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Abstract— Dynamic vision and imaging systems have the po-
tential to substantially improve our quality of life. However, key
issues that must be addressed in order to deploy these systems in
unstructured environments are their potential fragility and the
need to process vast amounts of information in real time. As we
show in this paper, these issues can be addressed by appealing to
a common systems theoretic substrate that allows for recasting
a wide range of problems into a tractable convex optimization
form. These ideas are illustrated with several applications
including multiframe tracking, motion segmentation, texture
analysis/synthesis and video reconstruction and inpainting.

I. I NTRODUCTION

Dynamic vision and imaging – the confluence of dynamics,
computer vision, image processing and control – is uniquely
positioned to enhance the quality of life for large segments
of the general public. Aware sensors endowed with tracking
and scene analysis capabilities can prevent crime, reduce time
response to emergency scenes and allow elderly people to
continue living independently. Enhanced imaging methods
can substantially reduce the amount of radiation required in
medical imaging procedures and in cancer therapy. Moreover,
the investment required to accomplish these goals is relatively
modest, since a large number of imaging sensors are already
deployed and networked. For instance, the number of outdoor
surveillance cameras in public spaces is already large (10,000
in Manhattan alone), and will increase exponentially with the
introduction of camera cell phones capable of broadcasting
and sharing live video feeds in real time. The challenge
now is to develop a theoretical framework that allows for
robustly processing this vast amount of information, within
the constraints imposed by the need for real time operation
in dynamic, partially stochastic scenarios. The goal of this
paper is to illustrate the central role that dynamic models and
their associated predictions can play in developing a com-
prehensive, computationally tractable robust dynamic vision
and imaging framework. Establishing a connection with a
rich set of robust systems theory tools allows for recasting a
wide spectrum of problems arising in this context – robustly
tracking an object in a sequence of frames, modelling appear-
ance changes, recovering structure from motion, recognizing
classes of activities, and classifying textured images –into a
tractable, finite dimensional convex optimization.

II. N OTATION

σ (A) maximum singular value ofA.
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H∞,ρ space of transfer functions analytic in
|z | ≤ ρ, equipped with the norm
‖G‖∞,ρ

.= ess sup|z|<ρ σ (G(z)). The
caseρ = 1 will be denoted as usual
simply byH∞

BH∞(K) open K–ball inH∞
`p space of vector valued sequences

equipped with the norm:‖x‖pp
.=∑∞

i=0 ‖xi‖pp, p ∈ [1,∞] and‖x‖∞
.=

supi ‖xi‖∞.

III. I NTERPOLATION PROBLEMS IN DYNAMIC V ISION

In this section we show that many dynamic vision prob-
lems such as robustly tracking an object in a sequence of
frames, obtaining structure from motion and motion seg-
mentation can be reduced to a convex optimization problem,
through the use of well established system–theoretic tools.

A. Multiframe Tracking

A requirement common to most dynamic vision applica-
tions is theability to track objects in a sequence of frames.
Current approaches integrate correspondences between indi-
vidual frames over time, through a combination of target
dynamics, empirically learned noise distributions and past
position observations [4, 8]. However, while successful in
many scenarios, these approaches still remain vulnerable to
model uncertainty, occlusion and appearance changes, as
illustrated in Figure 1.

As we show next, this difficulty can be solved by mod-
elling the motion of the target as the output of a dynamical
system, to be indentified from the available data. To this
effect, start by modellingyk, the present position of a given
target feature as:

y(z) = F(z)e(z) + η(z) (1)

where e and ηk ∈ N represent a suitable input and mea-
surement noise, respectively, and where the operatorF is
not necessarilỳ 2 stable. Further, we will assume that the
following a priori information is available:
(a) Set membership descriptionsηk ∈ N and ek ∈ E .
These can be used to provide deterministic models of the
stochastic signalse, η.

(b) F admits an expansion of the formF =
Fp︷ ︸︸ ︷

Np∑
j=1

pjFj +Fnp. Here Fj are known, given, not neces-
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Fig. 1. Tracking in the presence of occlusion. Top: Unscented Particle Filter based tracker loses the target due to occlusion. Bottom: Combination Identified
Dynamics/Kalman Filter tracks through the occlusion.

sarily `2 stable operators that contain all the information
available about possible modes of motion of the target.

