
Figure 5: Sample of the Object Database.
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Figure 3: Number of ABPs and shape groups as the
number of objects in the database increase.

7.2 Discriminant Power

Experiments were conducted by randomly selecting an
appearance of a random ABP from the database, and
randomly occluding 10% of its bounding box with the
appearance of another ABP, also randomly selected.
The projection of the occluded region is assigned the
closest manifold in the system. If the distance between
the projection of the region and the manifold is larger
than a threshold, T , it is said that the region is mis-
detected. If this distance is less than the threshold T ,
but the assigned manifold is not the one corresponding
to the true identity of the region being used, it is said
that this is a false alarm. Otherwise, it is said that
the region is correctly identi�ed. Figure 6 shows plots
of misdetection versus false alarms for 10,000 experi-
ments, as the threshold T varies from 0.015 to 0.15,
with and without the use of shape groups. It is seen
that the system performs better when the hierarchical
structure of eigenspaces is used.

7.3 Recognition in cluttered scenes

Figure 7 shows three examples of cluttered images
with occlusion, their respective MDL segmentations,
and the recognition results. All the objects scene were
correctly identi�ed and localize, in spite of the occlu-
sion and segmentation errors.

8 Conclusions

A discriminatory power index for ABPs and ABRs
based on probabilistic models was proposed. This in-
dex provides quantitative measures of the goodness of
the hypotheses generated by the recognition system.
Furthermore, it can be used to organize databases of
objects to share similar ABPs and ABRs reducing the
e�ective size of the databases without lossing perfor-
mance.
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to their discriminant power in the eigenspace spanned
by all the ABPs of \HoleCube."
In this hierarchy, FEs are organized in a tree struc-

ture, as shown in Figure 2, by grouping together man-
ifolds with similar DPI. Let M be a set of manifolds
of the same type:

M = fM1; : : : ;Mng

The setM is partioned into subsetsM1; : : : ;MC such
that

M =M1 [M2 [ : : : [MC

Mi \Mj = ; 8i 6= j

DPI(MijMj) � �k and DPI(Mj jMi) � �k

8Mi;Mj 2 Mk ; k = 1; : : : ; C:

Similar appearances from similar manifolds are clus-
tered together and are aggregated into a single mani-
fold passing through the means of these clusters.
At the top level of the hierarchy, all the FEs are

clustered as described above and span the Universal
eigenspace; then, at each node in the tree the groups
are divided into subgroups, each of them consisting of
more similar (with lower discriminant power indices)
features. In turn, each of these subgroups de�nes a
new eigensubspace where the highest order coordi-
nates provide more discriminatory power between the
FEs spanning it.

Group K

Feature Elements in the SystemLevel 0

Group 0 Group 1Level 1

Level 2

Level N

Figure 2: Hierarchical organization of ABPs.

Thus, in this hierarchical structure 1) the leaves of
the tree correspond to parts rather than objects, thus
allowing objects to share parts; 2) the similarity mea-
sure is based on probabilistic models learned from seg-
mentations of real data; and 3) the discriminant power
between manifolds at each level of the structure in-
creases. Finally, the structure can be incrementally
updated whenever a new FE needs to be learned, by
comparing it with the existing groups, and only re-
training the most similar group.

6 Combining Hypotheses

The hierarchy of ABPs and ABRs allows the system
to not only hypothesize the identity of the segmented

regions, but it also provides pose hypotheses. Further-
more, each hypothesis has associated with it a proba-
bility measuring its reliability. These probabilities are
combined using the following Bayesian framework.
Consider the database of objects

DB = fD1; : : : ;DNg ;

sharing the set of model feature elements

M = fM1; : : : ;MCg ;

and consider the set of image feature elements

S = fs1; : : : ; sng :

Let P (D) be the probability that model D is observed,
and let P (h(s) = M) be the probability that s is an
observation of feature manifold M . Assuming that all
objects are equally likely, we have

P (D) =
1

N

and

P (DjM) =
P (M jD)P (D)P
k P (M jDk)P (Dk)

Assuming that the probability P (h(s) = M) is expo-
nential with respect to the distance between the man-
ifold M and the point s, d(s;M), we have

