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Abstract. A successful 3D object recognition system must take into account 
imperfections in the input data, due for example to fragmentation or sensor noise. 
In this paper we propose a methodology for robust 3D object recognition using 
uncertain image data. In particular, we present a method capable of achieving 
acceptable performance in the presence of both segmentation problems and sensor 
uncertainty, thus eliminating the need for ad hoc heuristics. The proposed method 
is based upon the use of probabilistic models suggested by the underlying physics 
processes. These models are statistically validated and tested under controlled 
experimentation. 

1 Introduction 

Object recognition systems attempt to locate instances of objects in images. Most 
progress in this area has been made in industrial applications, such as robot manipulation 
and product inspection, where the visual environment can be controlled and the shape 
of the objects to be imaged is known in advance. 

Many model-based systems find correspondences between model features and fea- 
tures detected in an image. Examples of features are points, edges, holes, junctions, 
or a combination of these. These correspondences are found using techniques such as 
interpretation trees [8, 6, 2], hashing [28, 4],'alignment [14], and bipartite search [17]o 
The pairings are such that the features in the image can be obtained (approximately) 
by applying a geometric transformation to their corresponding model features. This 
transformation is usually referred as the pose of the object, that is the position of the 
object with respect to a coordinate system. 

A successful 3D object recognition system must take into account imperfections in 
the input data, due for example to fragmentation or sensor noise. However, although 
there currently exists efficient model-based vision systems capable of recognizing and 
locating objects using nearly-perfect data, their performance degrades dramatically 
when confronted with real, non-perfect images. Recently some progress has been made 
in handling non-perfect data due to segmentation problems [1] and in analyzing the 
effect of sensor uncertainty [9]. 

* This work was supported in part by NSF grant IRI9309100 and in part by a Pennsylvania State 
University Research Initiation Grant. 
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In this paper we propose a methodology for robust 3D object recognition using 
uncertain image data. In particular, we present a method capable of achieving acceptable 
performance in the presence of both segmentation problems and sensor uncertainty, thus 
eliminating the need for ad hoc heuristics. The proposed method is based upon the use 
of probabilistic models suggested by the underlying physics processes. These models 
are statistically validated and tested under controlled experimentation. 

2 Model Representation 

The problem of describing the models is critical to the success of any object recognition 
system. Characteristic views [3, 15, 1] are commonly used to describe models for 
recognition purposes. A characteristic view is a representative view of a grouping of 
views or view aspect with similar properties. 

The view aspect concept is very important in object recognition since it captures the 
topological characteristics of the views of an object. It allows a compact representation 
of the features of the models to be matched against the features in an image. Then, 
the object recognition/localization task can be divided into the following steps: (1) 
determine the correct view class; (2) find the correspondences between the features 
extracted from the image and those in the view class representation; and (3) use these 
correspondences and the links between the 3D features and the view class features to 
determine the pose of the object. 

2.1 Characteristic Views 

Characteristic views can be found by analytically partitioning a viewing sphere centered 
at the object into aspects [27, 5, 26]. The boundaries between these aspects are very 
accurate. However, the number of aspects tends to be large due to accidental viewpoints. 
An alternative approach, is to uniformly sample the viewing sphere around the object 
and to group together views that are "similar" [19]. This method results, in general, in a 
lesser number of aspects. However, the number of aspects will depend on the resolution 
of the sampling scheme and on the similarity measure used. In this paper, we use the 
later method, since it allows to limit the number of views and it is easy to implement. 

The views obtained from the sampled viewing sphere are grouped into equivalence 
classes using a similarity metric. For this particular application we decided to cluster 
views depending on which model segments were observed in the views. Thus, each 
cluster had views in which roughly the same segments were observed. This is a simple 
but effective criteria for classification. 

2.2 Probabilistic Prediction Models 

In order to be robust to data uncertainty, physics-based knowledge of surface reflectance 
properties, light sources, sensor characteristics, and feature detector algorithms is incor- 
porated to the view clusters. 

For each view cluster C, we currently use the system PREMIO [1] to build a 
probabilistic prediction model combining hundreds of segmented views within the 
cluster. In the future, we will also use information obtained from real training images. 
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Fig. 1. (a) Fork image. (b) Segmented image. (c) Representative View. (d) Corresponding proba- 
bilistic model. (e) Alignment of (b) with (d). (f) Alignment of (b) with a different model. 

A model M is represented by a quadruple M = (L, R, fL,  gR) where L is a set of 
model features or labels, R is a set of relational tuples of labels,fL is the attribute value 
mapping that associates a value with each attribute of a label L, and gR is the strength 
mapping that associates a strength with each relational tuple of R. 

