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Abstract—Dynamic vision and imaging systems have the po-  /toc.p space of transfer functions analytic in
tential to substantially improve our quality of life. However, key |z| < p, equipped with the norm
issues that must be addressed in order to deploy these systems in |Glloo,p = esssupy, <, 7 (G(z)). The
unstructured environments are th_eir poter_mtial_fragility and the casep = 1 will be denoted as usual
need to process vast amounts of information in real time. As we simply by
show in this paper, these issues can be addressed by appealing to B K K—b IIO?
a common systems theoretic substrate that allows for recasting Hoo(K) open K-ball inH.
a wide range of problems into a tractable convex optimization  £p space of vector valued sequences
form. These ideas are illustrated with several applications equipped with the norm:Hx||II; =
including multiframe tracking, motion segmentation, texture Z;‘ﬁo sz‘Hg’ pe [1700] and ||37||oo -

analysis/synthesis and video reconstruction and inpainting. sup; |||
7 (2lis N

I. INTRODUCTION [1l. | NTERPOLATION PROBLEMS IN DYNAMIC VISION
Dynamic.vi.sion.and imaging — the confluence of dynamics, | this section we show that many dynamic vision prob-
computer vision, image processing and control —is uniquef¢ms such as robustly tracking an object in a sequence of
positioned to enhance the quality of life for large segmenigames, obtaining structure from motion and motion seg-
of the general public. Aware sensors endowed with trackingientation can be reduced to a convex optimization problem,

and scene analysis capabilities can prevent crime, reduce tiigough the use of well established system—theoretic tools.
response to emergency scenes and allow elderly people to

continue living independently. Enhanced imaging methodd: Multiframe Tracking

can substantially reduce the amount of radiation required in A requirement common to most dynamic vision applica-
medical imaging procedures and in cancer therapy. Moreovdigns is theability to track objects in a sequence of frames.
the investment required to accomplish these goals is relativeBurrent approaches integrate correspondences between indi-
modest, since a large number of imaging sensors are alreadglual frames over time, through a combination of target
deployed and networked. For instance, the number of outdodynamics, empirically learned noise distributions and past
surveillance cameras in public spaces is already large (10,0p0sition observations [4, 8]. However, while successful in
in Manhattan alone), and will increase exponentially with thenany scenarios, these approaches still remain vulnerable to
introduction of camera cell phones capable of broadcastingodel uncertainty, occlusion and appearance changes, as
and sharing live video feeds in real time. The challeng@lustrated in Figure 1.

now is to develop a theoretical framework that allows for As we show next, this difficulty can be solved by mod-
robustly processing this vast amount of information, withinelling the motion of the target as the output of a dynamical
the constraints imposed by the need for real time operati@ystem, to be indentified from the available data. To this
in dynamic, partially stochastic scenarios. The goal of thisffect, start by modelling,, the present position of a given
paper is to illustrate the central role that dynamic models artdrget feature as:

their associated predictions can play in developing a com-

prehensive, computationally tractable robust dynamic vision y(z) = F(z)e(z) +n(z) (1)
and imaging framework. Establishing a connection with avheree andn, € N represent a suitable input and mea-
rich set of robust systems theory tools allows for recasting surement noise, respectively, and where the operatas
wide spectrum of problems arising in this context — robustlyiot necessarilys stable. Further, we will assume that the
tracking an object in a sequence of frames, modelling appedollowing a priori information is available:

ance changes, recovering structure from maotion, recognizinga) Set membership descriptioms € AN ande;, € £.
classes of activities, and classifying textured images —into a These can be used to provide deterministic models of the
tractable, finite dimensional convex optimization. stochastic signals, 7.

Il. NOTATION (b) # admits an expansion of the formF =
. 7,

7 (A) maximum singular value oh. ~
p
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Fig. 1. Tracking in the presence of occlusion. Top: Unscented Particle Filter based tracker loses the target due to occlusion. Bottom: Combination Identified
Dynamics/Kalman Filter tracks through the occlusion.