P (M js) =
1P

i e
�kd(s;Mi)

e�kd(s;M)

Then, the feature hypotheses can be combined into
overall Bayesian scores for each model [1]:

R(D) =
X

i

X

j

P (DjMi)P (Mijsj)

7 Experiments

7.1 Database Organization

Figure 3 shows plots of the number of ABPs and
groups of ABPs as the number of objects in the
database increase. It is seen that while both num-
bers grow approximately linearly with the number of
objects, the slope for the numbers of groups is less
steep. It is expected that as more objects are added to
the database, the growth of the number of groups will
be even slower. The current database consists of 110
ABPs grouped into 69 \shape groups" between three
levels as shown in Figure 4, and 130 ABRs. Thus, the
use of hierarchical grouping resulted in a 37% reduc-
tion of the ABP database. These ABPs and ABRs
were generated from image sequences of 24 objects of
which 16 are shown in Figure 5.



the input data the identity of the closest manifold in
the database (identity mapping), and the pose of the
closest point on this manifold (localization mapping):
[2, 7]:

hABP (p) = arg min
P2ABP

d(p; P ) ; (2)

lABP (p) = arg min
aP2hABP (p)

d(p; aP ) ;8p 2 S1 (3)

hABR(r) = arg min
R2ABR

d(r; R) ; (4)

lABR(r) = arg min
aR2hABR(r)

d(r; aR) ; 8r 2 S2(5)

However, since it is possible that more than one
manifold is close to the projection of the given input,
making the choice of the nearest manifold somewhat
arbitrary. A more reasonable approach is to consider
more than one possible assignment, such that all pro-
jections within a given threshold are considered as hy-
potheses. Such thresholds can be found by minimizing
the probabilities of false alarm and misdetection using
an experimental procedure as the one presented in [2].
However, the thresholds found in this way are global,
in the sense that they are the same for every manifold
and every appearance on the manifolds. This obser-
vation leads us to believe that a recognition system
should use information about the ABPs and ABRs
discriminant power, where the discriminant power is
measured in terms of how far the considered manifold
is to other manifolds of the same type. In this way,
the thresholds can be varied along manifolds, depend-
ing on their discriminant power, and assignments can
be ranked according to their probability of being cor-
rect. Figure 1 illustrates this concept. In Figure 1(a),
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Figure 1: Similar ABPs have low relative discriminant
power.

the manifolds ABP3 and ABP5 of the �rst object in
Table 1, \HoleCube", corresponding to the two rect-
angular faces shown (c) and (e) column in Table 1,
are shown in the \HoleCube" eigenspace1. Any im-
age region whose projection in this eigenspace is close
to one of the manifolds, will be as close to the other
one. To quantify this type of situation we de�ne a
\discriminant power" index as follows.
We model the ABPs and ABRs as being the result

of a stochastic process, where each manifold can be ex-
pressed as a nominal manifold plus noise. The results

1The manifolds are shown as three dimensional for visual-
ization purposes.

described below apply to both ABPs and ABRs, and
hence we talk of manifolds and appearances without
refering to their particular type2.
Let Mk denote an instance of the kth manifold of

a given type and akj denote its j
th appearance. The

probability of misclassifying appearances of Mk as ap-
pearances of Mi is given by

P (MijMk) =

P
j

P
m P (aimjakj)P (akj)

P (Mk)

This probability should be large if the manifolds Mi

and Mk are close to each other for most of the ap-
pearances of Mk. Assuming that all appearances of a
given type are equally likely we have:

P (akj) =
1

Total # appearances

P (Mk) =
# appearances ofMk

Total # appearances

Assuming that the probability P (aimjakj) can be
modeled as exponentially decreasing with the distance
between the appearances aim and akj :

P (MijMk) =
1

#frames in Mk

X

j

X

k

Akje
�kd(aim;akj)

where

Aim =
1P

j e
�kd(aij ;aim)

Finally, the discriminant power index, DPI, is de�ned
as

DPI(MijMk) = 1� P (MijMk)

In this way, the discriminant power index of Mk from
Mi is large whenever the probability of misclassifying
Mk as Mi is low.