The set of labels L is formed by only those 2D features that have high enough 
probability of being detected for the given set of sensors and light sources. Furthermore, 
each feature in L has associated attributes which are given by the mean and the standard 
deviation of the attribute values of the feature for the n predictions. Similarly, the set of 
relational tuples R is formed for those relations among features in L such that they have 
high enough probability of holding. As with feature attributes, the relationship attribute 
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values of the tuples in R are represented by the mean and standard deviation of the 
relational tuples for the n predictions. 

The model M obtained in this way, is a probabilistic model of the object for the 
given set of configurations of sensors and lights. Note that neither all the features in L, 
nor all the relational tuples in R need to be present in a single prediction. Neither do all 
the features of a particular prediction need to be in L. The model M combines a group 
of predictions into a single model, which is a sort of "average" model. The differences 
between the model M and the individual predictions that were used to build the model 
are summarized in a set of statistics O [1]. 

Figures l(a) and (b) show an image of an object and the corresponding segmentation. 
Figure 1 (c) shows a representative view for the object in (a). Figure 1 (d) shows a 
visualization of the corresponding probabilistic model, where the segments are drawn 
using their mean attribute values and the numbers by the segments indicate their relative 
detectability, with the lower the number, the higher the detectability. 

3 View Classification 

Given an image, the objective is to find which object and in particular which view class 
it was originated from. Let Cl, C2, . . . ,  Cn be a set of potential view clusters. Given an 
image/ ,  our aim then, is to select the cluster Ci to which the image will most likely 
belong to. To achieve this, we use a Bayesian approach. 

Let P(C) be the a priori probability that an image from cluster C will be observed, 
and let P(IIC) be the probability that a given image I is captured when the object is 
observed from a viewpoint within cluster C. 

Then, given an image L we will classify it as coming from cluster Cm, if the a 
posteriori probability P(CI/) is maximum for C = Cm. 

The a posteriori probability P(CI I) can be computed using the Bayes' Theorem: 

P(C I/) = P(Ii C)P(C) (1) 
~i=~, ,n P(I I Ce)P(C~) 

3.1 Probabilistic Model 

In order to apply (1), we need to compute the involved probabilities. 
The probabilities P(C) can be estimated from the area that the corresponding cluster 

spans on the viewing sphere. The larger the area, the higher the probability. The proba- 
bilities P(II C) depend on the selected features comprising the model. We will model this 
probability as a multivariate Gaussian distribution with mean vector p_ and covariance 
matrix S of the form: 

P(IIc) = N~ (~, S)  (2) 

where x__ is (d+4) • 1 feature vector representing the image L The feature vector x_ consists 
of: the number of segments in the image, the number of junctions of 2 segments, the 
number of junctions of 3 segments, the number of triples 2, and a feature metric error 

2 A triple is an ordered set of three lines, with the lines traced clockwise. 
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for the d most detectable segments. \the mean and covariance matrix of the distribution 
can be estimated from a set of samples generated with the prediction module of the 
PREMIO system. 

Figure l(e) shows the segmented image (b) aligned with the probabilistic model 
with the highest a posteriori probability, while (f) shows it aligned with a second model 
with lower probability. 

4 Feature  Select ion 

Once the object and view cluster are identified, the system proceeds to match a set of 
image and model features. The use of a small set of features is recurrent in the literature 
[22, 12, 23, 13, 10]. Since these correspondences will be used to compute the pose of 
the object, the problem of selecting "good" features is of interest. We propose to select 
these features based on measurements O f ' their detectability, reliability, and accuracy, 
using concepts similar to the ones introduced by Ikeuchi and Kanade in [16]. 

4.1 Feature Detectability and Reliability 

Let M be a model, L be a set of model features, I be an image of M, U be a set of image 
features, and h : H --~ U, H C_ L be the mapping that associates a set H of model features 
to the corresponding image features. Let I be a model feature, I E L, and u = h(l) be 
the corresponding image feature, u E U. The feature detectability of l, denoted DM(1) is 
given by: 

DM(1) = P (l E H I M )  (3) 

Because a model can have several features with similar attributes, all of  which 
could potentially be matched with the same image feature, feature detectability alone is 
not sufficient to determine which correspondence is correct. In order to determine the 
correctness of a match, the matching routine needs to know not only how detectable a 
model feature is, but also how "reliable" it is. 

