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Abstract 

PREMIO is a CAD-based object recognition and localiza- 
tion system that uses CAD models of 3D objects and knowl- 
edge of lighting and sensors to predict the detectability of 
features in various views of the object. The predictions 
that PREMIO produces are powerful new tools in recog- 
nizing and determining the pose of a 3D object. In order 
to take advantage of these tools, we have developed a new 
matching algorithm: an iterative-deepening-A* search that 
explicitly takes advantage of the predictions to guide the 
search and reduce the search space. The purpose of this pa- 
per is to describe the matching algorithm and illustrative 
results. 

I Introduction 

Most feature-based matching schemes assume that all the 
features that are potentially visible in a view of an object 
will appear with equal probability. The resultant match- 
ing algorithms have to allow for “errors” without really 
understanding what the errors mean. P R E M I O  [2] is 
an object recognition/localization system that attempts to 
model some of the physical processes that can cause these 
“errors”. It uses CAD models of 3D objects and knowl- 
edge of lighting and sensors to predict the detectability of 
features in various views of the object. From these predic- 
tions, PREMIO calculates probabilities for each feature of 
being detected as a whole, being missed entirely, or break- 
ing into pieces and conditional probabilities of the detec- 
tion of one feature given the detection or nondetection of 
other features. The predictions that PREMIO produces 
are powerful new tools in recognizing and determining the 
pose of a 3D object. In order to take advantage of these 
tools, we have developed a new matching algorithm: an 
iterative-deepening-A* search that explicitly takes advan- 
tage of the probabilities to guide the search and prune the 
tree. The matching algorithm represents a large theoreti- 
cal effort that is actually independent of the PREMIO sys- 
tem. The algorithm has been implemented as a C program 
and teated on data specifically generated to fit the abstract 
paradigm for the probabilistic search. The purpose of this 
paper is to describe the theory, the algorithm, and illustra- 
tive results. 

I1 Relation to  Previous Work 
The matching algorithm described in this paper can be 
thought of in two ways, as a relational matching algo- 
rithm and as a heuristic search. The theory behind heuris- 
tic search is well known [9]. Grimson [3] showed that the 
number of nodes expanded during a depth first search of 
an interpretation tree in the presence of spurious data is 
exponential, due to  the combinatorics of the problem. Re- 
lational matching has been expressed in several different 
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Figure 1: PREMIO: A Model-Based Vision System 

formalisms. Early papers concentrated on graph or sub- 
graph isomorphisms [15]. This led to many algorithms for 
discrete relaxation and the introduction of probabilistic re- 
laxation [ll]. The exact matching problem was generalized 
to the consistent labeling problem [6] and to the inexact 
matching problem [13]. This was extended further to the 
problem of determining the relational distance between two 
structural descriptions [14, 121. Some recent related work 
includes structural stereopsis using information theory [l], 
The present algorithm differs from all of these in its at- 
tempt to provide a solid theoretical probabilistic framework 
for the matching problem that can be used to reduce the 
search space. 

I11 PREMIO: A Model-Based Vision System 

P R E M I O  (PREdiction in Matching Images to Objects) 
is a model-based object recognition/localization system. 
PREMIO uses CAD models of 3D objects and knowledge of 
surface reflectance properties, light sources, sensors charac- 
teristics, and the performance of feature detectors to build a 
model called the vision model. The system is illustrated in 
Fig. 1. PREMIO’s vision model is a more complete model 
of the world than the ones presented in the literature. It 
not only describes the object, light sources and camera ge- 
ometries, but it also models their interactions. 

The feature predictor of the system uses the vision model 
to predict and evaluate the features that can be expected 
to be detected in an image of an object, taken from a given 
viewpoint and under a given light source and sensor config- 
uration. The output of the prediction module is organized 
as the prediction model. The automatic procedure gener- 
ator takes as its input the prediction model and generates 
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the matching procedure to be used for matching the image 
features against the object models. 

IV Definitions and Notation 

Models and images are represented by their features, the 
relationships among them, and the measurements associ- 
ated with them. As in the consistent labeling formalism 
[6], we will call the image features uni ts  and the model 
features labels. The matching algorithm must determine 
the correspondences between the units and the labels. For- 
mally, a model  M is a quadruple M = ( L ,  R, f ~ ,  g R )  where 
L is the set of model features or labels, R is a set of re- 
lational tuples of labels, f~ is the attribute-value mapping 
that associates a value with each attribute of a label of L ,  
and g R  is the strength mapping that associates a strength 
with each relational tuple of R. Similarly, an image l i s  a 
quadruple I = (U ,  S, fv, g s )  where U is the set of image 
features or units, S is a set of relational tuples of units, fu 
is the attribute-value mapping associated with U,  and g s  
is the strength mapping associated with S. 

An image is an observation of a particular model. Not 
all the labels in L participate in the observation, only a 
subset of labels Lo C L is actually observed. Furthermore, 
only the relational tuples of labels representing relation- 
ships among labels in Lo can be observed, and only a subset 
of them, R” 5 R, are actually observed. The set U consists 
of the unrecognized units. Some of the units observed in 
U come from labels in Lo; others are unrelated and can be 
thought of as clutter objects. The set S is a set of observed 
relational tuples of units in U. 

