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Abstract— A key issue that must be addressed when
deploying active vision systems in unstructured, poten-
tially hostile environments is their fragility. As we show
in this paper, robustness issues can be addressed by
appealing to a common systems theoretic substrate to
recast these problems into a tractable convex optimiza-
tion form. These ideas are illustrated with experimental
results from multiframe tracking, visual servoing and
activity recognition.

1. INTRODUCTION AND MOTIVATION

Recent hardware developments have rendered ac-
tive vision a viable option for a very diverse spectrum
of applications ranging from MEMS manufacture
[6] to assisting individuals with disabilities [15],
and Intelligent Vehicle Highway Systems [12]. In-
deed, computer vision and control are already linked
through many successful proof-of—concept systems! .

However, active vision techniques have been ap-
plied outside controlled environments in relativety
few instances. To a large extent, this can be traced to
the fragility of the resulting systems when confronted
with unstructured environments. Thus, the essential
challenge in designing and deploying active vision
systems Is to reconcile their potential fragility with
the precise information requirement to accomplish
the tasks outlined above, and to do so within the
constraints imposed by the need for real time opera-
tion in uncertain environments. In this paper we show
that the fragility arising in many seemingly dissimilar
active vision problems can be addressed by appealing
to a common systems theoretic substrate to reduce
the problem to analyzing the existence of a bounded
£y to €5 operator that satisfies certain interpolation
conditions. While the details are somewhat differ-
ent in each case, this allows for exploiting convex
analysis and integral quadratic constraints methods
to recast the problems into a LMI optimization form
that can be efficiently solved using commercially
available tools.

1See for instance ht tp: / frobustsystems . ee.psu.edu

I1. INTERPOLATION PROBLEMS IN ACTIVE
VISION

In this section we show that many computer vision
problems such as robustly tracking an object in a
sequence of frames, robust visual servoing and rec-
ognizing human activities are equivalent to analyzing
the existence of a bounded f; to £» operator that
satisfies certain interpolation conditions.

A. Multiframe tracking

A requirement common to most active vision ap-
plications is the ability to track objects in a sequence
of frames. In principle, the location of the target can
be predicted using a combination of its {assumed)
dynamics, empirically learned noise distributions and
past position observations [4]. However, this process
is far from trivial in a cluttered environment.

Figure 1 shows the resuits of using a Mean Shift
based tracking (white crosses). Although this algo-
rithm is designed to improve tracking robustness
by exploiting color information [3), it begins to
track poorly in frame 18, and by frame 20 it has
completely lost the target due to a combination of
clutter and moderate occlusion. As we show next,
this difficulty can be solved by modelling the motion
of the target as the output of an ARMA model and
identifying the relevant dynamics.

1) Multiframe tracking as an interpolation prob-
lem: Assume that the present position of a given
target feature is given by:

y(z) = F(z)e(z) + n(z) ¢Y)

where e = (e ex—1 €k—m) represents a
stochastic input, y) denotes the available measure-
ment of the feature, corrupted by noise 7 € N, and
where the operator F is not necessarily #; stable.
In the sequel, we will assume that the following a
priori information is available:

(a) A set membership description of the measure-

ment and process noise: 7, € A and e, € &,
These sets can be used to impose correlation
constraints.
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Frame § Frame 14

Frame 21

Frame 19

Fig. 1. Robust identification based tracking (biack cross) versus Mean Shift (white cross)

{(b) The operator F admits a finite expansion of the

P

.

n
form F = ij}'j +Fp Here F7 are known,
i=1
given, not ni:cessarily £, stable operators that con-
tain all the information available about possible
modes of motion of the target’. An example of
this sitnation is tracking moving persons where
the #7 can be obtained off-line by training with a
representative set of motions {7, 3.
(c) The residual operator Frp € BH o(K) for
some known p < 1, That is, a bound on how
fast the T?pproximation error of the finite expansion

Fp =Y p;F? diverges is available,
=1

In this context, the next location of the target fea-
ture y can be predicted by first identifying the
relevant dynamics F and then using it to prop-
agate its past n values. In turn, identifying the
dynamics entails finding an operator F'(z) € § =
{F(z): F = Fp + Fnp} such that y — n = Fe, pre-
cisely the class of interpolation problem addressed
in [10]. By noticing that H(z) € BHy,, <<
H(%) € BHo, it follows that such an operator exists
if and only if the following set of equations in the
variables p,h and K is feasible:

R TE
Ma(h) = {T; KQR;Q] >0 @
y-T.Pp—T,he N (3
where T, denotes the Toeplitz matrix associated
with a given sequence x = [£y,...,&n), R, =

diag[Lp --- p™], P = [f! f2 --. fNo),where f?
is a column vector containing the first = Markov
parametets of the i-th transfer function F'(z), h
contains the first n Markov parameters of F,;(2)
and K is an upper bound of the £, induced norm of
the non—parametric part of the operator, Fi,p.