The feature reliability of l, denoted as RM(l) is defined as the probability that a 
hypothesized correspondence between a model and image feature will be correct given 
that the model feature is detected in the image: 

RM(l) = P (1 --+ h(l) [ l E H, M)  (4) 

Feature reliability is an extension of feature detectability in the sense that a model 
feature must be detected in the image in order for a correspondence to be hypothesized 
and only then the correctness of the match can be assessed. 

Computing feature detectability is rather straightforward. PREMIO approximates 
the detectability of a feature by the frequency at which it appears in a set of images. 
However, computing feature reliability is a more complex problem since it involves the 
process by which a correspondence is hypothesized, Next, we will discuss the theory 
supporting a method of computing feature reliability and illustrate its use in an object 
recognition system. 
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Let Z be the set of all possible images of M, then RM(1) can be expressed as the 
feature reliability contributions for l integrated (summed) over all images of 2?. Formally, 

RM(l) = .fz P (l ~ h(l) I 1, l E H, M) .P (I ] I E H, M) dI (5) 

The reliability depends on how correspondence hypotheses are made. We assume 
that the matching strategy will hypothesize a correspondence bet~veen a label and a unit 
only if they are "sufficiently similar". 

Let p(l, u) be a metric that measures the similarity between the feature attributes of 
1 and h(1), where h(l) is the observation of 1 in an image. Based on our experiments and 
the Central Limit Theorem, the similarity between the label I and its corresponding unit 
can be modeled as a Gaussian distribution, denoted Pp~(Pt) = Npt(Pp~, o'p~). 

Given Ppt(Pl), it is natural to hypothesize a match between l and u only if 

(6) 

where lip(l, u) - #o~[l~ot is the squared Mahalonabis distance between p(l, u) and the 
expected value of p(l, h(l)) and Th is a threshold measuring the maximum allowed 
difference between the observed metric value and its expected value. 

Consider the set of image features, U, and a label 1 E L. Then, the subset of units that 
could potentially be matched with I is the subset of units, C, such that they satisfy (6): 

c = {u u e v, flp(t, u ) -  <_ r h }  

Thus, the first factor in the right side of (5) can be expressed as 

( 0 ifh(l) C 
P (l ~ a(l) 11, l ~ H,M) = ~. 

~e otherwise k 
(7) 

where # denotes cardinality. 
The second factor in the right side of (5) can be expressed using Bayes rule and (3) 

as:  

P ( l C H  ]I,M) P ( I  Im)  
P (I [l C H,M) = DM(l) 

The probability P (l E H [ I, M) is the probability that label 1 is detected given that the 
observed image is I and the model is M, and it can be modeled as 

if #C = 0 
P (1E H [I,M) = { 10 otherwise 

Finally, P (I ] M) is provided by PREMIO's statistics 0 [2]. 



303 

RD Heuristic 
Feature reliability and detectability can be combined to form a joint ("RD") heuristic 

in order to produce a matching routine which is more efficient than a routine using 
detectability alone. The RD joint heuristic can be stated as the joint probability of 
feature reliability RM(1) and detectability DM(I) denoted as P (l --+ h(l), l E H I M) .  By 
definition of conditional probability and (3) and (4): 

P(l ~ h(/), 1 E HIM) = 

= P (1 ~ h(l) ]l E H , M )  P (l E H I M )  = 

= RM(1)DM(I). 

The probability P (l --* h(1), 1 E H [ M)  can then be used to rank the labels to be 
matched. Thus, a matching routine can use these rankings to make more reliable hy- 
potheses reducing potential mistakes and expensive backtracking. 

Figure 2 (a) shows the new rankings for the model given in Figure 1 (d) when the 
RD heuristic is used. Figures 2 (b) to (d) compare the performance in terms of their CPU 
time, probability of false alarm (finding the wrong correspondences) and probability of 
misdetection (not finding a set of correspondences) of an iterative deepening search 
algorithm [2] when only detectability or both detectability and reliability heuristics are 
used. It is observed that both CPU time and false alarms are always less for the RD 
heuristic. The probability of misdetection is also better for the RD heuristic up to 13 
correspondences. 

4.2 Feature Accuracy 

Most methods to compute the pose use a few point-to-point [ 11,8] or line-to-line [20, 21] 
correspondences. If the data is perfect with no sensor uncertainty and with no incorrect 
correspondences, then the pose is exact, and the transformed model features exactly 
coincide with the image features. However, in most real cases the noise in the data will 
propagate into the pose. Moreover, the extent of the effect of the uncertainty depends 
on the correspondences used to compute it. 