The relational matching problem is to find an unknown 
one-to-one correspondence h: L + U between a subset of L 
and a subset of U, associating some labels of L with some 
units of U. The mapping h is called the observat ion m a p -  
p ing .  Notice that the matching process consists not only 
of finding the model M, but also of finding the correspon- 
dence h, which is the explanation of why the model M is 
the most likely model. 

V Matching by Tree Search 

The matching process can be thought of as a state space 
search through the space of all possible interpretations C. 
The state space C is called the matching space and it is 
defined as follows. 

Def. V.1 The matching space,  E, is the state space of all 
possible interpretations, in which each state U is defined 
by an observation mapping h,  with degree of match k, = 
#Dom( h,).  

The search through the state space C can be achieved 
by doing an ordered search on a interpretation tree 7 such 
as the one shown in Fig. 2. Each node in 3‘- represents a 
unit and each of its branches represents an assignment of 
the unit to a label. A search state U in E is represented by 
a path P in the tree T .  In the rest of the paper, the terms 
“path” and “partial mapping” will be used interchangeably. 

The main difficulty in solving the matching problem by 
a tree search is the high combinatorics involved in the prob- 
lem [3]. The number of possible interpretations in the tree 
grows exponentially with the number of labels and units. 
The number of interpretations could be reduced by stop- 
ping the search before having a complete mapping. The 
problem of course, is to determine when to stop. 

A usual approach towards solving this problem is as fol- 
lows: a path in the interpretation tree 7, P ,  defines an 
observation mapping mp with an associated cost Cp = 
C(mp,  M, I) that measures the correctness of the mapping; 

Figure 2: Search tree 7. 

then, the matching process consists of finding the path P* 
such that its associated observation mapping mp* has the 
least cost. 

In this way, the problem of selecting the correct inter- 
pretation has been relegated to the problem of defining an 
adequate cost function such that the interpretation having 
the least cost is indeed the correct.on.e. 

In the following sections we wdl introduce a theoreti- 
cal probabilistic framework for the matching problem. The 
proposed framework allows us to define the cost of a map- 
ping in a rigorous way, with a strong physical meaning. 
Furthermore, we will show how to find lower bounds of the 
defined cost, so that it can be used in guiding an heuristic 
search. 

VI Solving the Relational Matching Problem 

The relational matching problem is a special case of the pat- 
tern complex recognition problem [5]. In the pattern com- 
plex recognition paradigm, the relational matching problem 
can be stated as follows: 

Given a model M = (L, R, f ~ ,  g R )  and an im- 
age I = (U, S, fv, g s ) ,  find the observation map- 
ping ( h ,  H )  such that the a posteriori  probability 
P ( M ,  hlI)  is maximum. 

That is, we want to maximize the probability of the 
model being M and the observation mapping being h, given 
that the image I is observed. Hence, solving the rela- 
tional matching problem requires a search procedure that 
can identify the model M and the mapping h such that the 
probability P ( M ,  hlI)  is maximized. In order to define such 
a procedure, this probability must be further broken down 
and related to a cost function to be used in the search. 

A 

An observation mapping h consists of a domain contained 
in the set of labels L ,  and of the correspondences of these 
labels to some units belonging to  the set of units U. .Let 
H 5 L be the domain of the mapping h. In the following, 
whenever we want to make explicit the need to consider 
both the correspondence h and its domain H ,  we will de- 
note them as the pair ( h , H ) .  By the definition of condi- 
tional probability, 

Probability of an Observation Mapping 

Since M, and ( h , H )  do not appear in the denominator, 
maximizing the conditional probability P ( M ,  ( h ,  H )  / I )  is 
equivalent to  maximizing P ( M ,  (h ,  H )  , I) .  Assuming that 
measurements and relationships are conditionally indepen- 
dent given M ,  U, fu, and ( h , H ) ,  and further, that the 
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relationships are independent of the feature measurements, 
we have after some algebra manipulation: 

P M,(h,H),I) =pM.pu.ps.pfu.pgs, (2)  

where Pn/r = P(M), Pu = P(U,(h,H)IM), Pfu = 

( 
P(fUIU,M,(h,W)) ,  ps = P(SIU,M,(h,H)), and p,, = 
P(gsIU, fv, M ,  (h ,  HI). 

Equation (2) breaks down the joint probability of ob- 
serving the model M through the mapping h as the image 
I into five terms. The first term is the prior probability of 
the model M .  The other four terms are such that each one 
of them can be directly related to one of the four elements 
that describe the model and the image. 

B R e l a t i o n a l  M a t c h i n g  C o s t  

In this context it is natural to define the relational match-  
ing cost of the observation mapping h as the in format ion  
content in the probabilistic event that h is the observation 
mapping between the model M and the image I :  

Def. VI.l Let h : L  + U, with Dom(h) = H, be an ob- 
servation mapping. The relational matching  cost of h, is 
defined by, C ( M ,  (h ,  H ) ,  I )  = -In P ( M ,  ( h ,  H) , I ) .  

