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Abstract 
Efficient implementation of morphological opera- 

tions requires the decomposition of structuring el- 
ements into the dilation of smaller structuring ele- 
ments. Zhuang and Haralick presented an algorithm 
to find optimal decompositions of structuring ele- 
ments in binary morphology. In this paper we extend 
the algorithm to find optimal structuring element de- 
composition for gray scale morphology. 

1 Introduction 
When the structuring element used in a morpholog- 

ical operation is larger than the largest element that 
the hardware can handle in one stage, the structuring 
element must be decomposed into smaller structur- 
ing elements. Each of these elements has to be such 
that the hardware is capable of handling it and whose 
morphological composition is the given structuring el- 
ement. 

An algorithm that finds an optimal decomposition 
for binary structuring elements was proposed in [l]. 
All binary morphological operations are naturally ex- 
tended to  gray scale imagery by using the Top and 
Umbra operations. In this paper we use this idea to 
extend the algorithm proposed in [l] to be used in 
gray scale morphology. 

2 Statement of the  problem 
The gray scale structuring element decomposition 

is formally stated as: 
Given a structuring element s(z), find the smallest 

integer M and the corresponding structuring elements 
hl(z), hz(a) ,  . . . , h ~ ( a )  such that 

s(z)  = (hl @ hz 69 * * .  @ h M ) ( Z )  

where each hi(.) satisfies the hardware requirements. 
In this paper we will consider that the structur- 

ing element s is a discrete function defined in a finite 
domain. 

3 Notation and definitions 
3.1 Gray scale morphology 

For completeness we begin by stating some defi- 
nitions and theorems. An extended presentation of 
the definitions and the proof of the theorems in this 
subsection can be found in Haralick et al. [2]. 
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The four binary morphological operations of dila- 
tion, erosion, opening and closing are all extended to 
gray scale morphology by introducing the concept of 
the top surface of a set and the related concept of the 
umbra of a surface. 

Def. 3.1 Let A EN and F = {x E EN-'l for 
some y E E ,  (z,y) E A } .  The t o p  or t o p  surface of 
A ,  denoted by T [ A ]  : F -+ E , is defined by 

T[AI(4  = m z { y / ( z ,  Y) E A }  

Def. 3.2 A set A EN-' x E is an umbra if and 
only if (z ,y)  E A implies that ( z , z )  E A for every 
z 5 Y. 

Def. 3.3 Let F C EN-' and f : F --+ E.  The umbra 
off,  denoted by V [ f ] ,  U[f] C F x E ,  is defined by 

The top of the umbra of a function f is the function 
f itself 

Theorem 3.1 Let F C EN-' and f : F -+ E.  Then 
T[U[flI = f -  

Having defined the operations of taking the Top 
set of a set and the Umbra of a surface, gray scale 
dilation and erosion can be defined: 

Def. 3.4 Let F ,  K 5 EN-' and f : F -+ E and 
k : K --+ E.  The dilation of f by k is denoted by 
f @ 8 ,  f @ k: : F @ K -+ E ,  and is defined by 

f e3 IC = T[U[f] EE U [ k ] ]  , 

Def. 3.5 Let F ,  K C EN-' and f : F --f E and 
k : K ---t E. The erosion of f by k is denoted by 
f e k, f 8 k : F e K -+ E ,  and is defined by 

f e k = T [ U [ f ]  e U[k]] . 
Gray scale dilation and erosion can be accom- 

plished by using maximum and minimum operations. 
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Theorem 3.2 Let f : F -+ E and k : K -+ E. Then 
f @ k : F @ K -+ E can be computed by 

(f@k)(z) = maz{f(x-z)+k(z)lz-z E Fand z E K } .  

Theorem 3.3 Let f : F -+ E and k : K -+ E. Then 
f 8 k : F 8 K -+ E can be computed by 

(f 8 k)(x) = min{f(z + z )  - k ( z ) l z  E K }  . 