Currently, we are investigating the following problem: 

Let N be the number of model features and n _< N be the (small) number of 
features that will be assigned a correspondence and will be actually used to 
compute the pose of the object. Then, find the subset of n model features such 
that the effect of the data uncertainty in the estimation of the pose is minimized. 

In [7] we reported a suboptimal solution for this problem for the special case when the 
features are points, the pose estimation algorithm is an iterative least square procedure, 
and the translation of the camera is constrained. In this case, the sensitivity of the pose 
estimation algorithm to the noise in the data is given by the amount of perturbation on 
the rotation matrix due to a small perturbation in the data. Using a sensitivity analysis 
similar to the one presented in [ 11 ] we showed that the trace of the matrix (J 'J)-  1, where 
J is the Jacobian matrix of the image points with respect to the incremental correction 
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Fig. 2. (a) RD segment ranking. (b) Matching CPU time. (c) Probability of  False Alarm. (d) 
Probability of Misdetection. 

on the pose, can be used as a measure of  the sensitivity of  the pose to the noise in the 
data. Thus, the subset of  n points that minimizes  the trace o f  the above matrix: 

min { trace ( f  J ) -  1 } (8) 
Subsets of n points 

is a good choice from these considerations. Unfortunately, the number of  possible  
subsets of  n points is, in general, too large to attempt to solve this minimization problem 
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directly. However, a suboptimal solution to this problem can be obtained by using an 
incremental approach: 

The Greedy Algorithm 

Given a subset 7~k of k model points, select a model point m such that the trace 
of (j,j)-i is minimized for the extended subset 7~k+1 = 79k U {m}o 

The proposed algorithm is a greedy algorithm that finds a model point such that 
when it is added to the points used so far, the computed pose is robust to the noise 
present in the data. The algorithm is suboptimal since it has a limited horizon of one 
point at a time. 

Selection ofinitialpoints. The pose estimation algorithm starts with an initial rotation 
R (~ and then iterates to refine this pose. In order to compute the initial rotation R (~ 
a minimum of two points correspondences are required. Let ma and m2 be two model 
points. It  can be easily shown that if ml, m2, and the origin of the world reference 
frame are aligned, i.e. m2 = a.ml,  the estimated pose is not unique. Furthermore, if 
the points ml and m2 are close to the origin, a small perturbation in the coordinates 
of the corresponding image points leads to a large change in the estimated pose.This 
suggests the heuristic rule that the initial points should be selected such that the area of 
the triangle formed by the two model points and the origin is maximum. 

Selection of subsequent points. Once k correspondences have been found the problem 
of selecting the next correspondence such that the estimated pose is robust reduces to 
selecting the model point that minimizes the trace of the 3 • 3 matrix ( f  J ) -  a that can 
be computed incrementally [7]. 

Handling outliers. The initial rotation R (~ is found by solving a system with four 
equations and three unknowns such that a least square error criterion is minimized for 
the two initial model points. If  the error of this fit is too high, at least one of the points 
is likely to be an outlier and a newpair of points is selected~ 

When a subsequent point is added, one can use the current rotation R (k) to project the 
model points currently used and compare their location with their corresponding image 
points. If  the distance between these is higher than a multiple of the standard deviation 
of the noise, then the point is rejected as an outlier. 

If  at a given point, too many points are classified as outliers, the initial points are 
suspected as outliers and the process starts again for a new pair of initial points. 

Fig. 3 shows the results obtained with an image of a bookend. Fig. 3(a) shows a 
grayscale image of the bookend with the model points highlighted. Fig. 3(b) shows the 
back projection of the model when all the model points are used to compute the pose. 
Fig. 3(c) shows the back projection of the model onto the image when four random 
points (circled on the figure) are used to compute the pose. Finally, Fig. 3(d) shows the 
back projection of the model when four points are selected using the greedy algorithm 
(circled on the figure). Clearly, the greedy solution is better than the random one, and 
comparable to the one obtained using all the points. 
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Fig. 3. Bookend image. (a) Grayscale image with model points highlighted. (b) Back projection 
using all the model points. (c) Back projection using four random model points (circled on the 
figure). (d) Back projection using four points selected using the greedy algorithm (circled on the 
figure)~ 

We are currently working on the generalization of this algorithm to the case when 
the features are line segments. We plan to combine the new results with our current 
detectability and reliability heuristic to form a joint heuristic to guide the matching 
routine in the selection of the next correspondence to be sought. 