sarily ¢, stable operators that contain all the information 4) F,, € BH ,(K), with p = 0.99
available about possible modes of motion of the target. A5 shown in Figure 1, a tracker that uses the identified
(€) Fup € BHoo p(K) for some knowrp < 1, e.g. a bound - gynamics for prediction is now able to track the target past
on the divergence rate of the approximation error of thgye occlusion. It is worth emphasizing that the combination
expansionf), to ¥ is available. identified dynamics/Kalman filter significantly outperforms a
In this context, the next location of the target featykecan tracker based solely on an unscented particle filter [4], even
be predicted by first identifying the relevant dynami€sind  though the latter has substantially higher computational com-
then using it to propagate its past values. In turn, identifyingjexity. Hence, exploiting dynamical information through
the dynamics entails finding an operat6i(z) € S = the use of control-motivated tools, leadshoth robustness
{F(2): F = Fp + Fnp} such thaty —n = Fe, precisely the  improvement and substantial computational complexity re-
class of interpolation problem addressed in [10]. As showgyction.
there, suph an operator exists if and only if thg following seéubsampling and data gating: A salient feature of the
of equations in the variablgs, h and K’ is feasible: framework described above is its ability to furnisketer-
R2 Tr ministic, worst—case boundsn the prediction error that
Mg(h) = [TZ K2£—2] >0 (2)  can be used to disambiguate among targets with a low
P computational cost. Specifically, given a sequefige}r '

y = TePp-TcheN ®) of measurements of the locatigi of the feature, define the
whereT, denotes the Toeplitz matrix associated with a givegonsistency set as:
sequencex = [z1,...,%,), R, = diag[lp --- p"], P =

- . N-1
[f1 f2 ... fNo],wheref? is a column vector containing the T(y) ={FeS:{y — (Frephisy €N} @)

first n Markov parameters of theik transfer function””(z)  j e, the set of all models consistent with both tpriori in-
andh contains the first. Markov parameters af,,,(z) formation and the experimental data. Since both, the “true”
A Simple Tracking Example: Consider again the problem gperator7, that maps the input to the feature locationg

illustrated in Figure 1. The experimental information consistgg the identified one belong to the consistency set, it follows

of centroid position measurements from the first 20 framegy, 5t given the firstV measurement$y; }~~', a bound on
where the target is not occluded. Thepriori information, e worst case prediction error over the horiZond — 1],
estimated from the non—occluded portion of the trajectory isj; . ' is given by:

1) 5% noise level
2) £ =4(0), i.e. motion of the target was modelled as the .

impulse response of the unknown operafd £ = fllecronr—1 < F_S;}[P(y) [ Fre — Faellenfo,m-1)
3) F espan-t, = 2 __ _ = _ i
) 22—c02wljz_1, z_a;in(jz_?l)m ==0r <2 sup ”‘FHZOO[O,Mfl]
] where a € FeT(0)

22—2coswz+1" 22—-2coswz+1
0.9,1,1.2,1.3,2} and 0.2,0.45 . . . .
{09,1,1.2,1.3,2} we {02, } where the last inequality follows from standard information

1This is equivalent to lumping together the dynamics of the plant and thQased complex!ty arguments (see. for in.Stance Lemma 10.3 in
input signal. [12]). When\ is convex, computing this bound reduces to
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Fig. 2. Prediction (black) versus Ground Truth (white) )

a convex optimization problem. In particular, the cdgde=  u myem | poae
{n: Inlec < nmax} leads to a Linear Programming problem. ") £O)
Frame 13 15 17 20 n
Actual error 8.87 | 10.04 | 10.31| 26.05
Worst case bound 13.00 | 17 21 27 Fig. 4. Wiener System Structure

Fig. 3. Propagation of the Prediction error. Target width is 30 pixels

performed. Since the projection onto the lower dimensional
Figure 3 compares the actual and upper bound of the ernmanifold can be modelled as a static nonlinearity, this
for the sequence partially shown in Figure 2. In this experiapproach leads naturally to a Wiener system structure of the
ment, the position measured in frame 12 was propagated féerm illustrated in Figure 4, consisting of the interconnection
ward using the identified dynamics and the bounds comput@fl a LTI systemH (z) and a memoryless nonlinearitf.).
by solving a single LP problem. Note that this procedurdhe effectiveness of this approach in substantially reducing
extends trivially to the case of several targets, each with ithe computational complexity entailed in tracking complex
own dynamics, providing an effective tool for disambiguatingargets is illustrated next using the problem of human motion
targets with neighboring tracks, since candidate features thapdelling and tracking. The experimental data, partially
fall outside these bounds can be discarded. In additioahown in Figure 5(a) consists of the first 20 frames of a
these bounds provide a mechanism to balance computatiohalman walking on a treadmill, each having 1728 pixels.
requirements and data obsolescence, by establishprgpri  Thus, modelling pixel evolution become infeasible even
that no new data is required from Frame 12 until Frame 2@vhen using just a few frames. On the other hand using
where the error becomes comparable with the width of thidne risk—adjusted approach proposed in [6] (recall that the
target. computational complexity of this approach scales polynomi-

) ) ) ally with the number of data points) and the followirag
B. Dynamic Appearance Modelling and Computational nrigri information