Taking the logarithm on both sides of equation (2) ,  
and changing the sign, we have that maximizing 
P ( M ,  ( h ,  H) , I )  is equivalent to minimizing: 

c ( M ,  (h ,  H )  , I )  = CM + CU + C S  + cf, + cg, (3) 

where CM = -In PM, Cu = -In Pu, Cf, = In Pfu, 
Cs = - In Ps, and C,, = - In Pgs. 

Equation (3) shows that the cost C depends on the 
model, the label-unzt assignments, the relational structures, 
and their measurements. 

C A Probabi l i s t ic  M o d e l  

To compute the relational matching cost defined in the pre- 
vious section we need the corresponding probabilities. In 
this section we present a model to compute these probabil- 
ities based on their physical meaning. 

M o d e l  C o s t  

The probability PM = P ( M )  is the prior probability for 
the model M to be observed, and it is available from the 
prediction system. The cost CM is the cost associated with 
the model beirqg considered, and it penalizes the selection 
of models whose prior probability of occurring is low. 

Label-  Unit A s s i g n m e n t  C o s t  

The probability Pu = P ( U ,  ( h ,  H )  I M )  evaluates the likeli- 
hood of the number of labels in H being matched through 
the mapping h to a subset of the observed units U. Since 
for the model M ,  the set L designates the set of possible 
labels, it is natural for Pv to depend on the difference be- 
tween the size of the set L and the size of the domain of h, 
as well as on the difference between the size of the set U 
and the size of the range of h. This probability should be 
high for observation maps that assign corresponding labels 
and units, and lower for those mappings that either miss 
assignments or assign labels to spurious units. Therefore, 
it is reasonable to model’ 

IThis assumption, based on the central-limit theorem, has 
been verified experimentally. 

(4) 

R e l a t i o n a l  S t r u c t u r a l  C o s t  

The probability PS = P(SIU, M ,  (h, H)) evaluates how well 
the relationships among the labels are preserved by the 
mapping h. We will take this probability to be dependent 
on the number of relational tuples that are not preserved 
by the mapping. 

Let 13. be the set of all possible types of relational tuples 
of labels. We define the composition of a relational tuple of 
labels of order N ,  T E (TT x HN) C R, with the mapping 
h, as a relational tuple of units of the same type as T such 
that each unit of its feature vector corresponds to a label 
in T through the mapping h: 

Def. VI.2 Given the one-to-one mapping h: H + U, and 
the relational tuple of labels T E (n x HN) R, the compo- 
s i t i ono f  T with h is denoted as hor,  and is defined as the re- 
lational tuple of units given by, h o T = (t, (U’, UZ, . . . , U N ) ) ,  
where t is the type of tuple T ,  N is the number of labels 
participating in tuple T ,  and ui = ~ ( F R ( T , ~ ) )  for 0 < i 5 N ,  
where FR(T, i) denotes the i th element of the feature vector 

The composition of the set of relational tuples of labels 
R with the mapping h is defined as the set of the rela- 
tional tuples of units resulting from composing each of the 
relational tuples T E (TT x HN) 

Def. VI.3 Given the set of relational tuples of labels R, 
and the one-to-one mapping h: H + U,  the composi t ion of 
R with h is denoted as h o R, and is defined as the set of 
relational tuples of units given by h o R = {s = h o T I T E 
(TT x HN) 5 R}. 

Of T .  

R with h. 

The compositions of a relational tuple of units s and 
of the set of relational tuples of units S with the inverse 
mapping h-’ are denoted by h-los and h-loS, respectively 
and are defined in a similar way. 

We will model the probability Ps to penalize the num- 
ber of relational tuples not preserved in the match, as well 
as those relational tuples matched to spurious relational 
tuples. Thus, it is natural to use the concepts introduced 
above to  model: 

Therefore, the relational structural cost Cs = -In PS is 
the part of the cost that accounts for the differences be- 
tween the set of observed relationships S and the set of 
relationships of the model R. 

M e t r i c  C o s t s  

Since the probability Pfu = P(fulU, M, ( h ,  H ) )  and the 
probability P,, = P(gslU, fu, M ,  ( h ,  H ) )  are both proba- 
bilities of mappings that associate values to elements of a 
set, their treatment is similar. 

The probability Pf ,  can be expressed as the probability 
P(fu o hlU, MI H ) ,  where fu o h is the composition of fu 
with h defined by (fu o h)( l )  = f u (h ( l ) ) ,  l E H .  

Since fL is the attribute-value mapping associated with 
L ,  
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where p is a suitable metric function, and f ~ l ~  represents 
the attribute-value mapping ffi restricted to the labels in 
the domain H .  Hence, the farther the measurements of 
the units are from the measurements of the corresponding 
labels, the larger the cost term Cf,. 

Reasoning in an analogous way, the probability P,, can 
be modeled as 

(7) 

where p is a suitable metric functinn. 
Having modeled the probabilities involved, we can now 

compute the relational matching cost. Substituting equa- 
tions (4) to (7) in equation (3) ,  we have: 

C( h )  = A+ 

where E f ( h )  = #L + #U - 2 # H ,  is the feature error, 
E,(h) = #(R - S o h-l)  + #(S - R o h), is the relational 
BTTOT, E f u ( h )  = p ( f u  o h, fLIH), is the feature metric er- 
TOT, E,,(h) = p(h o gs,gR), is the relational metric er- 
TOT, 112 - = (z - ~ ) ~ / u ~ ,  is the squared Mahalanobis 
distance from z to p1 and A = -In P ( M )  + 41n& + 
l n ( u ~ u ~ v u r u g s ) ,  is a constant for a given model M. 