Gray scale opening and closing are defined in an 
analogous way to opening and closing in the binary 
morphology: 

Def. 3.6 Let f : F -+ E and k : K -+ E.  The 
opening of f by the structuring element k is denoted 
by f o k and is defined by 

f o k = ( f 8 k ) @ k .  

Def. 3.7 Let f : F --+ E and k : K -+ E. The closing 
of f by the structuring element k is denoted by f k 
and is defined by 

f . k = ( f $ k ) e k .  

3.2 Translation in gray scale morphology 
To solve the decomposition problem we need to 

define the translation of a gray scale structuring el- 
ement. In this subsection we define the translation 
of a structuring element by a point and derive some 
useful properties. 

Def. 3.8 Let F C EN-l and f : F -+ E. The trans- 
lation of f by   CY,^) with CY E EN-l and P E E ,  is 
denoted by ( f ) ( a , ~ )  and is defined by 

(f)(a,P)(4 = f(z - a) + P 
for every z E F .  

Given F 5 EN-l , f : F -+ E and (CY,@) E EN. 
The gray scale translatlon has the following proper- 
ties. 

Theorem 3-4 (WI)(a,,) = W ( P , P ) l  

Proof: Let (2, y) E E N .  The point (2, y) E (U[f])(,,p) 
if and only if there exists ( U , I J )  E V[f] such that 

By definition of umbra (U, IJ) E V[f] if and only if 
'U 5 f(u). Then, y = v+P 5 f (u)+P = f ( z - a ) + P .  

(2, Y) = ( 2 1 1  U )  + (a1 P).  

Hence, (2, Y> E U[f(a,P)I. 0 

Theorem 3.5 T[(U[fl)(a,P)l = (T[U[fIl)(a,P) 

Proof: Let z E EN-l. Then by theorem 3.4, 
'J'[(v[fl)(a,~)l(z) T[U[f(a,~)lI(z) = f (a ,P)(z )  = 
( W [ f l l ) ( a , p ) ( 4 . 0  

The translation of a function can be expressed as 
the dilation of the given function and another function 
given by the translation point. 

Theorem 3.6 There exists G 
such that f ( a , p )  = f @ g. 

Proof: Let G = CY and g(a) = P. By definition 4, 

V[g] if and only if there 
exists (x1,yI) E V[f] and (zz,yz) E V[g] such that 

g : G --+ E 

f 63 9 = T[WI @ V[gll. 

(x, Y) = (21, Y1) + (221 Yz). 

A point (z,y) E V[f] 

But, ( z , ~ )  E V [ f ]  implies Y F f(z) and ( ~ 2 ~ ~ 2 )  E 
V[g] implies 2 2  = CY and yz 5 g(z2) = P. 

Then, y = YI + Y Z  i f (x i )  + P = f ( x  - a) + P-  
Hence, by definition of Top, (f @ g)(x) = maz{zlz  5 

The dilation and erosion operations commute with 
translation. 

Theorem 3.7 Let f1 : EN-' -+ E and fi : EN-' -+ 

E. Then, fi(a,p) @ f i  = (fi @ fi)(a,p). 

f ( . - ( . )+P}= f ( . -c r )+P=f (a ,p ) .O 

Proof: By definition of dilation and by theorem 3.5, 
fl(a,P) @ f 2  = T[Wl(a,P)I @ Will = 'J'[(U[fl] @ 
U[f2I)(a,P)l = ( T [ W l l  @ V[fill)(a,p) = (fl @ 
fi)(a,p).O 

Theorem 3.8 If F is finite, then f ( ~ )  8 f = g(z) 
with g : G = CY -+ E and g(a)  = P. 

A point (z, y) E U[f]'e li[f] if and only if for every 

(U, w) E U[f] if and only if x + U E F and y + v _< 

If F is finite, then there exists X1 and Xz such that 
X1 5 z 5 Xz for every x E F .  