(c) Fnp ∈ BH∞,ρ(K) for some knownρ ≤ 1, e.g. a bound
on the divergence rate of the approximation error of the
expansionFp to F is available.

In this context, the next location of the target featureyk can
be predicted by first identifying the relevant dynamicsF and
then using it to propagate its past values. In turn, identifying
the dynamics entails finding an operatorF(z) ∈ S .=
{F(z) : F = Fp + Fnp} such thaty−η = Fe, precisely the
class of interpolation problem addressed in [10]. As shown
there, such an operator exists if and only if the following set
of equations in the variablesp,h andK is feasible:

MR(h) =
[

R2
ρ TTh

Th K2R−2
ρ

]
≥ 0 (2)

y − TePp− Teh ∈ N (3)

whereTx denotes the Toeplitz matrix associated with a given
sequencex = [x1, . . . , xn], Rρ

.= diag [1 ρ · · · ρn], P
.=

[f1 f2 · · · fNp ],wheref i is a column vector containing the
first n Markov parameters of the i-th transfer functionF i(z)
andh contains the firstn Markov parameters ofFnp(z)
A Simple Tracking Example: Consider again the problem
illustrated in Figure 1. The experimental information consists
of centroid position measurements from the first 20 frames,
where the target is not occluded. Thea priori information,
estimated from the non–occluded portion of the trajectory is:

1) 5% noise level
2) E = δ(0), i.e. motion of the target was modelled as the

impulse response of the unknown operatorF 1.
3) Fp ∈ span[ 1

z−1 ,
z

z−a ,
z

(z−1)2 ,
z2

(z−1)2 ,
z2−cosωz

z2−2 cosωz+1 , sinωz2

z2−2 cosωz+1 ] where a ∈
{0.9, 1, 1.2, 1.3, 2} andω ∈ {0.2, 0.45}

1This is equivalent to lumping together the dynamics of the plant and the
input signal.

4) Fnp ∈ BH∞,ρ(K), with ρ = 0.99
As shown in Figure 1, a tracker that uses the identified
dynamics for prediction is now able to track the target past
the occlusion. It is worth emphasizing that the combination
identified dynamics/Kalman filter significantly outperforms a
tracker based solely on an unscented particle filter [4], even
though the latter has substantially higher computational com-
plexity. Hence, exploiting dynamical information through
the use of control–motivated tools, leads toboth robustness
improvement and substantial computational complexity re-
duction.
Subsampling and data gating: A salient feature of the
framework described above is its ability to furnishdeter-
ministic, worst–case boundson the prediction error that
can be used to disambiguate among targets with a low
computational cost. Specifically, given a sequence{yk}N−1

k=0

of measurements of the locationfk of the feature, define the
consistency set as:

T (y) .=
{
F ∈ S : {yk − (F ∗ e)k}N−1

k=0 ∈ N
}

(4)

i.e, the set of all models consistent with both thea priori in-
formation and the experimental data. Since both, the “true”
operatorFo that maps the inpute to the feature locationsf
and the identified one belong to the consistency set, it follows
that, given the firstN measurements{yk}N−1

k=0 , a bound on
the worst case prediction error over the horizon[0,M − 1],
M > N , is given by:

‖f̂ − f‖`∞[0,M−1] ≤ sup
Fi∈T (y)

‖F1e−F2e‖`∞[0,M−1]

≤ 2 sup
F∈T (0)

‖F‖`∞[0,M−1]

where the last inequality follows from standard information
based complexity arguments (see for instance Lemma 10.3 in
[12]). WhenN is convex, computing this bound reduces to
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Fig. 2. Prediction (black) versus Ground Truth (white) )

a convex optimization problem. In particular, the caseN =
{η : ‖η‖∞ ≤ ηmax} leads to a Linear Programming problem.

Frame 13 15 17 20
Actual error 8.87 10.04 10.31 26.05

Worst case bound 13.00 17 21 27

Fig. 3. Propagation of the Prediction error. Target width is 30 pixels.