5 Organizing Large Databases

A good object representation should be able to scale
up to be used with a large database of objects. The
discriminant power index introduced above can be
used to group together similar ABPs and ABRs (fea-
ture elements, or FEs) into a hierarchical organization.
Since each object can potentially have many ABPs
and ABRs, this is a very important property. Further-
more, by spanning new sub-eigenspaces using similar
parts, it is possible to actually increase the discrimi-
nant power between these parts. For example, when
the ABPs ABP3 and ABP5 of \HoleCube" shown in
Figure 1(a) are used to span a new from eigensub-
space as shown in Figure 1(b), their relative discrim-
inant powers raise from 0.125 and 0.059 to 0.353 and
0.375, respectively, an increase factor of 6 with respect

2A manifold and an appearance can be either of ABP or
ABR type.



Table 2: ABRs Database Sample. The ABRs of each object are represented by one of their appearances.

Object ABRs Representatives

r1 r2 r3 r4 r5 r6 r7 r8 r9

3 Identity and pose hypotheses

Given an image and its MDL segmentation, ABP
and ABR hypotheses can be generated by project-
ing each segmented region and pair of regions into
the eigenspaces obtained during training, and �nding
points on manifolds near to these projections.
Let ABP and ABR be the sets of the union of the

ABPs and ABRs manifolds, respectively, for all the
objects in a given database. Then, the object database
can be represented by a set of relational descriptions:

DB = fD1; : : : ;DNg

where
Dm = fRm

1 ;R
m
2 g

is the relational description for object m,

Rm
1 = fP1; : : : ; Pm1

g � ABP

is the set of all the ABP manifolds, Pi, i = 1; : : : ;m1,
of model m and

Rm
2 = fR1; : : : ; Rm2

g � ABR

is the set of all the ABR manifolds, Ri, i = 1; : : : ;m2,
of model m. The set Rm

1 is a unary relation of parts,
while the set Rm

2 is a binary relation between parts {
i.e. Ri = (Pi1 ; Pi2), i = 1; : : : ;m2, 1 � i1; i2 � m1.
An MDL segmentation of an image can be described

using a similar relational representation:

Di = fS1;S2g

where
S1 = fp1; : : : ; pn1g

is the set of the projections of the parts or image re-
gions into the ABP eigenspace, and where

S2 = fr1; : : : ; rn2g

is the set of the projections of pairs of adjacent regions
into the ABR eigenspace.
An image is an observation of a subset of the models.

Then, the recognition problem is to �nd two unknown
correspondence mappings

hABP : S1 ! ABP

hABR : S2 ! ABR

associating ABPs and ABRs to image regions and
pairs of regions, respectively, and the localization prob-
lem is to �nd two unknown correspondence mappings

lABP : S1 ! Rm
1

lABR : S2 ! Rm
2

associating appearances of ABPs and ABRs to image
regions and pairs of image regions, respectively.
The mappings hABP and hABR represent a set of

ABP and ABR identity hypotheses while the map-
pings lABP and lABR represent a set of ABP and
ABR pose hypotheses. These hypotheses constrain
each other.
Let r be the projection of a pair of adjacent image

regions with projections p1 and p2 and let hABR(r) =
R 2 Rm

2 and lABR(r) = aR 2 R be its ABR
identity and pose hypotheses, respectively. If the
ABP hypotheses for p1 and p2, hABP (p1) = P1 and
hABP (p2) = P2, are such that P1; P2 2 Rm

1 and
R = (P1; P2) we say that the ABR hypothesis for r
is compatible or veri�es the ABP hypotheses for p1
and p2. Furthermore, if the ABP identity hypotheses
are compatible with the ABR hypothesis and the ABP
pose hypotheses for p1 and p2, lABP (p1) = aP1 2 P1
and lABP (p2) = aP2 2 P2, are such that aP1 and aP2
correspond to the same pose, we say that the ABR
pose hypothesis for r is compatible or veri�es the ABP
pose hypotheses for p1 and p2.
Finally, let d(p; q) represent a distance metric be-

tween two points p and q in a given eigenspace
and let the distance between a point p and a man-
ifold M be de�ned as the distance between the
point p and the closest point to p on the manifold,
d(p;M) = minq2M d(p; q). Then, the distances be-
tween the projections of the image regions and pair of
regions and the corresponding manifolds and appear-
ances d(p; hABP (p)), d(r; hABR(r)), d(r; lABR(r)), and
d(p; lABP (p)) are quantitative measures of the good-
ness of these hypotheses, with the smaller the distance,
the better the match.

