint surface 
in three dimensions-any viewpoint that lies farther 
than the constraint surface also has sufficient DOF to 
contain all of S. We use a simple iterative procedure 
to calculate the constraint surface such that all of the 
target surfaces are in focus. 

Visibility 

The visibility constraint is the requirement that all tar- 
get surfaces must be completely visible from the se- 
lected sensor location. The 3-D region of viewpoints 
where an object, 0, occludes a portion of a target sur- 
face, S, is bounded by a set of planes generated by 
combining the edges of 0 with the vertices of S. For 
multiple occluding objects, we find the occluded view- 
point region for each of these objects and then take the 
union of the resulting occluded regions to obtain the 
entire set of occluded viewpoints with respect to tar- 
get surface S. The set of viewpoints that satisfies the 
visibility constraint for observing S is the complement 
of the set of the occluded viewpoints. 

Camera Placement Example 
As an example task, consider the dimensional inspec- 
tion of the 3 slots (10” x 30”) in the base of the 
bracket shown in Figure l (a)  to a minimumspatial res- 
olution of 1.5 pixels per millimeter. In this case, the 
target “surfaces” are in fact rectangular holes in the 
sheet metal. We compute the viewpoint regions that 
satisfy the resolution, focus, field-of-view, and visibil- 
ity constraints for the three slots. At run time a bi- 
nary vision module provides the bracket location, and 
the system then calculates the viewpoint region that 
satisfies all of the constraints. The image obtained 
from one such viewpoint is shown in Figure l(k). The 
polyhedral appearance of the regions is due to display 
quantization. 

3 Model-Based Light-Source 
Placement 

In this section we summarize our method for integrated 
camera and light-source placement, then present new 
light-placement techniques that guarantee that speci- 
fied object edges will be detected by the image pro- 
cessing system. 

3.1 Lens Aperture Selection 
The methods described in the previous section used a 
given lens aperture (for calculating the focus require- 
ment). In practice, however, we must relate the lens 
aperture to the required illumination. We have there- 
fore developed a four-step method for selecting an ac- 
ceptable lens aperture. 

Calculate the viewpoint region that satisfies the 
resolution, field-of-view , and visibility require- 
ments, as described in the previous section. 

Find the maximum aperture diameter, amo+, for 
which the focus constraint intersects region R, as 
shown in Figure 2. This may be found by ex- 
amining the quantized polar representation of re- 
gion R, determining the largest aperture for each 
ray through R, and keeping the global maximum. 
Since amaI is the largest usable aperture, it is re- 
lated to the minimum scene brightness, or radi- 
ance. 

Determine the diffraction-limited aperture, ad, 
that occurs when the angular separation of the 
two first minima of the diffraction pattern corre 
sponds to the pixel size. That is, for pixel size, p, 
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(a) Bracket photograph. (b) Bracket model. 

(d) Focus constraint region. (e) Field-of-View 
constraint region. 

(g) Viewpoints from (f) 
occluded by sides of bracket. 

(j) World viewpoints that 
satisfy all constraints. 

(h) Bracket placed beside 
obstacle in world. 

(c) Resolution constraint region. 

(f) Viewpoints satisfying 
constraints (c), (d), and (e). 

c 

(i) World model and viewpoints 
occluded by obstacle. 

(k) Sample image obtained 
(looking over obstacle). 

(1) Bracket, obstacle, and 
camera for sample image. 

Figure 1: Viewpoint Constraints for Inspecting the Dimensions of Three Slots of a Bracket. 
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I I 
Figure 2: Choosing the Maximum Lens Aperture 

and image plane distance, U, the following relation 
holds: 

This criterion is illustrated in Figure 3. Note its 
magnitude is twice that of the Rayleigh criterion, 
which is also arbitrary. 

Because the actual camera location is not yet 
known, the focus distance and hence the image 
plane distance are also not known. A conserva- 
tive estimate for ad is found by assuming that the 
camera is placed at  the viewpoint in R closest to 
the target (thus maximizing v). 

Also of interest is aperture OR, the one for which 
the focus region contains all of R. If O R  is larger 
than ad, then it is a good choice for the minimum, 
a,,,, , since smaller apertures do not result in addi- 
tional freedom for locating the camera. Otherwise, 
set amin to a d .  

4.  Choose aperture U in the interval [amin, amor]. 
Since any value in the range will suffice, the actual 
aperture is usually chosen on the basis of other 
criteria. For example, larger apertures have less 
stringent light requirements, but smaller apertures 
have greater depth of field and typically reduce 
the effects of some lens aberrations, e.g., spherical 
aberrations. In our example cases, we choose the 
largest possible lens aperture because of the low 
power of the light source used. 