In addition to providing an estimate of the next
position of the target, this approach also has the

2If this information is not available the prablem reduces to
purely non—parametric identification by setting F7 = 0.
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following advantages:

(1) Model (in)validation: Assume that the set A
is described by a set of LMIs of the form:

N
N={ne®V:L@n)= L0+ZLkm~—1 >0}

k=1

€Y}
where |; are given real-valued symmetric ma-
trices. Then equations (2)-(4) reduce to a set of
LMIs in the variables h,n and K?2. This allows
for finding the minimum value of K such that
the LMIs (2)-(4) are feasible. In tumn, this value
can be used as a “sanity check” to assess the
quality of the approximation. A large value of K
indicates that the non—parametric portion of the
model JF,,, does not provide a good description of
the motion of the feature, indicating that it may be
necessary to re—identify the set { F*}. Infeasibility
of the LMIs indicates that the experimental data
is not compatible with the a priori assumptions,
possibly indicating either (i) a new target activity
not described by elements of the set {F} or (iD)
the target entering a region where the noise and
clutter models are no longer compatible with the
description (4). Either case points to the need for
re-assessing the a priori information.

(2) Worst~case estimates of the prediction error.
By construction, the cperator found from the solu-
tion to the LMIs (2) is such that its response to the
input e interpolates, within the experimental noise
level ny, the given location of the feature f, k =
0,2,...,N — 1. However, when used to predict
the furure location of the feature, it is of interest to
obtain bounds on the worst case prediction error.
This can be accomplished as follows: Given a se-
quence {yk}i-\;_ol of measurements of the location
fi of the feature, define the consistency set as:

T(y)={Fes: (g~ (Frelliy €N}
&)
i.e, the set of all models consistent with both the
a priori information and the experimental data.
Note that the proposed method is interpolatory,
that s, it always generates a candidate operator



Fig € T(y). Thus, since the “true” operator F,
that maps the input e to the feature locations f
must also belong to the consistency set®, it follows
that, given the first N measurements 3, 7 =
0,...,N—1 abound on the worst case prediction
error over the horizon [0, Af—1], M > N, is given
by:

I = £llen jo.e-1) < sup dT(y)] =D(I) (6

where d(.) and D(T) denote the diameter of the set
T(y}, in the £,,[0, M — 1] metric and the diameter
of information, respectively. Moreover, since the
a priori sets (S, N) are convex and symumetric,
with points of symmetry £, = 0 and 7, = 0
respectively, it can be shown (see for instance
Lemma 10.3 in (11]} that:

D(I) <2 sup [[Flie.poa-1) ¥
Fes(0)

where S(0) denotes the set of operators com-
patible with the zero outcome: yp = 0, k& =
0,1,...,N—1. As we will illustrate in the sequel
with a simple example, computing this bound
reduces to a convex optimization problem.

2) A Simple Example: Consider again the prob-
lem of predicting the location of the centroid of the
child shown in Figure I, from past measurements of
its coordinates, (Z,ys). corrupted by uncorrelated
noise, 7. For the sake of briefness we report below
only the results for the x coordinate, since those for
y are similar,

The following a priori information was used:

D N = {n €|l <55}

2) £ = 5(0), i.e. motion of the target was mod-
elled as the impulse response of the unknown
operator F'.

3) The parametric part of the model F, €
span(G), G(2) = [y, wiem]”-

4) The reminder, nonparametric component,
which explains the unmodelled dynamics
satisfies Fr.p € BHeo ,(K), with p = 0.99.

The experimental data consisted of the first NV =
12 frames of the sequence. The resulting LMI prob-
lem was solved using MATLAB’s LMI Toolbox,
leading to Koy = 1.35712 and p = [127.7763 —
135.0723]7. Note that the very low value of K
indicates that indeed the parametric part F}, provides
an accurate model of the dynamics of the target.