4 Discriminatory Power Index

Until now, the most common choice for the correspon-
dence mappings has been to assign to the projection of



the question of whether it can be used to model and
successfully recognize large number of objects needs
to be addressed.
In this paper we propose to use a discriminatory

power index for ABPs and ABRs to address this prob-
lem. The proposed index is de�ned based on noise
models of the data and it is a quantitative measure
of the dis-similarity between the appearances of the
features. This index is used to organize large number
of ABPs from the object database in a hierarchical
structure of eigenspaces where di�erent objects share
similar parts, thus signi�cantly reducing storage and
recognition time requirements. Furthermore, the pro-
posed organization de�nes \specialized" eigenspaces
spanned by similar shapes, resulting in better recog-
nition performance in the presence of data uncertainty.
The paper is organized as follows. In the next sec-

tion, we brie
y summarize the de�nition of ABPs and
ABRs. Then, we formalize the recognition and lo-
calization problem and introduce the discriminatory
power to quantify ABP and ABR similarity. Next, a
hierarchical organization of the representation based
on this index is described. It is shown that it not only
improves discrimination among similar features but
also allows to group similar shapes. Finally a Bayesian
framework combining part and relations hypotheses is
discussed and experimental results are shown.

2 ABPs and ABRs

Appearance-based parts and relations were de�ned in
[2] in terms of closed regions and the union of these
regions, respectively. The regions are segmented us-
ing the MDL principle, by modeling each region as a
polynomial of unknown degree in the image coordi-
nates with additive zero mean Gaussian noise of un-
known covariance, whose boundaries are encoded us-
ing a chain code representation. Although this model
works best for constant albedo regions, it can be easily
adapted to textured regions by using a set of texture
�lters like the ones used by Zhu and Yuille in [9].
Let 
 = f!jg denote the image segmentation into

regions f!jg and let Y represent the image data. As-
suming that the image comes from a stochastic process
that can be characterized as a polynomial gray scale
surface plus Gaussian noise described by a vector of
parameters �, then the MDL objective function to op-
timize is given by:

L(Y;
; �) = L(
) + L(�j
) + L(Y j
; �): (1)

where the �rst term is the length of encoding the re-
gion boundaries, the second term is the length of en-
coding the parameters and the last term is the length
of encoding the residuals.
The appearance of the parts and relations for di�er-

ent sensor and illumination sources is obtained from
collection of images under varying conditions. Two
parts segmented from two images of the same object
obtained with similar sensor and illumination con�g-
urations, are said to be appearances of the same part

Table 1: ABPs Database Sample. The ABPs of each
object are represented by one of their appearances.

Object ABPs Representatives

a b c d e

if they are judged to have similar polynomial approx-
imations in similar image locations.
Let Yi be an ni � 1 column vector with the gray

scale pixel values in part !i. Let d be the order of
the polynomial used to �t the parts, and m = (d +
1)(d+ 2)=2 be the number of polynomial coe�cients.
Let �i be an ni �m matrix of m basis functions for
each of the ni pixels { i.e. products of powers of pixel
coordinates. Finally, let �i be an m�1 column vector
with the optimal regression coe�cients for !i. Using
these de�nitions, we have [3]

Yi = �i�i +	i

where 	i is a vector of zero mean Gaussian noise with
covariance �2I , and �i is estimated by minimizing the
�tting error:

�i = kYi ��i�ik

Then, two parts !1 and !2 obtained from two im-
ages of the same object with di�erent, but similar,
sensor and illumination con�gurations, are considered
appearances of the same part ! if