After choosing an aperture, the final step in 
camera placement is to calculate the region satisfying 
the focus requirement for the chosen aperture and to 
intersect it with the other requirements to find the re- 
gion of acceptable camera viewpoints. 

I I 
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Figure 3: Image Diffraction of a Distant Point 

3.2 Light Placement for Camera Dy- 
namic Range 

Our current approach is to use a single point light 
source and to model reflectance from each surface as 
having a diffuse component that follows Lambert's co- 
sine law and a specular component forming a lobe 
within an angular tolerance, 11, of the perfect spec- 
ular angle. That is, for each surface a fraction, PA, of 
the incident light is absorbed (heating the surface), a 
fraction, p ~ '  is reflected diffusely, and a fraction, ps, is 
reflected specularly, where PA + p~ + ps = 1. 

The 3-D region where a point light source can 
be placed to achieve adequate illumination depends on 
the dynamic range of the camera (the allowable interval 
of irradiance at  the camera, [&,"in, E c , ~ ~ ~ ] ,  in watts 
per square meter). The scene radiance (brightness), 
Ls, at every point is related to  the image irradiance 
(for the projection of that point) as follows: 

Ls = - 1 

where k is the fraction of light transmitted by the lens, 
Q is the angle from the camera's principal axis, and a 
and U are the lens aperture and image plane distance, 
respectively. 

Diffuse Reflectance 

For a Lambertian surface, the scene radiance at ev- 
ery point is proportional to the irradiance a t  that 
point [ll]. For an infinitesimal patch of such a sur- 
face, it has been shown [8] that the distance of the 
light source, r ,  is related to the camera irradiance: 
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CAMERA 

Figure 4: Region of Acceptable Light Locations for 
Illuminating a Single Point. 

where is the total flux of the point source (in 
watts) and 0 is the incident angle. 

Note that minimum and maximum light source 
distances at  a given incidence angle are independent of 
the distance between the camera and the target sur- 
face. This is because the target surface area that each 
camera pixel “sees” increases with the square of the 
distance, cancelling the decrease in light intensity. 

One may also observe that only 1 term in Equa- 
tion 3 depends on the camera-to-target geometry-the 
off-axis angle, cr. When using a long telephoto lens 
the off-axis angle is negligible. For such a case, the 
light-source distance must lie in the interval [ P I ,  r ~ ] :  

r1 = K~G 1 (4) 

r2 = K2- , (5) 
where K 1  and K 2  are the same for all camera positions. 
That is, the camera may be positioned independently 
of the light source when a telephoto lens is used. 

In summary, the 3-D region where a point light 
source may be placed so that the diffuse reflection from 
an infinitesimal surface patch is within the camera’s 
dynamic range lies between 2 closed curves that are 
proportional to the square root of the incident angle, 
as shown in Figure 4. 

For properly illuminating an entire surface, the 
light-source region? Rdiffuse, is the intersection of the 
regions for all the infinitesimal patches on the surface. 
This region can be calculated by intersecting the inte- 
rior regions of the rl curves for the vertices of the sur- 
face and subtracting the convex hull of the r2 curves 
for the vertices - as long as the light source is placed 
within the intersection of the rl curves, all surface 
points will receive sufficient illumination; as long as 
the light source is outside of all the r2 curves, no sur- 
face point will appear too bright. 

TARGET 

Figure 5: Light Location Region where Specular Re- 
flection Is Seen by Camera. 

Specular Reflectance 

Although specular reflections can sometimes be used to 
advantage in machine vision tasks, we currently wish 
to avoid specular reflection into the camera. Therefore, 
we wish to calculate the light-source region, Rspecular, 
where specular reflection is seen by the camera so that 
we may subtract it from RdiflUse. Consider the illu- 
mination of a perfect mirror surface with a point light 
source. The entire surface would appear dark from 
the camera viewpoint, except that  for some light po- 
sitions a single bright point will appear in the image. 
As previously described, we model the specular com- 
ponent of reflection as a cone whose axis is the perfect 
specular angle and has apex half-angle 4. Figure 5 
shows a cross-section of a specular surface, with re- 
gion Rspecular shown as the shaded region. The dot- 
ted lines illustrate the region that would result if 11, 
were zero. Note that for any polygonal surface, re- 
gion Rspecular can be found by connecting the spec- 
ular light source directions of the polygon’s vertices, 
including the angular tolerance $. 

3.3 Experiment 
In order to test these methods, we have developed 
a system having a camera on one robot arm and a 
small incandescent light source (approximating a point 
light source) on a second. The example object used to 
demonstrate these methods is shown in Figure 6. This 
object was chosen because it contains several gray lev- 
els and because the surface reflectance has a significant 
specular component. We model the top of the object 
as a set of 4 polygonal surfaces. Although the sur- 
faces have different spectral properties (i.e., they are 
different colors), we currently treat them as grayscale 
only. Similarly, we do not currently take account of the 
spectral properties of the light source or of the camera. 
The surface reflectance properties have been measured 
as follows: 
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- TARGET 
SURFACES 

Figure 7: Camera Viewpoint Region Satisfying the 
Resolution, Field-of-View, and Focus Requirements. 