Figure 3 compares the actual and upper bound of the error
for the sequence partially shown in Figure 2. In this experi-
ment, the position measured in frame 12 was propagated for-
ward using the identified dynamics and the bounds computed
by solving a single LP problem. Note that this procedure
extends trivially to the case of several targets, each with its
own dynamics, providing an effective tool for disambiguating
targets with neighboring tracks, since candidate features that
fall outside these bounds can be discarded. In addition,
these bounds provide a mechanism to balance computational
requirements and data obsolescence, by establishinga priori
that no new data is required from Frame 12 until Frame 20,
where the error becomes comparable with the width of the
target.

B. Dynamic Appearance Modelling and Computational
Complexity Issues.

Arguably, one of the hardest challenges in tracking is to
overcome changes to its appearance, due to factors such
as target motion, self-occlusion, target articulations, and
changes in illumination. In principle, this difficulty can be
solved by usingdynamicappearance models that incorpo-
rate time–evolution information and have better predictive
capabilities. In turn, as argued in [5], these models can
be obtained using the same robust identification approaches
employed to identify the motion dynamics. However, moving
beyond a few simple descriptors requires addressing the
issues of high computational costs, due to the poor scaling
properties of LMI based identification algorithms2.

A possible way of addressing the challenge noted above
is through the use of recently introduced nonlinear dimen-
sionality reduction techniques to map the data to a lower
dimensional manifold where the identification/tracking is

2Recall that the computational complexity of conventional LMI solvers
scales as (number of decision variables)10[9].
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Fig. 4. Wiener System Structure

performed. Since the projection onto the lower dimensional
manifold can be modelled as a static nonlinearity, this
approach leads naturally to a Wiener system structure of the
form illustrated in Figure 4, consisting of the interconnection
of a LTI systemH(z) and a memoryless nonlinearityf(.).
The effectiveness of this approach in substantially reducing
the computational complexity entailed in tracking complex
targets is illustrated next using the problem of human motion
modelling and tracking. The experimental data, partially
shown in Figure 5(a) consists of the first 20 frames of a
human walking on a treadmill, each having 1728 pixels.
Thus, modelling pixel evolution become infeasible even
when using just a few frames. On the other hand using
the risk–adjusted approach proposed in [6] (recall that the
computational complexity of this approach scales polynomi-
ally with the number of data points) and the followinga
priori information

1.- ω ∈ R3 (this hypothesis is motivated by the physics of
the problem, whereω is related to the coordinates of
the centroid of the target).

2.- The static nonlinearityf(.) has the form3: f(x) =
BΨ(x) where B ∈ R1726×6 is an unknown matrix
and the basesΨ(x) : R3 → R6 are given by:

Ψ(x) = [exp(−0.8‖x− t1‖22),

exp(−0.8‖x− t2‖22), 1,xT ]T

where

t1 =
[
0.6833 −0.4521 −0.0033

]
t2 =

[
−0.7552 0.4997 0.0036

]
led to model with a fifth order linear portion that interpolates
the data within10%. The predictive power of this model
is shown in the bottom portion of Figure 5(a). Finally,
Figure 5(b) shows close agreement between the temporal

3This hypothesis is motivated by the bases proposed in [2] to map human
silhouettes to lower dimensional spaces.



evolution of the points on the manifold and the positions
predicted using the linear dynamic model. This substantiates
the conjecture, originally posed in [7], that human motion
tracking can be decoupled into two problems: (a) a linear
tracking problem in a low dimensional manifold, accounting
for the dynamicsof the motion, and (b) a nonlinear, static
mapping that accounts for the changes in appearance of the
target.

C. Structure and Motion Recovery from Dynamics:

When tracking an unknown numberNo of moving objects,
it is of interest to identify (i) the number of objects, (ii) the
individual dynamics and, (iii) assign points in the image to
each. To illustrate the issues involved, start by considering
P features from a single rigid object, tracked overF frames
with image coordinates{(upt , v

p
t )}, p = 1, . . . , P , t =

1, . . . , F . Define the measurement matrixW1:F , by:

W1:F =
[
upt − ut
vpt − vt

]
∈ R2P×F (5)

where (ut, vt) denote coordinates of the centroid of the
features. Under the assumptions of affine projection it can
be shown [14] thatW1:F has at most rank 3 and can be
decomposed into a “rotation” matrixR1:F and a “structure”
matrix S

W1:F =
[
Ru1:F

Rv1:F

]
S = R1:FS (6)