�1;2 =
1

n1
kY1 ��1�2k+

1

n2
kY2 � �2�1k � T�

and
�1;2 = k�1 � �2k � T�

where �1 and �2 are the centroids of the parts and T�
and T� are given thresholds. Note that these thresh-
olds can be set according to the estimated noise covari-
ance matrix �2I and the known di�erence in sensor
locations. Furthermore, this criteria can handle both,
over and under, segmentation problems by assigning
more than one part in one frame to a part in the other
frame.
Finally, ABPs and ABRs are compactly represented

by parametric manifolds by using the Karhunen-Loeve
compression method in the two eigenspaces spanned
by the parts and the relations. Tables 1 and 2 show
representative appearances for the ABPs and ABRs of
three objects, respectively.
Since the ABP and ABR representation is learned

from segmented images, it is robust to segmentation
problems. Furthermore, since it is based on regions
rather than on global properties, it is robust to occlu-
sion.
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Abstract

In [2] a new object representation using appearance-
based parts and relations to recognize 3D objects from
2D images, in the presence of occlusion and back-
ground clutter, was introduced. Appearance-based
parts and relations are de�ned in terms of closed re-
gions and the union of these regions, respectively. The
regions are segmented using the MDL principle, and
their appearance is obtained from collection of images
and compactly represented by parametric manifolds
in the eigenspaces spanned by the parts and the rela-
tions. In this paper we introduce the discriminatory
power of the proposed features and describe how to
use it to organize large databases of objects.
KEY WORDS: object representation, object recog-
nition, appearance-based methods, shape classi�ca-
tion.

1 Introduction

The appearance of a 3D object in a 2D image depends
on its shape, its re
ectance properties, its pose in the
scene, and the sensor and illumination characteristics.
Murase and Nayar [7] have proposed an appearance-
based representation to recognize 3D objects from 2D
images. In this approach, the representation is learned
from sequences of images, and thus can be used to
learn generic objects viewed and illuminated from dif-
ferent orientations. Object translation and scaling,
on the other hand, are taken care by normalizing the
image size using the bounding box of the object. How-
ever, this representation is highly sensitive to clutter
and partial occlusion, since the learning and recog-
nition processes require the isolation of the object of
interest.
Mundy et al [6] presented an experimental compari-

son between Murase and Nayar's method (SLAM) and
two geometric model-based recognition methods de-
scribed in [8] (Lewis) and [10] (Morse). This study

�This work was supported in part by NSF grants IRI9309100
and IRI9712598.

concluded that: 1) appearance models have the ad-
vantage that they do not require formal models to
describe objects while geometric approaches rely on
formal models to derive pose invariant properties; and
2) the major drawbacks of SLAM are that it is very
sensitive to segmentation, in particular occlusion, that
it does not lend itself well to object categorization, and
that incidental variations in appearance such as tex-
ture or surface albedo must be modeled as separate
objects.
Recently, there has been a signi�cant e�ort devoted

to try to overcome the problems caused by occlusion
and background clutter to appearance-based represen-
tations [5, 4, 2]. For example, in [5] a robust method to
compute the coe�cients to project an image into the
parametric eigenspace was presented. This method
extracts the coe�cients by considering subsets of im-
age points with a hypothesis-and-test paradigm and
selecting the best hypothesis by using the MDL prin-
ciple. As a result, the coe�cients are robust to image
outliers and in particular to occlusion. However, a ma-
jor problem with this technique is that it cannot han-
dle object translation and scaling. This is because this
approach works only if the dimensions of the training
and testing images are equal, and the pixel locations of
the object do not change at recognition time. Unfor-
tunately, occlusion has a direct impact on the object
bounding box preventing the use of image size normal-
ization in this case. In [4] Krumm propose to handle
occlusion by using small neighborhoods as features.
Although this technique can handle object translation,
it also su�ers from scaling { i.e. it assumes that the
object size in the image is the same at recognition and
training time.
In [2] a new representation using appearance-based

parts (ABPs) and relations (ABRs) was introduced.
This representation uses local rather than global ap-
pearances, with the local regions being automatically
determined using the MDL principle. This approach
signi�cantly improved the representation robustness
to segmentation problems and occlusion without com-
promising scaling, since the regions are normalized in
size using their bounding boxes. However, since the
representation decomposes objects into small parts,