Let U = XI. Then, z+X1 E F implies x 1 0. Now 
let U = X2. Then, U + X2 E F implies x 5 0. Hence, 

(VJ) E U[fI l(Z,Y) + (v) E W]. But, (%Y) + 
f (x + 4. 

4 Reduction of the problem. 
The problem we solve in this section is to  construct 

a decomposition of s, into h l ,  h i , .  . . , hM,  having the 
smallest M ,  if one exists, where each h; has no more 
points than the prescribed fixed number k determined 
by hardware constraints. We also assume that the 
domain of s is finite. 

To determine such a decomposition of s, if one ex- 
ists, requires a combinatorial search process for the 
domains of the functions hi and for the values of these 
functions at  each point of the domain. Our algorithm 
limits the possible domains and the possible values 
of the functions h;, and thereby greatly reduces the 
search space. 

We will show that the gray scale structuring ele- 
ment decomposition is equivalent to one with fewer 
degrees of freedom: 
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Theorem 4.1 If s = hl @ hz @ . . @ h ~ ,  then there 
exists ( a l p )  and j1, j z ,  . . . , j, such that: 

1. #ji = #hi, for i = 1,. . ., M 

2. j i (0)  = 0 and ji(z) 5 0, for i = 1,. . ., M 
3. s =  { ( a , P ) } C B j , @ j z @ . . * @ j M  

4. {(a$)} = s e{jl@jz @ - . @ j M }  

Proof: Let ai be such that hi  CY^) = Pi and h i (x )  5 p, 
for every x in the domain of 6,. 

Consider ji = ( / ~ i ) ( - ~ , - p ) .  Then, j i ( 0 )  = hi(ai) - 
Pi = 0 and ji x) 5 0 for every x in the domain of ji. 

number of points. 
Next we will show that s = { ( a l p ) }  @ j1 @ jz CB 

. . - @ j ~ .  Since ji = ( I ~ i ) ( - ~ ~ , . - p ~ ) ,  by the definition of 
translation] we have that hi = ( j i ) ( a i , p i ) .  Therefore, 

Note that wit h this definition hi and ji have the same 

= hl@hZ@. * *@hM = ( ( j l ) (a l ,p l )@- .  * ( j M ) ( a M , p M ) )  * 

= (jl @ j z  @ * * * @ j M ) ( a , @ )  

(a , P )  = (a1 + a 2  + . . * + aM , 01 + pz + . . . + P M  ) . 

By theorem 3.7, 

where 

Then, by theorem 3.6, s can be expressed as the di- 
lation s = {(a1P)}@(j1@jz@. . @ j ~ ) .  Furthermore, 
by theorem 3.8 {(a, P ) }  = s e (jl @ jz @ .  . - @ j ~ ) . 0  

Theorem 4.1 in effect shows that the original prob- 
lem can be reduced to  one with fewer degrees of free- 
dom. Since ji(0) = 0, there is one less unknown 
point to  determine each j; compared to  the number 
of unknown points in the corresponding h;. Further- 
more, the extra unknown a l p )  is determined without 

The search for the decomposition elements ji can 
be reduced by establishing that if s = {(a, p) }  j1@ 
j z . . . @ j ~  , with j i ( O  = 0 and ji(z) 5 0, then there 

z1 - zz and s(z1) - s(z2) 5 ji(z) 5 0. The proof 
consists of various steps given by theorems 4.2 to 4.6. 

searching, once all the j i  h ave been determined. 

exists 21 and 2 2  in t h e domain of s such that z = 

Theorem 4.2 Let f1 : F1 -+ E and f 2  : F z  -+ E.  
Then, for every z E F1@ F z  there exists z1 E F1 and 
z2 E FZ such that z = z1 + x z  and (f1 GI fz)(a) = 
f&1) + fz(zz). 
Proof: By theorem 3.2, (f1 @ fz)(z) = maz{fl(z - 
U) + fz(u)Iz - u E F1 andu E Fz}. 