- PL - * 
Light Gray .704 15” 
Medium Gray .563 15” 
Dark Gray .469 15” 

The camera viewpoint region shown in Figure 7 
simultaneously satisfies the resolution, field-of-view, 
and focus requirements for the object. For this ex- 
ample, we simply choose the viewpoint at the centroid 
of the region and use it to determine the possible loca- 
tions for placing the light. 

As described in the previous section, we deter- 
mine the light location region by finding the lighting 
regions for the vertices of the target. The light loca- 
tion regions for three target surfaces are superimposed 
in Figure 8. The size of the bounding shapes follows 
the diffuse surface reflectance: the largest shape is the 
“rl” curve for one vertex of the light-gray surface; the 
medium-sized shape corresponds to all vertices of the 
medium-gray background; the smallest “rl” shape cor- 
responds to the vertices of the dark-gray surface. The 
“r2” shapes for the three target surfaces are superim- 
posed in the lower portion of the figure. 

The region RdiRUse is calculated by intersecting 
all the minimum-brightness regions and then subtract- 

Figure 8: Superimposed Light-Location Regions for 
Three Target Surfaces: Light Gray (largest light- 
location region), Medium Gray (mid-size region), and 
Dark Gray (smallest region). 

ing the union of the maximum-brightness regions. For 
this example, it was not necessary to form the convex 
hull of the maximum-brightness regions (as previously 
described) because the light region shapes are much 
larger than the target surfaces. We calculate region 
Rspecular and subtract it from region Rd,ffuse, leav- 
ing the region of acceptable light positions, as shown 
in Figure 9. 

To test these results we positioned the camera 
as described above and placed the light source on the 
surface of maximum brightness. The image obtained 
at one such light position is shown in Figure 10. As ex- 
pected, one vertex (the lower-right vertex of the light- 
gray surface in this image) appears to be saturated. As 
a further test we then calculated the distance such that 
the medium-gray vertex (adjacent t o  the light-gray one 
used above) would saturate and moved the light source 
there (see Figure 11). As expected, there is a loss of 
contrast along the edge between the surfaces. 

3.4 Light-Source Placement for Edge 

The light-source placement techniques described 
above, while a necessary first step, do not provide 
all the functionality required for vision system design. 
One key aspect of this type of design is enabling the 
detection of particular object features, such as object 
edges. The next two subsections describe our model 
of image digitization and the relevant characteristics 
of edge detection. The last subsection describes how 

Detection 
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lighting placement takes these into account to guaran- 
tee that specified object edges will be detected. 

Image Digitization 

An image is formed by light that  passes through the 
camera lens, irradiating the pixels in the camera image 
plane. The light falling on the pixels generates an elec- 
tric charge, and the camera periodically transfers the 
accumulated charge at each pixel to generate an ana- 
log signal. This signal is then sampled by the digitizer 
to produce a “gray level” for each image pixel. Such 
gray levels are typically encoded in 8 bits, resulting in 
a range of gray level values from 0 through 255. The 
transformation between image irradiance and digitized 
pixel values for our system was determined experimen- 
tally, producing the data shown in Figure 12. Based 
on these data, we use a linear model to relate image 
irradiance ( I )  to pixel value (P): 

Figure 9: Region of Light Locations 

~i~~~~ 10: I~~~~ with Light on Surface of ~~i~~~ 
Brightness 

the Sobel operator the proportional constant is 4.0 if 
the edge is aligned with the image rows and columns; 
the constant is 4.2 if the edge is diagonal to the image. 
Thus, the threshold on gradient magnitude for edge 

Figure 11: Image with Light on Surface of Maximum 
Brightness for Medium Gray Surface 

detection can be converted into a required difference 
in pixel values across an edge. 

Pixel Contrast and Light Locations 

Consider a straight, dihedral edge, having included an- 
gle $, and two small surface patches, A and B, on ei- 
ther side of the edge, as shown in Figure 13. Further 
assume that the reflectance properties of both patches 
are identical. If the light source is placed along the 
average surface normal of A and B, then the incident 
angles for the patches will be equal and they will ap- 
pear equally bright, preventing detection of the edge 
between them. The contrast across the edge increases 
as the light source is moved farther from the average 
normal, until a limiting case is reached, where the light 
source becomes coplanar with one of the surfaces. 
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Figure 14 shows the two infinitesimal surface 
patches from Figure 13 with surface normals labeled 
NA and N E ,  respectively. Consider a point source lo- 
cated at  an arbitrary location, L ,  forming incident an- 
gles e A  and OB. Let R be the distance from L to the 
infinitesimal patches, f? be the projection of L onto the 
plane formed by NA and N E ,  Q be the angle of f? mea- 
sured from N E ,  and p be the angle of L out of the 
plane of NA and N E .  