The advantage of this approach is illustrated in
Figure 1 where the black crosses indicate the position

3As long as the @ priori information is indeed correct.

of the centroid predicted by our model. The numer-
ical values of the error, computed as the difference
between the predicted and actual values are given in
Table 2. As shown there, the identified model is able
to predict the location of the target, far beyond the
point where the Mean Shift tracker has failed.

Sample 14 16 18 20
Mean-Shift 3593 | 45.63 | 57.53 | 64.80
1d-based 6.14 | 13.03 § 1592 | 26.04
Worst case bound 15 19 23 27
Fig. 2. Id error as a function of time.

Finally, the last row in Table 2 shows the error
bounds as a function of the frame number %, com-
puted by solving a LP problem in p and h. As
expected these values increase with time, since no
new data is being used beyond k = 12. However,
they became comparable with the width of the target
(30 pixels) only beyond & = 20.

B. Visual Servoing

Perhaps the more direct connection between con-
trol and active vision occurs in visval servoing prob-
lems, where vision is directly used as a sensor in a
closed loop configuration. Consider for example the
problem of smooth tracking of a nor-cooperative
target, illustrated in the block diagram shown in
Figure 3. Here the goal is to internally stabilize the
plant and to track target motions, ¥i,rger, USING a8
measurements images possibly corrupted by noise,
while zooming in and out of features of interest.

Yo vi
P + isual L
Controller : Robet '
: i
& ; Vision Sensor
R and
i Optical Flow

Fig. 3. (top) Block diagram of 2 visual tracking system, (bottom)
The experimental setup.
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Designing a controller for this application re-
quires, as a first step, finding a model for the block
labeled S in Figure 3(top) that maps the command
input to the head, in encoder units, to the position of
the target (in pixels) [14]. This map depends on the
time—varying focal length f of the lenses, unknown
a priori, but measurable in real time,

1) Identifying the dynamics of the plant: Physical
considerations, corroborated by experimental data,
{14], suggest that the combined dynamics of the
plant/image processing can be represented by a
model of the form:

Y= (Gp + Grp)u+7
Al ®)
Grp € BHoo o(K), Gp =Y piFu{Gi, T)

i=1
where y is the measured position of the target cor-
rupted by noise 7 € A. In this model p; are unknown
scalars, G;(z) are known, stable transfer matrices
and T = diag (v 1y,...,v51.,) s a set of time-
varying parameters, in this case the focal lenght, that
are unknown a priori, but can be measured in real
time. In this context, identifying the dynamics of the
plant can be precisely stated as:

Problem 1. Given experimental data (y,u, T} and
a set description of the measurement noise n € N,
find p and Grp so that the resulting Linear Time
Varying operator G, = 2:?2‘1 piFu(Gi, T) + Gy
satisfies:

y — Tgou e N

that is, the operator interpolates the (finite} experi-
mental data within the experimental noise levels.

This problem belongs to the class of interpolation
problems addressed in [13] and thus can be reduced
to an LMI optimization problem.

2) Experimental Validation: Next, we illustrate
the theory above by using these tools to design a
robust LPV controller for the setup shown in Figure
3 (bottom). In this case experimental data-indicates
that the parametric component of the LPV model
Fu(Gp, T) can be modelled using just one transfer
function, i.e. p1F,(G1, T), and that its dependence
with the time varying parameter v can be considered
to be affine. Regarding the non-parametric compo-
nent G',p, based on the time—constant obtained with
experiments involving only the mechanical compo-
nents of the system, we determined a value of p =
1.5 for the a priori stability margin.

The experimental information considered consists
of N = 35 samples of the time response of the

real system ¥ to a unit step input u while the time-
varying parameter v; was allowed to vary between
0% and 80% of the maximum value of the zoom
during the experiment. By repeatedly measuring the
location of the centroid of the target in the absence
of input, the experimental noise measurement was
determined to be bounded by ¢ = 4 pixels, ie.
N = {n & RY: |n.| < €}. This experimental error is
mainly due to fluctuating conditions such as ambient
light.