In the case of multiple objects, the number of objects and the
corresponding geometry can be obtained by factoringW into
rank 3 submatrices. This basic idea lies at the core of factor-
ization based approaches (see for instance [16, 15]), leading
to computationally efficient solutions. However, its success
hinges upon identifying the correct point-correspondences
across frames. Thus, it is sensitive to noise, partial occlusion
or large affine warping of feature templates due to large inter
frame rotations. In such cases, predictions provided by esti-
mating the dynamics of the moving objects can play a critical
role in connecting previous measurements with current data.
The main idea is to parametrizeRt+1 the rotation matrix
between frames 1 andt+ 1 asRt+1 = ejωtRt, and identify
the dynamics governing the time evolution ofω from past
data. This leads to a hybrid,bootstrap–type approach, where,
at any given instant, a factorization ofW, is used to learn the
dynamics of the time–varying motion of the object(s). In turn,
these dynamics are used to predict future feature positions
that can be used to disambiguate tracks, or even fill in for
partially missing data, avoiding the need for dropping frames
where not all features are present. In addition, the associated
error bounds can be used to limit the size of search windows.
The potential of this approach is illustrated in Figure 6,
comparing a purely factorization–based approach against the
proposed hybrid one while reconstructing a stuffed teddy
bear. As shown in Figure 6(b), bootstrapping SfM with
identification of the motion dynamics resulted in significantly

smaller ratios between the fourth and third singular values
of W, indicating a significant improvement of the tracking
data (recall that for a single object, ideally we should have
rank(W) = 3).
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Fig. 6. (a) First and last frames. (b) Ratio of the fourth to the third singular
values.

(a) (b)

(c) (d)

Fig. 7. (a) All propellers move at the same speed. Right wing propellers
move counterclockwise, while left wing propellers move clockwise. (b)
Costeira-Kanade motion segmentation. (c) Zelnik-Manor-Irani motion seg-
mentation using six eigenvectors. (d) Dynamics based motion segmentation.

A second source of fragility in currently existing ap-
proaches stems from the difficulty in disambiguating objects
that partially share motion modes, such as the same–wing
propellers of the airplane shown in Figure 7(a). It can be
easily shown that in this case rank(W) = 6. Hence, as
shown in Figure 7 (b)–(c), any motion segmentation approach
based solely on finding linearly independent subspaces of the
column space ofW will fail, since it cannot distinguish this
case from the case of two independently moving propellers.
Intuitively, the main difficulty here is that any approach
based on properties ofW that are invariant under column
permutations,take into account only geometrical constraints,
but not dynamical ones.

As we show next, robustness can be substantially improved
by grouping points according to the complexity of the model
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Fig. 5. Learning the dynamics of complex appearances using a Wiener system. (a) Top: Walking sequence (from CMU MoBo database), Bottom: impulse
response of the identified Wiener system. (b) Evolution on a 2D projection of the 3D manifold: predicted(red) and actual(blue).

required to explain their relative motion. Intuitively, this
formalizes the idea that points on the same rigid share more
modes of motion than points on different objects, leading
to less complex models. Specifically, begin by associating
to the jth object, its centroidO(j) and an affine basisb(j),
centered atO(j), defined by three no coplanar vectorsV(j)

i .
Finally, denote byo(j)(k), v(j)

i (k) the coordinates of the
image of O(j)(k) and the projections ofV(j)

i (k) onto the
image plane, respectively. Given any pointP(j)

i belonging to
the jth object, the coordinates at timek of its imagep(i)(k)
are given by:

p
(j)
i (k) = o(j)(k) + α

(j)
i v

(j)
1 (k) + β

(j)
i v

(j)
2 k + γ

(j)
i v

(j)
3 (k)

whereα(j)
i , β

(j)
i andγ(j)

i are theaffine invariantcoordinates
of P(j)

i with respect to the basisb(j). Note that, for any two
points P(j)

r ,P(j)
s in the same object, the dynamics ofo(j)

areunobservablefrom δr,s(k) .= p(j)
r (k)−p(j)

s (k). Thus, the
underlying subsystem is rank deficient when compared to a
subsystem describing difference between points on different
objects. Roughly speaking, the relative motion of points in
a given object, carries no information about the motion of
other objects. It follows that points can be clustered in objects
according to the complexity of the model required to explain
their relative motion. In turn, the order of this model can be
estimated by simply computing the rank of the Hankel matrix
constructed from the pair-wise differencesδrs(k), leading to
a simple segmentation algorithm, computationally no more
expensive than a sequence of SVDs. The effectiveness of
this approach is illustrated in Figure 7(d), showing that
it correctly identified the presence of four independently
moving objects.