Complexity Issues. 1.- w € R3 (this hypothesis is motivated by the physics of

Arguably, one of the hardest challenges in tracking is to the problem, wherev is related to the coordinates of
overcome changes to its appearance, due to factors such the centroid of the target).
as target motion, self-occlusion, target articulations, and2.- The static nonlinearityf(.) has the forrd f(x) =
changes in illumination. In principle, this difficulty can be BW¥(x) where B € R!7™6%6 js an unknown matrix
solved by usingdynamicappearance models that incorpo- and the base¥ (x): R® — R° are given by:
rate time—evolution information and have better predictive T(x) — _0.8llx — 412
capabilities. In turn, as argued in [5], these models can (x) = [exp(—0.8[|x —t1]2),
be obtained using the same robust identification approaches exp(—0.8x — t2[13), 1,x"]"
employed to identify the motion dynamics. However, moving where
ibse;);%r;doflhl;ew simple dpscnptors requires addressing Fhe by = [0.6833 04521 _0'0033]

gh computational costs, due to the poor scaling

properties of LMI based identification algorithfns t2 = [‘07552 0.4997 0’0036]

A possible way of addressing the challenge noted aboved to model with a fifth order linear portion that interpolates
is through the use of recently introduced nonlinear dimenhe data within10%. The predictive power of this model
sionality reduction techniques to map the data to a lowg§ shown in the bottom portion of Figure 5(a). Finally,
dimensional manifold where the identification/tracking iS:igure 5(b) shows close agreement between the tempora|

2Recall that the computational complexity of conventional LMI solvers 3This hypothesis is motivated by the bases proposed in [2] to map human
scales as (number of decision variabl€§9]. silhouettes to lower dimensional spaces.



evolution of the points on the manifold and the positionsmaller ratios between the fourth and third singular values
predicted using the linear dynamic model. This substantiate$ »V, indicating a significant improvement of the tracking
the conjecture, originally posed in [7], that human motiordata (recall that for a single object, ideally we should have
tracking can be decoupled into two problems: (a) a lineaankV) = 3).

tracking problem in a low dimensional manifold, accounting
for the dynamicsof the motion, and (b) a nonlinear, static
mapping that accounts for the changes in appearance of the
target.

IS

C. Structure and Motion Recovery from Dynamics:

When tracking an unknown numb#f, of moving objects,
it is of interest to identify (i) the number of objects, (ii) the
individual dynamics and, (iii) assign points in the image to
each. To illustrate the issues involved, start by considering

of Fouth Eigenvalue to Top Three

P features from a single rigid object, tracked overframes (b)
with image _coordmates{(uf, v)hp = L. Pt = Fig. 6. (a) First and last frames. (b) Ratio of the fourth to the third singular
1,..., F. Define the measurement matiiX,.r, by: values.
D _
Wir = [ o ] € R ®)
Vy — Ut

where (u;,v,) denote coordinates of the centroid of the

features. Under the assumptions of affine projection it can__
be shown [14] thaWV,.r has at most rank 3 and can be :%;
decomposed into a “rotation” matrik,.» and a “structure” Kh}f
matrix S

u
RI:F
v

1:F

= S =Ry.pS 6
Wi.r [ ] LF (6) (b)
In the case of multiple objects, the number of objects and the
corresponding geometry can be obtained by factorihgnto
rank 3 submatrices. This basic idea lies at the core of factor-
ization based approaches (see for instance [16, 15]), leadin
to computationally efficient solutions. However, its success
hinges upon identifying the correct point-correspondences
across frames. Thus, it is sensitive to noise, partial occlusior.
or large affine warping of feature templates due to large inter (©) (d)
frame rotations. In such cases, predictions provided by esfiry. 7. (a) All propellers move at the same speed. Right wing propellers
mating the dynamics of the moving objects can play a criticathove counterclockwise, while left wing propellers move clockwise. (b)
role in connecting previous measurements with current datgoStéira-Kanade motion segmentation. (c) Zelnik-Manor-Irani motion seg-
o . . . . mentation using six eigenvectors. (d) Dynamics based motion segmentation.
The main idea is to parametriz®,; the rotation matrix
between frames 1 and+ 1 as R, = e/t R;, andidentify
the dynamics governing the time evolution ©ffrom past
data. This leads to a hybribpotstrap-type approach, where

A second source of fragility in currently existing ap-
proaches stems from the difficulty in disambiguating objects