VI1 Iterative-Deepening-A* Matching 

A match can be found by using the relational matching 
cost defined in section B, and the well known branch-and- 
bound tree search technique. In the standard branch and 
bound approach during search there are many incomplete 
paths contending for further consideration. The one with 
the least cost is extended one level, creating as many new 
incomplete paths as there are branches. This procedure is 
repeated until the tree is exhausted. 

The branch and bound search can be improved greatly 
if the path to be extended is selected such that an esti- 
mate of the total cost using that sub-path is minimal. This 
search technique is usually known as A'. An important 
and well known result is that if the estimate of the total 
cost is always less than the actual cost, the path found by 
A* is optimal. The drawback of this algorithm is the same 
as that of breadth-first search, namely its memory require- 
ment. The algorithm must maintain a list of all contending 
paths. In each cycle, the number of contending paths is 
increased by b - 1, where b is the branching factor of the 
node being extended. Thus, the space complexity of A* is 
O(bd) where d is the solution depth level. 

Korf [9] presented a new search algorithm, called 
iterative-deepening-A' (IDA') that gets around the mem- 
ory problem of A* without sacrificing optimality or time 
complexity. The algorithm consists of a sequence of depth- 
first searches. IDA' starts with an initial threshold value 
equal to the estimated totd  cost for the root of the tree. In 
each iteration, the algorithm is a pure depth-first search, 
cutting off any branch that has an estimated total cost 
larger than the current threshold value. If a solution is 
expanded, the algorithm is finished. Otherwise, a new 

threshold value is set to the minimum estimated cost that 
exceeded the previous threshold, and another depth-first 
search is started from scratch. 

As in the case of A', if the estimated total cost is an un- 
derestimate of the real total cost, IDA* finds the optimal 
solution. The advantage of IDA* over A* is that since each 
iteration of the algorithm is a depth-first search, the mem- 
ory complexity is O(d), instead of exponential. The number 
of nodes opened by IDA' is asymptotically the number of 
nodes opened by A*, provided that the tree grows expo- 
nentially. In practice, IDA* runs faster than A*, since its 
overhead per node is less than the overhead for A*. 

A Relational Matching Cost Underestimate 

The IDA' algorithm requires an underestimate of the re- 
lational matching cost of an observation mapping that is 
an extension of the current partial mapping. In this sec- 
tion we formally define the extension of a partial mapping 
and use this concept to find a lower bound of the relational 
matching cost given in equation (8). 

Def. VII.l Given two one-to-one mappings h and m, 
such that Dom(m) C Dom(h), and m(l) = h( l )  for all 
l E Dom(m), we say that the function h is an extension of 
the function m, and that the function m is a restriction of 
the function h. The order of the extension h with respect 
to m is the difference between the cardinalities of the sets 
Dom(h) and Dom(m). 

Let m: L -+ U be a partial mapping assigning some la- 
bels to some units, and let mj be an extension of order j 
of m. Using equation (8), the relational matching cost of 
m j  is bounded by: 

C(mj)  2 A t  (9) 

The term IIEf(mj) - pf11$, can be exactly computed by 
using the definition of.feature error. The feature error for 
the extended mapping mj, Ef(mj),  is given by: 

Ef (mj)  = #L + #U - Z#Dom(mj) = Ef(m) - 2 j  . 
Hence, 

To find a lower bound of the term llEr(m3).- p v l l ~ 7 ,  we 
start by noticing that a partial mapping partitions the sets 
of relational tuples into disjoint subsets: 

Def. VII.2 The set of used relational tuples of labels, 
R"(m), is the subset of relational tuples of labels in R such 
that all the labels in their feature vectors have been as- 
sociated a correspondent unit in U through the mapping 
m. 

Def. VII.3 The set of i-partaallyfree relatzonal tuples of 
labels, Rf(m),  is the subset of relational tuples of labels in S 
such that all but i 2 0 of the labels in their feature vectors 
have been associated a correspondent unit in U through 
the mapping m. 

The set of used relational tuples of units, S"(m),  and 
the set of i-partially free relational tuples of units, Sp(m), 
are defined in a simllar way. Fig. 3 shows the sets S and 
R, and the partition induced on them by the partial match 
m. 

given by: 
The relational error for the mapping mj ,  E,(mj), is 
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Figure 3: Partition of the sets of relational tuples of features induced 
by a partial match. 