IV. I NTERPOLATION PROBLEMS IN TEXTURED IMAGE

PROCESSING

Texture analysis, classification and synthesis has been the
subject of research in image processing, computer graphics
and computer vision for over three decades, with applications
ranging from medical diagnosis to entertainment to human
computer interfaces. During the past few years, significant
advances have been made in addressing multiple aspects of
the problem, ranging from inpainting and synthesis to classi-
fication. However, at present, each sub-problem is addressed
using a specific set of tailored tools, only loosely connected
to those used to solve other subproblems. For instance, most
texture recognition schemes rely on representations in terms
of statistics of the responses to a collection of filters [3]. On
the other hand, most synthesis approaches look at texture
as the samples of some probabilistic distribution [3]. The
objective of this section is to briefly illustrate how the use
of system theoretic tools can lead to a unified framework
capable of exploiting the synergism between different as-
pects of the problem to improve robustness and reduce the
computational burden.

A. Texture Modelling and Synthesis

Compact models of textured images can be obtained
by treating the intensity valuesI(k, l) at the (k, l) pixel
of the image as the output of a second order stationary
stochastic process. Equivalently,I(k, l) can be modelled
as the output of atwo-dimensional, discrete linear shift-
invariant system driven by white noise, reducing the problem
to an identification one: obtaining a modelG from image
data, possibly corrupted by noise. Note however that while
most currently existing identification techniques deal with
causal, one-dimensional systems, texture modelling requires



considering two–dimensional,non–causalsystems, since the
intensity value at a pixel is likely to depend on the values
of all pixels in its neighborhood, not just on those preceding
it in some ordering of the image pixels. This difficulty can
be circumvented by considering a givenn × m image as
one period of an infinite 2D signal with period(n,m).
Thus, at any given location(i, j) in the image, the intensity
valuesI(r, s) at other pixels are available also at position
(r − qn, s − qm), and the integerq can always be chosen
so that r − qn < i, s − qm < j. From this observation,
it follows that the unknown systemG admits a state space
representation of form:

x′(i, j) = Ax(i, j) +Bu(i, j)
I(i, j) = Cx(i, j) +Du(i, j) (7)

where

x′(i, j) =
[
xv(i+ 1, j)
xh(i, j + 1)

]
, x(i, j) =

[
xv(i, j)
xh(i, j)

]
A =

[
A1 A2

A3 A4

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
subject to an additional constraint of the form

g(i+N, j) = g(i, j)
g(i, j +M) = g(i, j) for some finite N,M > 0

whereg(., .) denotes the impulse response ofG. With these
assumptions, the problem becomes one of identifying a state–
space realization from experimental data, subject to a period-
icity constraint, precisely the type of problems solved in [1].
The potential of this approach is illustrated in Fig. 8, where
it was used to expand partial images by first identifying the
underlying model and then simply computing its impulse
response.

Fig. 8. Using 2-D Models to Expand Images

B. Texture Classification

In this section we briefly indicate how the models obtained
above can be used for texture classification. Proceeding as
in [13], we will recast the problem into a robust semi-blind
model (in)validation form. To this effect, we will postulate
that all images corresponding to realizations of a given
textureT can be obtained as the output of a 2-D operator
S to an unknown input signale with unit spectral density,
applied in(−∞, 0]×(−∞, 0]. This leads to the set-up shown
in Figure 9, whereT (z1, z2) represents a nominal model of
a particular texture,h(i, j) and y(i, j) denote the intensity
value of the ideal and actual images, respectively, and where

T-e(i, j) -
h(i, j)

- ∆

?j+ -
y(i, j)

Fig. 9. The Texture Recognition Set-up

the (unknown) operator∆(z1, z2) describes the mismatch
between these two images.