5 Performance  Evaluat ion  

The importance of controlled experiments has only recently been stressed in computer 
vision. Controlled experiments are essential in order to illustrate the validity of a solution 
presented. We tested all the modules described here using artificially generated data as 
well as real images. The experimental protocol used has six steps: 1) modeling of the 
ideal inputs and the random perturbation processes; 2) annotating ground truth data; 3) 
estimating the free parameters of the random models; 4) statistically validating these 
models; 5) testing the algorithms; and 6) analyzing the results. 
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Appendix A gives the experimental protocol used to evaluate the performance of the 
RD heuristic. A detailed description of the protocol for the view classification module 
is given in [25], and for the greedy algorithm to select features based on pose accuracy 
is given in [7]. 

6 Discussion 

A successful 3D object recognition system must take into account imperfections in 
the input data, due for example to fragmentation or sensor noise. However, although 
there currently exists efficient model-based vision systems capable of recognizing and 
locating objects using nearly-perfect data, their performance degrades dramatically 
when confronted with non-perfect images. We believe that to overcome these problems 
we must develop a robust 3D object recognition paradigm. Specifically, we need to: 

1. Develop mathematical models for robust 3D object recognition from uncertain 2D 
image data. 

2. Develop matching schemes that use these models to robustly recognize and compute 
the pose of an object. These schemes should also provide levels of confidence for 
the hypothesis made. 

3. Develop thorough experimental protocols to characterize the performance and ro- 
bustness of the systems. 

We believe that techniques from robust statistics coupled with physics-based knowl- 
edge in a Bayesian framework are promising tools to achieve these goals. Our prelim- 
inary results show that they naturally lead to rigorous models capturing the underlying 
physical processes and that they are subject to experimental validation. 
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A RD Heuristic Experimental Protocol 

A.1 Probabilistic Prediction Model Generation 

Model Generation. PREMIO generates the model M using the following steps: 

1. Select a region 12 of the viewing space. The region 12 is a spherical sector between 
two spheres. It is specified by the range of the longitude (~vmin, ~vma~) and latitude 
(0~min, 0~max) angles and the radius of the viewing sphere (Rvmin, Rvmax). 

2. Select a region 77 of the illumination space. This region is specified by the range 
of the longitude (~imin, ~i~imax) and latitude (Olin, Oimax) angles and the radius of the 
illumination sphere ( Rin-fin, Rimax). 

3. Given the desired number of samples N~ and Ni, sample the viewing and illumination 
space regions. Let 12s be the set of the sampled viewing positions and Is the set of 
the sampled lighting positions. 

4. Generate the predictions. For each pair (v, i) E ])s x Is, predict the subset of 
detectable labels L~i, its associated attribute mapping f~i ,  the subset of detectable 
relational tuples R~i, and its associated relationship strength mapping gRv~. Also 
generate the corresponding set of units Uvi, the associated attribute mapping f u ~ ,  
the set of relational tuples Svi, and the associated strength mapping gs~,. 

5. Obtain the detectability values for each label l. The previous step produced Nv x Ni 
different predictions. Approximate the probability of a label/relationship being 
detected, given that the view and light are in the specified regions 12 and 77, by the 
observed frequency rate of their detectability in the generated predictions. These 
approximations are based on the fact that the predictions were made from uniformly 
sampled camera and light positions as well as on the central limit theorem assuming 
that N~ and Ni are large enough. 

6. Select the desired minimum label detectability tf and the minimum relational de- 
tectability tr. 

7. Combine the N~ x N/predictions into a single model M = (L, R , f L ,  gR) such that 
the labels in L have a detectability greater than tf and the relational tuples in R have 
a detectability greater than tR. 

8. Compute the similarity probabil i ty  distribution Pp(1) for each label in L. 
9. Obtain the reliability values for each label in L. 

10. Compute the joint reliability and detectability values for each label in L. 

Statistics Generation. PREMIO generates the statistics 69 as follows: 

1. For each generated prediction, PREMIO finds the true observation mapping between 
the predicted image and the obtained model M, hvi : n v i  ---+ Uvi, with H~i C_ L, and 
(v, i) E 12s • Is. These observation mappings only include correspondences with 
units that were originated from labels with detectability greater than or equal to t f .  

2. Obtain matching errors. The previous step produced Nv x Ni true observation 
mappings, hvi. For each prediction PREMIO computes the quantities: #L + #Uvi - 
2#Hvi, #( R - Svi o h~i i 1) + #( Svi - R o hvi ), P( f  uvi o hv i , f  LIHvi), and P(gsvi o hvi, gRIHv~)" 

3. PREMIO uses the matching errors generated in the previous step to estimate the 
parameters of the four Gaussian distributions Pu, Ps, Ply, and Pgs: I-tf, cry, #R, oR, 
#f~,  off u, #gs, and crg s by using the sample means and variances. 