Ev(m,) = # ( R  - s 0 myl) + #(S - R 0 mj). (11) 

As the order of extension j increases, some partially free 
relational tuples become used and the cardinal of the sets 
(R - S o my1) and (S - R o mj) can not incmase. Hence, 

&(m) 2 ~%(mj). (12) 

A partially free relational tuple of labels T E Rf(m) and a 
partially free relational tuple of units s E Sp(m) are com-  
patibles if they agree on the features that have been already 
matched. Let c;(m) be the minimum between the num- 
ber of relational tuples of labels i-partially free that have 
compatibles, and the number of relational tuples of units 
i-partially free that have compatibles through the mapping 
m. That is, ci(m) is the maximum number of partially free 
relational tuples that could be correctly matched by ex- 
tending the mapping m with i correspondences. Then, the 
relational error of the extended mapping mj, E,(mj) ,  has 
the lower bound: 

E,(mj) 2 Er(m) - 2 E c ; ( m )  = E y ( m , j ) .  
i > j  

(13) 

Thus, using equations (12) and (13) we have, 

(14) 
bound 

IIEr(mj) - Prllt7 2 \\Er (mij) - PrIIt? 

where 

%(n) if,E,(m) < pT,  
Erbound(m, j )  = { P? ifE?'"(m,j) < p7 < E7(m) ,  (15) 

(14) in equation (9), 

E?'"(n, j )  otherwise. 

Substituting equations (10) and 
we have: 

Inequality (16) provides an easy to compute underesti- 
mate of the tatal cast of a partial match. This lower bound 
of the total cost can be used to quickly guide an IDA* al- 
gorithm to the correct mapping reducing dramatically the 
number of nodes to be opened during the search. The com- 
plete matching algorithm using IDA* is given in Fig. 4. 

VI11 Use of Prediction in Matching 

In the previous section we proposed a probabilistic model 
to solve the relational matching problem. In this section 
we discuss how to use the output produced by PREMIO's 
prediction module to estimate the proposed model param- 
eters. 

Step 0: Initialization. 
Set Threshold Th = EstCost(root). 
Set E to the desired matching cost. 
I f T h > e  

Be in 

E d'f 

&ep 1: Start  De t h  First. 
Form a stack Q p  ofpartial matches 
Let P be the initial partial match. 
Set IdinPruned := hghest value. 
Step 2: Iterate over current paths. 
Until &.p is empty, do 

'&e model and the image do not match. 
Go to step 4. 

Unt?l tJk solution is found or the tree is exhausted, do  : 
Be in 

Be in - .  '8 := FIRST(Qp) 
m := partial ma ping associated with 'P 
C,,, := relationafcost of m 
Ste 2.1: Test if P can be extended. 
If tEe path 'P can be extended, 
Begin 

Ste 
Loof for two artially free compatible tuples. 
Step 2.1.2 &tend the  path 
For each U E U', do 
Begin 

2.1.1: Select a label to extend the path. 

hl := path m extended with the pair ( I ,  U). 
P' := path associated with the mapping hi. 
Step 2.1.2.1 Compare to the  upper bound. 
If EstCost(h1) 5 e 

"Ttkp 2.1.2.1.1 Check if done. 

P' is a satisfactory match. 

If Cost(h1) 5 E 

Begin 

:Et. . 
gtep 2.1.2.1.2 Add the  path to t h e  stack. 
If EstCost(h1) 5 Th 
Begin 

FIRSTfQmI := P'.  
Else ' - '  ' 

MinPruned := min(MinP7 

gh,g MtzPruned 

Step 4:%nd of Algorithm 
Announce failure. 

wried, , EstCost(h1)) 

Figure 4: Matching Algorithm 

A Probabilistic Prediction Models 
Given an object, a set of sensor and light configurations 
corresponding to a view aspect' of the object, PREMIO 
summarizes all the predictions obtained by the predic- 
tion module into a probabilistic model called the prob- 
abilistic prediction model (PPM). A PPM consists of a 
model M = (L, R, f ~ , g ~ )  and a set of statistics 0 = 
( P ( M ) ,  pu, p s ,  PfUl Pg,). 

The model  M 

PREMIO's prediction module predicts which 2D features 
should be detectable for a given configuration of light and 
sensor and a given image processing sequence. Each of the 
detectable 2D features correspond to their originating 3D 
feature, and have associated attribute values. 

Given a set of n predictions for a set of n sensor and 
lighting' configurations, we approximate the detectability 
of a 2D feature by the frequency rate of its appearance. 

2A view aspect is defined as a set of views with similar prop- 
erties. In this paper, an aspect corresponds to a set of views 
that have the same visible faces. 
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Two 2D features appearing in two different images are con- 
sidered to be the same feature if they have a common 3D 
originating feature. The set of labels L is formed by those 
2D features that have high enough probability of being de- 
tected (above threshold if), as a whole or in pieces for the 
given set of sensors and light sources. Furthermore, each 
feature in L has associated attributes which are given by 
the mean and the standard deviation of the attribute values 
of the feature for the n predictions. 

Similarly, PREMIO’s prediction module predicts which 
relationships among features would be detected and their 
strength, for a given configuration of light and camera and 
a given image processing sequence. Given the n predictions 
we approximate the probability of a relation among a set of 
features to holding by the frequency rate of its appearance. 
The set of relational tuples R is formed for those relations 
among features in L such that they have high enough prob- 
ability of holding (above threshold t ~ ) .  As with feature 
attributes, the relationship strength values of the tuples in 
R are represented by the mean and standard deviation of 
the relational tuples for the n predictions. 

