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Abstract 
The recognition of general three-dimensional objects 
in cluttered scenes is a challenging problem. In par- 
ticular, the design of a good representation suitable 
to model large numbers of generic objects that is also 
robust to occlusion has been an stumbling block in 
achieving success. In this paper, we propose a repre- 
sentation using appearance-based parts and relations to 
overcome these problems. Appearance-based parts and 
relations are defined in terms of closed regions and the 
union of these regions, respectively. The regions are 
segmented using the MDL principle, and their appear- 
ance is obtained from collection of images and com- 
pactly represented by parametric manifolds in the two 
eigenspaces spanned by the parts and the relations. 

1 Introduction 
The recognition of general three-dimensional objects in 
cluttered scenes from 2D images is a challenging prob- 
lem. In particular, the design of a good representation 
suitable to model large numbers of generic objects that 
is also robust to  occlusion has been an stumbling block 
in achieving success. 

-4 major difficulty in recognizing three dimensional 
objects from 2D images is that their appearances 
change significantly depending on the viewpoint. Com- 
mon approaches to overcome this problem are to use 
viewer-centered representations to describe the objects 
in terms of their appearances, or to use object-centered 

major limitation of the appearance-based approach is 
that it requires isolating the complete object of inter- 
est from the background, and thus it is sensitive to  
occlusion. In spite of the increased interest in this ap- 
proach [8, 91. no satisfactory solution has been found, 
until now, to handle object occlusion without sacrific- 
ing scaling. 

Approaches using object-centered representations 
such as part decomposition [l, 13, 71, have the po- 
tential to cope with both occlusion and large ob- 
ject databases. However, the definition of parts from 
generic objects and their image extraction remains a 
difficult problem[5]. 

Dickinson et a1 [4] proposed a hybrid approach where 
objects are described as combinations of geometric 
primitives that are represented using aspect graphs. 
This approach handles occlusion and can potentially 
describe a large set of objects in terms of a few primi- 
tives. However, it requires a fairly good image segmen- 
tation and it is limited to objects that can be described 
by the primitives in the system. 

In this paper, we propose a representation using 
appearance- based parts and relations. Xppearance- 
based parts and relations are defined in terms of closed 
regions and the union of these regions, respectively. 
The regions are segmented using the MDL principle, 
and their appearance is obtained from collection of im- 
ages and compactly represented by parametric mani- 
folds in the two eigenspaces spanned by the parts and 
the relations. 

2 Object Representation representations and image invariants. 
Viewer-centered approaches can be as structured as 

features grouped into relational models within aspect 
views [2, 31, or as loose as appearance-based represen- 2.1 Parts from Images 
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ing operational definitions (parts are what a part de- 
tector finds). view based definitions (parts are defined 
by local image properties), and geometric definitions 
(parts are defined by 3D events) [SI. 

We believe that a definition of a part must take into 
account the segmentfation algorithms that will be used 
to extract parts from the images. In particular, we 
believe that a part definition should be used in the 
same way at the learning and the recognition stages. 
Thus, we have opted for the following definition: 

Parts are polynomial surfaces approxi- 
mating closed, non-overlapping image regions 
that optimally partition the image in a mini- 
m u m  description length (,>lDL) sense. 

We have chosen an MDL based definition for the 
following reasons: 

1. The MDL principle has a strong theoretical 
grounding; 

2 .  Using hIDL does not require arbitrary parameters, 
and thus parts can be extracted iri a consistent 
manner; 

3. The MDL objective function can be formulated 
such that i) se,mentations with small number of 
regions with smooth boundaries are favored and 
ii) the obtained regions are homogeneous in a sta- 
tistical sense; and 

4. Finally, algorithms implemented using fast  incre- 
mental computations are available [SI. 

Figure 1: (a) Object "C-cube". (b) Parts obtained 
using an MDL-based segmentation algorithm. 

The MDL objective function that we use is the one 
proposed in [6] encoding the region boundaries and the 
statistical parameters describing the data in the re- 
gions. Let R = {J,} denote the image se-mentation 
into regions {U,}  and let Y represent the image data. 
Assuming that the image comes from a stochastic pro- 
cess that can be characterized as a polynomial gray 
scale surface plus Gaussian noise described by a vector 

of parameters J. then the M D L  objcxtivc. functiori to 
optimize is givtin by: 

where the first term is the length of encodirig the region 
boundaries. the second term is the length of encoding 
the para.meter-s and the last term is the length of en- 
coding the residuals. 

Figure l fa )  shows an image where the object T- 
Cube" has been thresholded from the background, and 
Figure l (b )  shows the parts obtiried using the klD1,- 
ba.sed segmentation algorithm described in [6]. Each 
of the right p a m  is shown in a separate irna.ge where 
the remaining of the object has been oniitted. 