310 

Model Validation. The PPM model obtained must be validated using statistical tests 
such as the Kolgomorov Smirnov test and the Chi-square test [24, 18]. If the model does 
not pass the tests, it can be rectified by one or more of the following methods: 

1. Increase the number of predictions by increasing Nv and/or Ni. By increasing the 
number of predictions, the confidence interval of the statistics O, is narrowed, and 
hence a better estimation of the model is obtained. 

2. Reduce the extension of the viewing region Y and/or the illumination region Z. The 
failure to pass the test may be due to large dissimilarities among the views used 
to generate the model. By reducing the extensions of the regions Y and I ,  we can 
increase the similarity between these views. 

3. Try different probability distributions, such as truncated Gaussian or double ex- 
ponential distributions. The error distributions are defined only for positive errors. 
Hence, the approximation of an error distribution to a Gaussian distribution is only 
valid if its mean is more than two standard deviations away from the origin. If 
that is not the case, an asymmetric distribution, such as a truncated Gaussian or a 
truncated double exponential distribution, should be used. 

A.2 Image Generation 

PREMIO's matching routine was tested on simulated images using the joint feature 
reliability and feature detectability of the PPM labels as a heuristic to determine which 
labels should be matched first. PREMIO generates simulated images using the following 
steps: 

1. Given the desired number of samples N~ and N~, PREMIO uniformly samples the 
viewing and illumination space regions Y and I .  Let Ys ~ be the new set of the 
sampled viewing positions and Z~ the new set of the sampled lighting positions. 

2. Generate the images. For each pair (v, i) E Y~ x I~, PREMIO predicts the subset of 
detectable labels Lvi, its associated attribute mappingf/~i, the subset of detectable 
relational tuples Rvi, and its associated relationship strength mapping gR,~. PREMIO 
also generates the corresponding set of units Uvi, the associated attribute mapping 
fu~,  the set of relational tuples Svi, and the associated strength mapping gsv~- 

A.3 Matching Routine 

The effect of the joint feature reliability and feature detectability values assigned to 
the PPM labels was tested using PREMIO's matching routine. PREMIO attempts to 
match the randomly-generated images against the PPM using the joint feature reliability 
and feature detectability values as a heuristic to determine which labels the matching 
routine should attempt to match first. The matching algorithm was run several times 
with each successive run attempting to match more correspondences. The performance 
of the matching routine was evaluated by generating a receiver operating curve plot in 
which the probability of misdetection error was plotted against the probability of false 
alarm error over the range of correspondences sought. The following steps summarize 
PREMIO's matching routine: 
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1. Choose the number n of correspondences to match. 
2. For each of the generated images: 

(a) Run the matching routine to search for an observation mapping having n cor- 
respondences between the PPM and the image. 

(b) If the observation mapping is found in a reasonable amount of time, then 
calculate the number of incorrect correspondences present in the mapping. 

(c) If the number of incorrect correspondences was calculated, then calculate the 
ratio of the number of incorrect correspondences to n fol the given observation 
mapping. This ratio, denoted f ,  is the false alarm ratio and is defined as: 

#Incorrect Correspondences 
f = (9) 

n 

The ra t iof  is inversely proportional to the strength of the mapping found. 

A.4 Evaluation of Matching Results 

If PREMIO does not find an observation mapping for the given number of n correspon- 
dences, then the experiment is termed a misdetection error (ME). The probability of a 
misdetection error, given n, is defined as: 

P(ME i n ) = #Mappings not Found (10) 
#Images 

If PREMIO finds an observation mapping, then the correctness of the observation 
mapping is determined by comparing the false alarm rat iof  to the false alarm threshold 
ratio F. I f f  is larger than F, then the observation mapping is incorrect and the experiment 
is termed a false alarm error (FAE). F was varied in order to test the performance of 
the system. The probability of a false alarm error, given that a mapping mn with n 
correspondences was found and given F, is defined as: 

P(FAE I ran, F) = #Incorrect Mappings (11) 
#Mappings Found 

Equations (10) and (11) measure the performance of the matching routine. The perfor- 
mance of the matching routine for various values of n and F can be shown on receiver 
operating curves (ROC) where probability of misdetection is plotted against probability 
of false alarm error. 