Since we need only consider the diffuse compo- 
nent of reflection (we are avoiding locations causing 
specular reflection into the camera), the pixel gray lev- 
els of the two patches are proportional to the cosine 
of the incident angles, and inversely proportional to 
the square of the point-source distance. Therefore, the 
pixel difference requirement is 

Substituting and solving for the point-source distance 
as a function of angle, 

Figure 15 shows a perspective plot of distance 
( R )  versus angle (a, p)  for Equation 7,  when the dihe- 
dral angle ($) is 90 degrees and A P  is 30 gray levels. 
Vertical lines denote the limiting angles, a = 0 and 
Q = $, at p = 0. An orthographic projection of these 
data appears in Figure 16. These data form two fam- 
ilies of curves; each family forms a boundary between 
the regions of acceptable and unacceptable light loca- 
tions. The unacceptable light locations, where insuffi- 
cient contrast would result, lie between the two families 
of curves (see Figure 16). When Q = $/2, no value of 
R provides sufficient contrast (however, due to quanti- 
zation error in the sampling of Q angles for generating 
the display, the minimum data values in these figures 
are not zero). 

In the future we plan to use the relationship in 
Equation 8 to remove the unacceptable light locations 
for each target edge by sweeping this shape along the 
edge and removing the locations that lie between the 
families of curves. We will then verify these techniques 
by detecting edges on a variety of objects and extend 
this analysis to other types of edge detectors. 

Acknowledgement 
The authors gratefully acknowledge the support pro- 
vided by National Science Foundation Grant DMC- 
8714492. 

30 

References 
11 S. Sakane, M. Ishii, and M. Kakikura. Hand-eye 

simulator: A basic tool for off-line programming 
of visual sensors. In Proc. 1985 Int. Conf, on Ad- 
vanced Robotics, 1985. 

21 S. Sakane, M. Ishii, and M. Kakikura. Occlusion 
avoidance of visual sensors based on a hand-eye 
action simulator system. International Journal of 
the Robotics Society of Japan, 2(2), 1987. 

[3] C.K. Cowan, J.L.  DeCurtins, P.D. Kovesi, P.G. 
Mulgaonkar, and D. Nitzan. Automated sensor 
placement. In Proceedings of the 13th NSF Man- 
ufacturing Systems Research Conference. Society 
of Manufacturing Engineers, Dearborn, Michigan, 
1986. 

[4] C. K. Cowan. Model-based synthesis of sensor 
location. In Proc. IEEE Conference on Robotics 
and Automation, April 1988. 

[5] C.K. Cowan and P.D. Kovesi. Automatic sensor 
placement from vision task requirements. IEEE 
Trans. on PAMI, May 1988. 

[6] K. Tarabanis and R. Y. Tsai. Viewpoint planning: 
the visibility constraint. In Proc. DARPA Image 
Un de rst a n ding Workshop, 1 989. 

[7] K .  Tarabanis, R. Y. Tsai, and P. K. Allen. Satis- 
fying the resolution constraint in the “mvp” ma- 
chine vision planning system. In Proc. DARPA 
Image Understanding Workshop, pages 850-860, 
1990. 

[8] C. K .  Cowan and A. Bergman. Determining the 
camera and Iight-source location for a visual task. 
In Proc. IEEE Conference on Robotics and Au- 
tomation, May 1989. 

[9] S. Sakane, T .  Sato, and M. Kakikura. Develop- 
ment of an active vision planning engine towards 
autonomous hand-eye coordination. In Proc. 20th 
ISIR, Tokyo, October 1989. 

[lo] S. Yi, R. M. Haralick, and L. G. Shapiro. Au- 
tomatic sensor and light source positioning for 
machine vision. Technical Report EE-ISL-89- 
04, Dept. of Electrical Engineering, University of 
Washington, Seattle, Washington 98 195, Septem- 
ber 1989. 

[ l l]  Nicodemus, F.E., et al. Geometrical considera- 
tions and nomenclature for reflectance. National 
Bureau of Standards, Monograph 160, 1977. 



GRAY 
LEVEL 

I 
1 I 1 

3 6 9 
IRRADIANCE (rriucw& /4m) 

Figure 12: Experimental Data Relating Image Irradi- 
ance and Digitized Pixel Values 
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Figure 15: PoinbSource Distance versus Angle 

Figure 13: Infinitesimal Patches along a Dihedral Edge 

Figure 14: Light Placement for Dihedral Edge 
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Figure 16: Projection of Distance versus Angle 
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