The model M = ( L ,  R,f~,gs) obtained in this way, is 
a probabilistic model of the object for the given set of con- 
figurations of sensors and lights. Note that neither all the 
features in L ,  nor all the relational tuples in R need to be 
present in a single prediction. Neither do all the features 
of a particular prediction need to be in L. The model A4 
combines a group of predictions into a single model, which 
is a sort of “average” model. The differences between the 
model M and the individual predictions that were used to 
build the model are summarized in the statistics 0. 

The statistics 0 

Once the model M is obtained, the individual predictions 
can be used to generate samples for the four error distri- 
butions Pu, Ps, Pfu, and Pgs.. Let II ,... , I,, be a set 
of n predictions. Each prediction can be represented by 
the four tuple I; = ( U i , S i , f v i , g s i )  where Vi is the set 
of units, Si is the set of relational tuples of units, fui 
is the attribute mapping for the units in U;, and g s i  is 
the relationship strength mapping for the relational set 
S;. By construction we know the true observation map- 
ping for each of the predictions. Let hi: Hi -+ Vi ,  with 
Hi 5 L be the true observation mapping for the prediction 
i. Then, we can compute the quantities # L  + #Ui - 2#Hi ,  
# ( R  - S; 0 hf’) + #(Si - R o hi) ,  p ( f v i  o hi,  ~ L I H ; ) ,  and 
p ( g s i  o hi,gRIHi) for i = 1,. . . ,n. 

Now, the problem of finding the statistics 0 reduces 
to the well-know problem of estimating the parameters of 
normal distributions given sets of n samples. A detailed 
treatment of this topic can be found in statistics textbooks 
[101. 

IX Experimental Protocol 

Controlled experiments are an important component of 
computer vision, for the controlled experiment demon- 
strates that the algorithm designed by the computer vision 
researcher recognizes, locates, and/or measures what it was 
designed to do [4]. In this section we describe the experi- 
mental protocol, based on the one presented in [8], that we 
designed to evaluate PREMIO’s matching algorithm. 

A Probabilist ic Predict ion Model  Generat ion 

In the previous section we introduced the concept of the 
probabilistic prediction model (PPM). In our experiments, 
we use a PPM that summarizes the predictions obtained by 

the prediction module for a set of views in the same aspect 
of the object. Next, we describe how to generate the two 
components of a PPM, the model M and the statistics 0. 

Model Generation 

To generate a model M we need to do the following steps: 

1. Select a region V of the viewing space. The region V 
is a spherical sector between two spheres. It is speci- 
fied by the range of the longitude ( @ , , m i n ,  @,,,,,) and 
latitude ( O , , m i n , O v m a x )  angles and the radius of the 
viewing sphere (Rvmin, RvmaX). 

2. Select a region Z of the illumination space. This region 
is specified in an analogous way as the viewing space 
region, by the range of the longitude ( @ i m i n ,  @imax)  
and latitude (O;minrO;max) angles and the radius of 
the illumination sphere (R;min, Rimax). 

3. Sample the viewing space and illumination space re- 
gions. Given the desired number of samples Nu, and 
N;, the viewing and illumination space regions previ- 
ously defined are uniformly sampled. Let V ,  be the 
set of the sampled viewing positions, and Z. the set of 
the sampled lighting positions. 

4. Generate the predictions. For each pair ( v , ; )  E V ,  x 
Z,, use the prediction module to predict the subset 
of detectable labels AV;,  its associated attribute map- 
ping f ~ , , ; ,  the subset of detectable relational tuples 
Rvi, and its associated relationship strength mapping 
g R , i .  The prediction module also generates the cor- 
responding set of units UVi,  the associated attribute 
mapping fuVi, the set of relational tuples S,;, and the 
associated strength mapping g S U i .  

5. Obtain detectability frequencies. We will approximate 
‘the probability of a label/relationship being detected, 
given that the view and light are in the considered 
regions V and Z, by the observed frequency rate of 
their detectability in the generated predictions. 
These approximations are based on the fact that the 
predictions were made from uniformly sampled camera 
and light positions as well on the CTL (provided, that 
N, and Ni are large enough). 

6. Select desired detectability. Select the desired min- 
imum label detectability t f  and the minimum rela- 
tional detectability t ~ .  

7. Combine the predictions. The N,, x Ni predictions are 
combined into a single model M = ( L ,  R ,  f ~ ,  g R )  such 
that the labels in L have a detectability greater than 
t f  and the relational tuples in R have a detectability 
greater than t R .  

Statistics Generation 

The statistics 0 are generated as follows: 

1. Obtain the observation mappings. For each gener- 
ated prediction, find the true observation mapping be- 
tween the predicted image and the obtained model M, 
h,,;: H,,; -+ U,,;, with H v i  5 L, and (11, i) E V .  x Z,. 
These observation mappings only include correspon- 
dences with units that were originated from labels 
with detectability greater than or equal to t f .  

2. Obtain matching errors. The previous step produced 
N,, x N; true observation mappings, h,i. For each pre- 
diction compute the quantities: # L  + #U,; - 2#H,,;, 
# ( R  - Swi o h;;) + #(Svi - R 0 L i ) ,  p ( f ~ , , i ,  ~LIH,,)~ 

and p ( g S v i ,  gRIHv,). 
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3. Parameter estimation. Use the matching errors gener- 
ated in the previous step to estimate the parameters of 
the four Gaussian distributions Pu, Ps, Pf,, and Pgs: 
P f r f l f , P R , f l R r  pfur , f l fv ,pgsr  andugs by using theSam- 
ple means and variances. 