_ - by A ' that partially share motion modes, such as the same—wing
at any given instant, a factorization @, is used to learn the propellers of the airplane shown in Figure 7(a). It can be

dynamics of the time—varying motion of the object(s). Intumeasily shown that in this case rank) = 6. Hence, as
these dynamics are u_sed to predict future feature [_)o_sitiogﬁown in Figure 7 (b)—(c), any motion segmentation approach
that can be used to disambiguate tracks, or even fill in fq§,qeq solely on finding linearly independent subspaces of the
partially missing data, avoiding the need for dropping framegyiymn space o will fail, since it cannot distinguish this

where not all features are present. In addition, the associateQse from the case of two independently moving propellers.
error bounds can be used to limit the size of search Wi”do""ﬁ]tuitively the main difficulty here is that any approach
The potential of this approach is illustrated in Figure 6p5504 on properties af that are invariant under column

comparing a purely factorization-based approach against g, tationstake into account only geometrical constraints,
proposed hybrid one while reconstructing a stuffed teddy, i not dynamical ones

bear. As shown in Figure 6(b), bootstrapping SfM with As we show next, robustness can be substantially improved
identification of the motion dynamics resulted in significantlyby grouping points according to the complexity of the model
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Fig. 5. Learning the dynamics of complex appearances using a Wiener system. (a) Top: Walking sequence (from CMU MoBo database), Bottom: impulse
response of the identified Wiener system. (b) Evolution on a 2D projection of the 3D manifold: predicted(red) and actual(blue).
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INTERPOLATION PROBLEMS IN TEXTURED IMAGE
PROCESSING

Texture analysis, classification and synthesis has been the

required to explain their relative motion. Intuitively, this IV.
formalizes the idea that points on the same rigid share more
modes of motion than points on different objects, leading
to less complex models. Specifically, begin by associating

to the j** object, its centroidD) and an affine basis\/),
centered aD), defined by three no coplanar vectovs’.
Finally, denote byo)(k), v/ (k) the coordinates of the
image of 0U)(k) and the projections oV (k) onto the
image plane, respectively. Given any pomgj) belonging to

the ;" object, the coordinates at timieof its imagep® (k)
are given by:

P’ (k) = 0 (k) + oy Vi (k) + B vk + 77 v (k)

wherea”), 37 and~”) are theaffine invariantcoordinates
of P17 with respect to the basts’). Note that, for any two
points P, P in the same object, the dynamics of’)

areunobservablérom s, , (k) = p¥’ (k)—p¥’ (k). Thus, the

subject of research in image processing, computer graphics
and computer vision for over three decades, with applications
ranging from medical diagnosis to entertainment to human
computer interfaces. During the past few years, significant
advances have been made in addressing multiple aspects of
the problem, ranging from inpainting and synthesis to classi-
fication. However, at present, each sub-problem is addressed
using a specific set of tailored tools, only loosely connected
to those used to solve other subproblems. For instance, most
texture recognition schemes rely on representations in terms
of statistics of the responses to a collection of filters [3]. On
the other hand, most synthesis approaches look at texture
as the samples of some probabilistic distribution [3]. The
objective of this section is to briefly illustrate how the use
of system theoretic tools can lead to a unified framework
capable of exploiting the synergism between different as-

underlying subsystem is rank deficient when compared t0f.cts of the problem to improve robustness and reduce the

subsystem describing difference between points on differ
objects. Roughly speaking, the relative motion of points
a given object, carries no information about the motion

eBbmputational burden.
in
ofr- Texture Modelling and Synthesis

other objects. It follows that points can be clustered in objects Compact models of textured images can be obtained
according to the complexity of the model required to explaity treating the intensity value%(k,l) at the (k,1) pixel
their relative motion. In turn, the order of this model can bef the image as the output of a second order stationary
estimated by simply computing the rank of the Hankel matristochastic process. Equivalently(k,!) can be modelled

constructed from the pair-wise differencgs(k), leading to

as the output of awo-dimensional discrete linear shift-

a simple segmentation algorithm, computationally ho mormvariant system driven by white noise, reducing the problem
expensive than a sequence of SVDs. The effectiveness tof an identification one: obtaining a modé&! from image

this approach is illustrated in Figure 7(d), showing th

atlata, possibly corrupted by noise. Note however that while

it correctly identified the presence of four independentlynost currently existing identification techniques deal with

moving objects.

causal, one-dimensional systems, texture modelling requires



considering two—dimensionalon—causakystems, since the
intensity value at a pixel is likely to depend on the values A

of all pixels in its neighborhood, not just on those preceding e(i, j h(z‘,j)(> —/L y(i,7)
it in some ordering of the image pixels. This difficulty can T
be circumvented by considering a givenx m image as
one period of an infinite 2D signal with perioth,m).
Thus, at any given locatiofy, j) in the image, the intensity
valuesZ(r, s) at other pixels are available also at position
(r —gn,s — gm), and the integey can always be chosen
so thatr — gn < i,s — gm < j. From this observation,
it follows that the unknown syster& admits a state space the (unknown) operato\(z1, 22) describes the mismatch