Let u1 be such that f1(z--ul)+fz(ul is maximum. 
Then there exists a1 = z - u1 E F1 an d z2 = u1 E Fz 
such that z = a1 + z2 and (fl @ fz)(z) = fl(z1) + 
f 2 (XZ). 0 

Theorem4.3 Let A EN-l and B C EN-’. 
Then, A o B A. 

Proof: Let a E A o  B. Then there exists an x E A 8  B 
and b E B such that a = x+b. But x E A 0 B  implies 
that for every y E B ,  z+y E A .  Since b E B,z+b E A. 
But a = z + b so that a E A.0 

Theorem 4.4 Let A = B @ C. Then, A o C = A .  

Proof: Let a E A .  Since A = B @ C, there exists 
a b E B and a c E C such that a = b + c. But for 
every x E B and c E C, x + c E A. Since b E B ,  we 
must have for every y E C, b + E A .  This implies 
b E A 8 C and b E B imply a E ?!A e C) @ C. Hence 
A C ( A  o C). By theorem 4.3,’A o C’C A. Thus, 
A o C = A . 0  

Theorem 4.5 Let s = a @ j .  Then, s = s o j .  

Proof: By definition of dilation, s(z) = T[U[a] @ 
U [ j ] ] ( z ) .  Taking the umbra at  both sides, U [ s ]  = 
U[a]@V[ j ] .  By theorem 4.4, U[s] = U [ s ] o U [ j ] .  Then, 
s(z) = T [ U [ s ]  0 V [ j ] ] ( x )  = (s 0 j)(z).O 

Theorem 4.6 Let s = s o j, j (0  = 0 and j ( z )  5 0. 

that z = z1 - $2 and j ( z )  2 s(z1) - 4 x 2 ) .  

Proof: Since s = (sej)@j, by theorem 4.2, for every a 
in the domain of j there exists 21 and 2 2  in the domain 
of s such that z = 21 - x2 and s(z1) = (s e j)(zz) + 
j(z). But by theorem 3.3, (se j)(y) = min{s(y  + 
U) - j(u)Izl E J }  < s(y) for every y E S 8 J ,  since 
j ( 9  = 0 and j(z < 0. Then, j ( z )  2 s(z1) - s(z2) 

We have shown that the possible domains of the 
functions ji are those formed by differences between 
points of the domain of s. Furthermore, we showed 
that s(z1) - s(z2) 5 j ;(zl  - 2 2 )  1. 0 for each point. 

4.1 Search. 
In this section we give a complete description of 

the tree search using the elements developed in the 
previous section. The algorithm is a generalization of 
the algorithm proposed in [l].  

Suppose that the structuring element s has m 
points and that each j ;  must have k points one of 
which is (0,O). 

To reduce the tree search we take into account the 
following two considerations: 

I Since dilation is commutative, for a node associ- 

Then, there exists z1 and z2 in t h e domain of s such 

an z =  z1 - 2 2 .  J-- 

ate d with j ,  there is only need to consider the possible 
descendents jg+lr j q+z , . .  . , j ~ .  

11) Forward checking can be used to control the 
growth of the tree. We will show that if a t  some level 
I, j1, j 2 , .  . . , j ,  have been determined, then the only 
j ’ s  that need to be considered for any node in the 
subtree below are those that satisfy: 

( 4  e j )  @ j @ kr = s 

where tl = s e E l ,  and E l  = j ,  @ jz @ . . - jl. 
Assume that s = { ( a l p )  @ j1 @ a - .  @ j M  with 

element s can be rewritten as: 
M > I ,  and we need to fin 2 j,+,. The structuring 

s = ({(a, P )  j r t z  @ * * - @ j ~ )  @ ki @ i t 1  
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Then, by theorem 4.5, s must be open under Ai dilated 
by the function j ,  the candidate to be selected as ji+1: 

s = (S e ( h  69 j ) )  @ (h  f3 j )  = (tl e j )  69 j f3 h 
It is also true, that this condition holds for the level 
1 considered and for any node in the subtree below: 
Let n > 1. Then, j to be considered as a child of a 
node at  level m must satisfy: s = s o (k, 69 j ) ,  but, 
km a3 j = (h  69 j )  f3 (jz+1 a3 j I + Z  69 * * * @ jM). 