The resulting LMI optimization problem was
solved using Matlab’s LMI toolbox, leading to the
values K = 0.0444 and p; = 0.9743. The complete
identified model has the following structure:

A 0 B B
Xpy1 = [Op Anp] X + [ ap Bzﬂ Eﬂ
Skl _ Clp 0
-l Qe ®

D1y Dizn Tk
P1D21p  p1Dogp + Dnp| k|’

Here {Anp,Bnp, Cnp.Dnp} are the state space
matrices of Gy, the non—~parametric componeht of
the model G, and {Ap, B, C,, Dy} the state space
matrices of Gy, the a priori parametric information
that enters the term %, (G, T)*. Finally, through a
model (in)validation step, it was determined that the
{multiplicative) model uncertainty associated with
this description satisfies A, € BH oo (0.26).

5 T T T T T T —

I ]

Emor {Pixels)

: L : . L . L . o+
[} 10 20 ap @© 50 50 k) 80 Ll 100
Time {sac)

Fig. 4. Tracking error while zooming in and out.

In order to further validate the proposed approach,
the plant description (9) and the uncertainty descrip-
tion A € BHoo(0.26) were combined with the

#Numerical values for these matrices, as well as the controller,
omitted for space reasons, can be obtained by contacting the
authors.
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technique used in [1] to design an LFT scheduled
Ho, controller. Figure 4 shows the results of ex-
pertments where a person is tracked while zooming
in and out of his features. As illustrated there, the
LPV controller was able to achieve good tracking
performance in spite of the substantial change in the
dynamics of the plant due to the change in f,

C. Aciivity Recognition:

Consider the problem of distinguishing between
humans walking, running or walking up stairs, using
as data time sequences of four joint angles (shoul-
der, elbow, hip and knee). A typical plot of these
sequences is shown in Figure 5°.

indrical 1, Walking, Sequence 1

- = shoulder

+ 4+ albow )
wole o« hp PN

5T Knee i R

Frama

Fig. 5. Joint Angles of a walking individual.

In principle, activity recognition can be accom-
plished by assuming that these time—series are real-
izations of second—order stationary stochastic pro-
cesses, and comparing the distances between the
underlying models, identified for instance using sub-
space identification methods [3]. However, as pointed
out in [8] this approach may be fragile, leading to
activity miss—classification. To avoid this difficulty,
we propose to addresses the problem of human
gait recognition using model (in)validation motivated
techniques.

1} Activity Recognition as a Model {In)Validation
problem: In the sequel we will assume that a a
sequence y5 of measurements of the angles of the
shoulder, elbow, hip and knee joints of a person
walking, running or walking a staircase, can be
modelled as the response of an LTI system S to a

3This data has been provided by Professor Stefano Soatto, C.5.
Dept., UCLA.

L L L " .
o 5 10 15 20 25 30 as 40

signal e € Bl &

Xpr1 = Axg + Keg, 95 = Cxp+ e
i =vi —EyE), ElyR)=p Yk

Ve =yi —&(yR), E(yR)=n V&
where £ denotes expected value. The triplet (A, K, C)

can be obtained from the experimental data by using
subspace identification methods.

(10)

Consider now the problem of assigning an un-
known sequence ¢ to a model S from a set of
candidate models {S;}, each representative of a
particular gait type. To this effect we will assume
that all sequences y; corresponding 1o the i** class of
activities can be generated as the output of the model
S; corrupted by structured dynamic uncertainty, that
accounts for unmodelled dynamics and modelling
errors. This amounts to establishing the existence of
an admissible input ¢; € U = {e: T 5, eTe < 1}
and an #; bounded operator A such that:

g=[I+4)S]xe, an

This is precisely a model (in)validation problem of
the form:

Problem 2. Given a nominal model for a given gait
type S as in (1Q), sets U and A of possible inputs
and uncereainry blocks:

N
U={e: Y eTe<é’}, A={A:|Allo <8<}
k=1
and the experimental sequence §, determine whether
or not there exists at least one pair (e,A) el x A
so that {11) holds.

Once the process has been repeated for each
representative model S;, the unknown activity can
be assigned to the class associated with the lowest
uncertainty value.

2) Reducing the problem to an LMI oprimization:
Next we show that Problem 2 can be recast as an
LMI feasibility problem, by invoking Carathéodory-
Fejér interpolation theory.

Theorem 1. Problem 2 has an affirmative answer
if and only if there exists a finite sequence e =
{eq,e1,--- ,e,} so that the following set of LMls
hold:

LX) aETT
mio= |10 T < o

Agle) = [Ye(ze | YTI(e)J > 0

(12)

SThis provides a deterministic, set membership approximation
to a stochastic signal.
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where
ald)=(1~- 62)"1
X(e) = (Tp)' Ty — (Tp) TaTe — (TET2Y' T}

Yie) = [ef T -0 el],

and T7, T3 and T are the Toeplitz matrices as-
sociated with the seguences U,e and the impulse
response of S, respectively.