In this context, given a set of texture families, each
represented by a modelTi, an unknown specimen can be
classified by (i) performing a sequence of invalidation models
to find the lowest uncertainty value‖∆i‖ required to explain
the specimen in terms of the modelTi, and (ii) assigning
the unknown texture to the family corresponding to small-
est uncertainty norm. By using the proposed identification
technique to obtain a (separable) model of the nominal
texture, the corresponding 2-D model invalidation problem
can be reduced to two decoupled 1-D semi–blind validation
problems that can be solved using the LMI–based technique
developed in [13].
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Fig. 10. Top: Sample Textures. Bottom: Optimalγ

Figure 10 shows the results of applying the technique
outlined above to classify several images. HereI1,j

f andI1,j
g

denote the results obtained when comparing the decompo-
sitions corresponding to the first image against the models
obtained from thejth texture. As shown in the table, the
proposed technique correctly indicates that the first three
images belong to the same family4.

C. Video Inpainting as a Rank Minimization Problem

Video inpainting, that is the process of seamlessly restoring
or altering portions of a video clip, has been the subject
of considerable attention in the past few years (see for
instance [11] and references therein), but the problem is
far from solved. Existing algorithms are limited in the
types of sequences that can handle and have relatively high
computational complexity. In this section we briefly outline
how the use of Systems Theory ideas can lead to simple,
computationally efficient algorithms that exploit (global)

4The higher values ofI1,3
f andI1,3

v are due to the use of a lower quality
image for the third texture.



spatio–temporal information. The main idea is to (i) find a set
of descriptors that encapsulate the information necessary to
reconstruct a frame, (ii) find an optimal estimate of the value
of these descriptors for the missing/corrupted frames, and (iii)
use the estimated values to reconstruct the frames. In turn,
the optimal descriptor estimates can be efficiently obtained
postulating that the correct values of the missing descriptors
are such that the resulting inpainted sequence is described by
the simplest possible (eg. lowest order) dynamical model5.
Since the order of the underlying model can be estimated
from the Hankel matrix of the data, this idea leads to a rank
minimization problem, which in turn can be relaxed to an
LMI optimization, resulting in the following algorithm:

1.- Given the observed values of the descriptorsfo, form
the following (Hankel) matrix:

Hf
.=


f1 f2 · · · fn/2
f2 f3 · · · fn/2+1

...
...

...
...

fn/2 fn/2+1 · · · fn−1

 (8)

Here f denotes either the observed datafok , if the k
frame is present, or the unknown valuefmk , if the frame
needs to be inpainted, andn denotes the total number
of frames.

2.- Estimate the valuesfm which are maximally consis-
tent with fo by solving the following Linear Matrix
Inequality (LMI) optimization problem,

minimize w.r.t fm Tr(Y ) + Tr(Z)

subject to

[
Y Hf

(Hf )T Z

]
≥ 0

where Y T = Y ∈ Rn×n, ZT = Z ∈ Rn×n and
Hf ∈ Rn×n.

The potential of this approach is illustrated in Fig. 11, where
it was used to restore the occluded person. In this particular
example, the positionsfk = (xik, y

i
k) of the 6 feature

points indicated in the figure were chosen as descriptors.
The video has 36 frames, and occlusion occurs in frames 17
through 19. Using the algorithm outlined above implemented
in MATLAB to inpaint the missing descriptors required
approximately 20 seconds on a P-III 1.2G PC.

V. CONCLUSIONS

Dynamic vision and imaging is arguably one of the few
areas where both further advances and widespread field
deployment are being held up not by the lack of a supporting
infrastructure, but the lack ofsupporting theory. In this paper
paper we illustrated the central role that systems theory can
play in developing a comprehensive framework leading to
provably robust dynamic vision and imaging systems. In

5It can be analitycally shown that this is indeed the case for periodic
sequences, but empirical results show that this hypothesis works well also
for non–periodic textures.

turn, these fields can provide a rich environment both draw
inspiration from and to test new developments in systems
theory. For instance, the applications addressed in this paper
point out, among others, to the need for further research into
low complexity nonlinear identification methods, the devel-
opment of worst-case identification methods for switched
systems that are not necessarily`2 stable (to allow for
parsing video sequences into different activities), and to
extend currently available 1-D identification methods to the
2-D case.
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