)

Fig. 9. The Texture Recognition Set-up

representation of form: between these two images.
L o o In this context, given a set of texture families, each
a'(i,j) = Aw(i, j) + Bu(i, j) represented by a moddl;, an unknown specimen can be
Z(i,j) = Cx(4,4) + Du(i, 5) (7) classified by (i) performing a sequence of invalidation models
to find the lowest uncertainty valyg\;|| required to explain
where ) . - .
- , o the specimen in terms of the modé], and (ii) assigning
oy — | 2+ 1) e R CY) the unknown texture to the family corresponding to small-
ZE(Z,]) hi(; » ,17(2,]) hi(; . . . - .
a5+ 1) " (i, 7) est uncertainty norm. By using the proposed identification
A Ay As B B, C— [ o C ] technique to obtain a (separable) model of the nominal
T Ay Ay |77 T | By |7 T b texture, the corresponding 2-D model invalidation problem

can be reduced to two decoupled 1-D semi—blind validation
. . o problems that can be solved using the LMI-based technique
9+ N.j) =g(i,)  p e N, M >0 developed in [13].
g(i,j+ M) =g(i,j)
whereg(.,.) denotes the impulse response(f With these
assumptions, the problem becomes one of identifying a state—
space realization from experimental data, subject to a period-
icity constraint, precisely the type of problems solved in [1].

subject to an additional constraint of the form

The potential of this approach is illustrated in Fig. 8, where B A A S
it was used to expand partial images by first identifying the =~ [ %0t 001 o 05 07 075 085 08
underlying model and then simply computing its impulse

Fig. 10. Top: Sample Textures. Bottom: Optimal
response.

Figure 10 shows the results of applying the technique
outlined above to classify several images. Hf-:}*é and [ ;*j
denote the results obtained when comparing the decompo-
sitions corresponding to the first image against the models
obtained from thejt" texture. As shown in the table, the
proposed technique correctly indicates that the first three
Fig. 8. Using 2-D Models to Expand Images images belong to the same fanfily

C. Video Inpainting as a Rank Minimization Problem

B. Texture Classification . . .
Video inpainting, that is the process of seamlessly restoring

In this section we briefly indicate how the models obtaineg, altering portions of a video clip, has been the subject

above can be used for texture classification. Proceeding g8 -onsiderable attention in the past few years (see for
in [13], we will recast the problem into a robust semi-blind;¢iance [11] and references therein), but the problem is
model (in)validation form. To this effect, we will postulate ¢y from solved. Existing algorithms are limited in the
that all images corresponding to realizations of a giveR e of sequences that can handle and have relatively high
texture 7' can be obtained as the output of a 2-D operatqlompytational complexity. In this section we briefly outline
S to an unknown input signat with unit spectral density, Lo the use of Systems Theory ideas can lead to simple,

applied in(~co, 0] x (~oc, 0]. This leads to the set-up shown o mp tationally efficient algorithms that exploit (global)
in Figure 9, wherel'(z1, z2) represents a nominal model of

a particular Fextureh(i, 7) am_j y(i,j) denote _the intensity  4the higher values of 13 and I are due to the use of a lower quality
value of the ideal and actual images, respectively, and wheirgage for the third texture.



spatio—temporal information. The main idea is to (i) find a sdurn, these fields can provide a rich environment both draw
of descriptors that encapsulate the information necessaryitspiration from and to test new developments in systems
reconstruct a frame, (ii) find an optimal estimate of the valutheory. For instance, the applications addressed in this paper
of these descriptors for the missing/corrupted frames, and (iijoint out, among others, to the need for further research into
use the estimated values to reconstruct the frames. In tutow complexity nonlinear identification methods, the devel-
the optimal descriptor estimates can be efficiently obtainempment of worst-case identification methods for switched
postulating that the correct values of the missing descriptosystems that are not necessarily stable (to allow for
are such that the resulting inpainted sequence is describedpmrsing video sequences into different activities), and to
the simplest possible (eg. lowest order) dynamical nfodelextend currently available 1-D identification methods to the
Since the order of the underlying model can be estimat€tD case.

from the Hankel matrix of the data, this idea leads to a rank

minimization problem, which in turn can be relaxed to an ACKNOWLEDGEMENTS
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