B Image Generat ion 

The matching algorithm has been tested on simulated im- 
ages and some real images. Next, we describe how to gen- 
erate a set of simulated images to be matched against the 
previously generated PPM. 

1. 

2. 

C 

Sample the viewing space and illumination space re- 
gions. Given the desired number of samples N : ,  and 
N,!, the viewing and illumination space r'egions V and 
Z are uniformly sampled again. Let V: be the new set 
of the sampled viewing positions, and Ti the new set 
of the sampled lighting positions. 
Generate the images. For each pair ( v , i )  E V: x Ti ,  
use the prediction module to predict the subset of de- 
tectable labels L,;, its associated attribute mapping 
f~,,;, the subset of detectable relational tuples R,,;, 
and its associated relationship strength mapping gR,;. 
The prediction module also generates the correspond- 
ing set of units U,,;, the associated attribute mapping 
fu,,;, the set of relational tuples Svi, and the associ- 
ated strength mapping gs,;. 

Matching 

To test the performance of the matching algorithm, we 
matched the randomly-generated images against the PPM, 
varying the number of correspondences sought, and we 
compared the obtained camera position against the known 
"true" camera position: 

1. The number n of correspondences to find using the 
matching algorithm was chosen. 

2. For each of the generated images: 

(a) The matching algorithm was applied to search 
for an observation mapping with n correspon- 
dences between the PPM and the image. 

(b) If such observation mapping was found, the n 
correspondences found were used to compute the 
camera position. 

(c) The distance between the camera position and 
the true camera position, d was computed. This 
distance is referred to as the posi t ion error and is 
a measure of the strength of the mapping found. 
The smaller the error is, the greater the strength 
of the mapping found. 

D P e r f o r m a n c e  E v a l u a t i o n  

If an observation mapping is not found, the experiment is 
referred to as a misdetec t ion  error(ME). The probability of 
a misdetection error, given the number of correspondences 
sought n, is defined as: 

# Mappings not Found 
#Images 

P( ME In) = 

If an observation mapping is found, in order to decide 
whether or not the system has found the correct observation 
mapping, an accuracy criterion C must be applied to the 

position error. If the position error of an image is larger 
than the accuracy criterion C, the observation mapping 
found is declared incorrect, and the experiment is referred 
to as a pose  error (PE). That is, C is the maximum position 
error allowed. In order to study the performance of the 
system, the accuracy criterion C is varied through a set 
of values. The probability of a pose error, given that a 
mapping mn with n correspondences was found, and given 
the accuracy criterion C is defined as: 

P( PElm,,C) = # Incorrect Mappings 
#Mappings Found ' 

The performance of the matching algorithm is charac- 
terized by both, the probability of a misdetection error and 
the probability of a pose error. Hence, the performance of 
the algorithm changes as the number of correspondences 
sought and the accuracy criterion are varied. The results 
of the experiments described in the presented protocol can 
be summarized by plotting the receiver operating curwes 
(ROC) of the algorithm. The ROC are obtained by plot- 
ting the probability of misdetection against the probability 
of pose error, parametrical on the number of correspon- 
dences n and the accuracy criterion C. 

X Experiments 

In our experiments we used a CCD camera with focal length 
4.8 mm. and a resolution of 1.25901 mm./pixel x 1.18758 
mm./pixel. The light is a point source of unpolarized light, 
of intensity 1, located at a fixed position. The set of fea- 
tures L are segments. The feature attribute mapping fu as- 
sociates to  each segment four attributes: its midpoint coor- 
dinates, its length, and its orientation. The set of relational 
tuples of segments R is formed by three different types of 
relationships: junc t ions  of two segments, junctions of three 
segments, and triples of segments. A j u n c t z o n  of two/three 
segments is an ordered set of two/three lines which meet 
at a junction. The segments are ordered such that the an- 
gles between the segments are less than 180 degrees when 
the lines are traced clockwise. A triple of segments [7] is 
defined as an ordered set of three lines, two pairs of which 
meet at a junction. The angles at the two junctions must 
both be less than 180 degrees when the lines are traced 
clockwise, so the triple has a well defined "inside". For 
this set of experiments, the relationship strength mapping 
g R  was not used. Conceptually, this amounts to having a 
constant relationship strength mapping. 

Fig. 5 shows a perfect line drawing of CubeSCut,  one of 
the objects modeled in Premio. In what follows we describe 
the results of a series of experiments with a PPM model of 
Cube3 Cut combining over a hundred of predictions. These 
predictions were generated with CubeJCut located at the 
origin, the light fixed at (-3.Ocm., -2.0cm., 60.0cm.) ,  and 
the camera moving on a sphere of radius R = 35.3857cm., 
with longitude 20" 5 @,, 5 70" and latitude 20" 5 6, 5 
70". The minimum feature detectability was set to t f  = 0.0, 
and the minimum relational detectability was set to tfi = 
0.15. Fig. 6 shows some of the predictions used to build 
the PPM. Fig. 7 shows a line drawing of the corresponding 
model M .  The segments are shown with their mean at- 
tributes, labeled in descending order of detectability. The 
parameters for the error distributions for this model are: 
p f  = 9.6875, ~j = 2.5042, p~ = 10.4107, UR = 3.3867 
(junctions of two segments), p~ = 7.9375, U R  = 1.5024 
(junctions of three segments), and p~ = 17.9107, UR = 
5.6226 (triples), and p f ,  = 32.5366, u f ,  = 8.9240. 