* Proof: Feasibility of (11) is equivalent to the
existence of a pair {e, A) such that A(S*e) =§ —
S x e. From Carathéodory-FejérTheorem {2] it can
be easily shown that such a A exists if and only if

(THTTE — (THTTETE ~ (5T T3
— (8~ )(TETHTTETE <0.
The first LMI in (12) follows now using Schur com-

plements. The second LMI is a simple restatement
of Th_ eTe< 1.

Note that since :(8) = (1 — §2)~! for § € (0,1)
is a convex function of 4, it is possible to optimize
over the size of the uncertainty required to explain
the data, by solving the following problem:

mina st Ay{e, @) <0, Az{e) 20, a>1

3) Example: Human Gait Recognition:

The experimental data consists of 30 vector
sequences, taken from 5 different persons, labelled
A, B, C, D and E, walking ( sequences 1-10),
running (11-20) or walking a staircase (21-30).

The models consist of a 4 input/4 cutput system
S; of the form (10), and its associated sequence y;,
mean pt; = £(y;, ) and an upper bound on the input
energy ¢;, computed as the input energy required for
model S; to generate y;, i.e. & llefle.t0.8pn: € =
5;°! x y;. Given a gait type and a set of models S,
define the nominal model S € S as the one that
is closest to each other element in its class, in the
sense of minimizing the norm of the (multiplicative)
uncertainty required to map the two models under
consideration, i.e

§= i S'z_g S'_l oo {1
arg min {18 = 35)8; o}

(13)

where §; = ¢,5; 7. Proceeding as described above
yields the following three nominal models, denoted
as Swauk for walking, Sy, for running and Sa:r
for walking a staircase:

Swatk = S10, Srun = 820, Sutair = 830- (14)
“The scaling is required to make models comparable in the

context of Problem 2.

SEquence chz“c Srun Sstair‘
vi-va | 0.0-027 [ 0607 | 0.2409
Y1119 0.9-1 0-0.35 0.5-1.0
yai—yas | 0.7-0.96 | 0.41-0.6 | 0.05-0.391
Y26 0.6828 | 0.7127 0.8827
Yo7 0.5553 | 0.5818 0.46821
Y28 0.2650 | 0.6801 0.16991
Y29 0.0391F | 08102 0.1470

Fig. 6. Gait Recognition Results

Thus, sequences {¥10, Y20, Yao} are the training data
for the problem.

The results, Table 6 shows the results of applying
Theorem 1, using 20 sample points per sequence
to the remaining sequences. In all cases, the first
column contains the experimental sequences to be
recognized; the second, third and fourth columns
display the minimum value of ||Af., the uncer-
tainty block required for the nominal models Syaik.
Srun and Sg.i to reproduce the given data.. A
given unknown sequence is assigned to the activity
type corresponding to the smallest ||Alj (indicated
by a }). As shown there, the proposed method
can successfully recognize 25 out of the 27 se-
quences under consideration; it only miss—classifies
sequences yag and yag, —walking up a staircase- as
walking sequences. The failure could be attributed
to the length of the experiment used for recognition’
purposes, or simply to faulty sequences, specially
because the proposed method is able to correctly
recognize sequences {yas, 77} and yoa from A and
C respectively.

I1I. CONCLUSIONS

In the past few years active vision techniques
have proved to be a viable option for a large
number of applications, ranging from surveillance
and manufacturing to assisting individuvals with diss-
abilities. Arguably, at this point one of the criti-
cal factors limiting widespread use of these tech-
niques is the potential fragility of the resulting
systems. In this paper we show that in many
cases of practical interest this fragility can be ad-
dressed by using interpolation and LMI tools to
recast these problems into a tractable optimiza-
tion form. Additional examples and clips showing
the effectiveness of this approach can be found at
http://robustsystems.ee.psu.edu.

It is also worth mentioning that there are important
cases where the techniques developed in this paper
do not provide a complete solution, since the result-
ing problem is not convex in all the variables in-
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volved. An example is gait recognition when the ex-
perimental data is corrupted by measurement noise.
Research is currently underway seeking to overcome
this difficulty by combining the approach pursued in
this paper with risk—-adjusted (in)validation methods
[51.
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