Theorem 4.7 If S = S o ( A  f3 B )  then S = S o A. 

PTOO~: See Haralick et al. [2]. 

Theorem 4.8 If s = s o (a f3 b)  then s = s o a. 

Proof: By hypothesis, s(z) = T[U[s]  o V[a  f3 b]](z). 
Then, by theorem 4.7, V[s ]  = V[s]  o (V[a] 69 U [ b ] )  = 
U [ s ]  o U [ a ] .  Therefore, s(z) = T[U[s]  o V [ a ] ( z )  and 

$heorem 4.8 shows that i f s  is not open under k l e j ,  
then it is not open under k, @ j. This condition can 
be used as a forward check to prune the search tree. 

4.2 Algorithm 
The algorithm to accomplish the decomposition of 

a gray scale structuring element s consists of a breadth 
first tree search with forward checking. 

A node i in the tree corresponds to a candidate 
structuring element, &(a). Each node i has also asso- 
ciated with it the following entities: 

s(a = (s 0 a)(a).O 

1. A list of all its possible descendents, Li. 
2. The partial decomposition so far, kj = jl 69 

i 2  - a  @ ji, corresponding to its dilation with all 
its predecessor nodes. 

3. The undecomposed part or residue, ti = s e ki. 
The root of the tree is initialized such that L,  = 

j1, j 2 ,  . . . , j, is the set of all possible structuring ele- 
ments, k, = (01, and t ,  = s. Before opening a node 
in the tree a forward check is made through the possi- 
ble descendents of the node. The checking eliminates 
those structuring elements in L; that do not satisfy 
s (ti e j) 69 ( j  e hi). Once the forward checking is 
finished, the nodes corresponding to the elements in 
L, that survived the test are opened. 

Any decomposition found at the lower level of the 
tree is an optimal decomposition. A decomposition is 
found when the number of elements in the domain of 
the residue t is one, and its functional value t(cy) = p 
corresponds to the (cy,p) appearing in the decompo- 
sition s = ((cy, 0)) @ jl69 - 
5 Example 

In the following we give an example illustrating the 
use of the algorithm to decompose an structuring el- 
ement into sets of two points. Let s(z) be the gray 
scale structuring element to be decomposed, as shown 
in figure 1. There are thirty five candidate structur- 
ing elements, defined by j j ( 0 )  = O;ji(ci) = 9, with 
0 5 y 5 s(z1) - S(ZZ), and ai = a1 - az. However, 

f3 j ~ .  

S(Xl .. 

= (1 ,5 )  a a m Q 

Figure 1: A decomposition of a gray scale structuring 
element. 

only three of the candidates survive the forward check: 

and (j, 0) = O ; j 3 ( 3 >  = -1}. Figure 2 shows the tree 

~ ( z )  69 j ,  @ j z  @ j~ is shown in of s, s = ((1,5)7 69 j 
figure 1. 

6 Conclusion 

(jl(0) = O ; j 1 ( - 1 )  = -41, (jZ(0) = O ; h ( l )  = -I}, 

created b y the a1 orithm. The optimal decomposition 

The gray scale structuring element decomposition 
problem can be solved in a similar way to the binary 
structuring element decomposition problem. In this 
paper, we showed that the decomposition problem can 
be solved by simply searching among a finite set of 
values. The essence of the algorithm is the same as 
the essence of the binary problem: (1) the domain of 
the structuring elements participating in the decom- 
position must have members which are the differences 
between members of the domain of the given struc- 
turing element and (2) that it is necessary for the 
undecomposed part of the structuring element to be 
morphologically open with respect to any structuring 
element participating in its further decomposition. 
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