Fig. 8 shows the operating curves obtained when the 
matching algorithm was tested on a set of over sixty ar- 
tificial images. The number of correspondences between 
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Operating Curves 

Figure 5: Cube3Cut: an object modeled in Premio. The figure shows 
a perfect line drawing of the object Cube3Cut. 

Figure 6: Cube3Cut: predicted images. The figure shows a few 
predicted segmented images of Cubescut ,  when the object is a t  the 
origin, the light is a t  (-3.Ocm., -2.Ocm.,60.0cm.), and the camera 
moves on a sphere with radius R = 35.3857cm., with 20' 5 4i, 5 
70°, and 20" 5 9 ,  5 70'. 

Figure 7: Probabilistic prediction model: model M component. The 
figure shows a line drawing using the mean values of the attributes 
of the segments in the model M of a PPM of Cube3Cut. The shown 
PPM combines over a hundred images of Cube3Cut when the object 
is a t  the origin, the light is a t  (-3.0cm., -2.Ocm., 60.0cm.), and the 
camera moves on a sphere with radius R = 35.3857cm., 20° 5 %v 5 
70°, and 20" 5 8, 5 70". 
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Figure 8: Matching Operating Curves for Cube3Cut. The plots show 
the misdetection probability versus the probability of pose error, 
given that a camera position was found, parametrical on the number 
of correspondences sought, for different accuracy criterion C value. 

segments sought was varied between 3 and 25. The corre- 
spondences found between segments were used to determine 
correspondences between points in the images and points 
on the object, which in turn were used to determine the 
camera position. Let n be the number of correspondences 
sought between segments. For n = 3, the probability of 
misdetection is high. If too few segments are matched, 
few point correspondences are found, resulting in a high 
misdetection rate. For n = 4, the number of point corre- 
spondences found increases, and hence the probability of 
misdetection decreases. However, the number of point cor- 
respondences found remains low, and hence the pose error 
is large. For n = 5 to n = 8, the number of point correspon- 
dences increases and hence both probabilities decrease. For 
n = 9 to n = 11, the rate of misdetection is zero. The more 
correspondences found, the more accurate the computed 
camera position is, and the smaller the probability of pose 
error is. For n > 11, there are images for which the match- 
ing algorithm can not find n correspondences and hence the 
misdetection rate increases. However, for those images that 
a set of correspondences is found, the accuracy of the com- 
puted camera increases, since more point correspondences 
are available, and therefore the probability of pose error de- 
creases. In general, we would like the system to have both 
low probability of misdetection, and probability of pose er- 
ror. Having this in mind, the operating curves can be used 
to select the number of correspondences sought during the 
matching. For example, for an accuracy of C = 5.0%, and a 
number of correspondences n = 13, the probability of mis- 
detection is equal to 0.3 and the probability of pose error 
is equal to 0.3226. 

Fig. 9(a) shows a real image of Cube3Cut. Fig. 9(b) 
shows a perfect line drawing of Cube3Cut for the camera 
position used in (a). Fig. 9(c) shows a segmented image 
of (a) and Fig. 9(d) shows the predicted segmentation for 
the camera and light configuration used in (a). Fig. 9(e) 
shows the line drawing of Cube3Cut for the camera position 
obtained from matching the line segments in (c) against 
the PPM showed in Fig. 7, overimposed the line drawing 
showed in Fig. 9b. 

The IDA* matching algorithm presented in this paper 
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takes 2 iterations to find nine correspondences (all of them 
correct) between the image given in Fig. 9(c) and the pre- 
diction model given in Fig. 7. During the search, only 42 
nodes were opened and 32 of them were pruned (76%). 

XI Conclusion 
In this paper we have posed the relational matching prob- 
lem as a special case of the pattern complex recognition 
problem. This probabilistic approach allows us to make 
explicit statements about how an image is formed from a 
model, and hence to find theoretical underestimates of the 
matching cost to direct and reduce the search. Further- 
more, we have described how the predictions generated by 
PREMIO’s prediction module can be used to estimate the 
probabilistic model parameters. Finally, we have laid out 
a rigurous methodology to characterize the performance of 
the proposed matching algorithm and we have presented 
experimental results using artificial and real images. 
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Figure 9: A real image of Cube3Cut: (a) A real image of Cube3Cut. 
(b) A perfect line drawing of Cube3Cut for the camera position used 
in (a). (c) A segmented image of (a). (d) The predicted segmenta- 
tion for the camera position and lighting conditions used in (a). 
(e) A perfect line drawing of Cube3Cut for the camera position ob- 
tained from matching the line segments showed in (c) against the 
corresponding PPM, overimposed the line drawing shown in (b). 
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