2.2 Appearances of Parts 
Obviously. parts obtained using the definition given 
above are sensor and illumination dependent. Thus. in 
order to  completely characterize an object for different 
sensors and light sources, we introduce the concept of 
"appearances" of a part: 

Two parts segmented from two images of 
the same object obtained with similar sensor 
and illumination configurations, are said t o  
be appearances of the same part if they are 
judged to have similar polynomial approxi- 
mations in similar image locations. 

This concept can be formalized as follows. Let wi be 
a pa.rt obtained from an image. Let k, be an ni x 1 
column vector with the gray scale pixel values in part 
~ i i .  Let d be the order of the polynomial used to fit 
the parts, and m = (d + l ) ( d  + 2 ) / 2  be the number of 
polynomial coefficients. Let iPi  be an ni x m matrix 
of m basis functions for each of the ni pixels - i.e. 
products of powers of pixel coordinates. Finally, let Oi 
be an m x 1 column vector with the optimal regression 
coefficients for U?.  Using these definitions, we have [6] 

I'i = @ p i &  + * i  
where 4 ,  is a vector of zero mean Gaussian noise with 
covariance 0 ~ 1 ,  and 0, is estimated by minimizing the 
fitting error; 

EZ = IIK - iPp,O,/I 

Then, two parts w1 and U'Z obtained from two im- 
ages of the same object with different, but similar, sen- 
sor arid illumination configurations. are ronsidered ap- 
pearances of the same part if 
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where p1 and p2 are the centroids of the parts and T, 
and TA are given thresholds. Note that these thresh- 
olds can be set according to the estimated noise co- 
variance matrix d I and the known difference in sensor 
locations. Furthermore, this criteria can handle both, 
over and under, segmentation problems by assigning 
more than one part in one frame to a part in the other 
frame. 

2.3 Collection of Appearances 

The effects of the sensor and illumination configura- 
tions on the appearance of a part are learned by col- 
lecting appearances of the same part in sequences of 
images under all possible configurations. Appearances 
of a part can be easily tracked through frames by using 
the matching criteria presented in the previous sec- 
tion. However, a tracking algorithm must also take 
into consideration that due to  self-occlusion, and un- 
der and over segmentation problems, a part may dis- 
appear, split into several parts or merge with others. 
Figure 2 represents a sequence of appearances of a part 

Figure 2:  Example of splits and merges of appearances 
of a part. 

through ten different frames, f0, f 1 .  . . , f9. The nuni- 
bers between the arrows in the figure correspond to 
the part size number in the different frames (the larger 
the number, the smaller the part), and the arrows link 
the appearances from one frame to the next. In this 
example, the part being tracked splits into two parts 
in frame f3,  merges back to a single part in frame f5, 
only to split again in frame f 6 and to merge back in 
frame f8. Thus, it is fair to  ask whether this part 
should be considered one or two parts. We have cho- 
sen the criteria that majority rules - i.e. if the number 
of frames where the tracked part is split is larger than 
half of the frames, it is decided that these are the ap- 
pearances of two parts and that undersegmentation has 
occurred in the remaining frames; on the other hand if 
the number of frames where the part is split is less than 
50% of the frames, like in this example, it is decided 
that it is indeed a single part with oversegmentation 
occurring at the split frames. Note, that whenever it 
is decided that there is a case of undersegmentation it 
is assumed that parts are being merged, and hence are 
sharing appearances in some of the frames. 

Figure 3:  Collection of appearances of parts for “Hole- 
Cube”. ZJote that four of the parts disappear for some 
of the frames. (a) Images of “HoleCube” every 30”. 
(b) MDL segmentations of the images in (a). (c) Ap- 
pearances of five parts. 

Figures 3 and 4 illustrate the appearances of parts 
of two objects, “HoleCube” and “Lamp”. Figures 3(a) 
and I (a )  show images of these objects every 30° and 
Figures 3(h) and l ( b )  show their respective hlDL seg- 
mentations. Figiires 3(c) and l ( c )  show the appear- 
ances of five parts of each object. h’ote that due to 
self-occlusion, four of the parts of ~‘IlolrCube” disap- 
pear for sonic. frarws, and that due to segmentation 
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Figure 4: Collection of appearances of parts for 
"Lamp". Note that the second and third part share 
appearances in some frames. (a) Images of "Lamp" 
every 30". (b) MDL segmentations of the images in 
(a). (c) Xppearances of five parts. 

problems the second and third parts of "Lamp" share 
appearances. 

2.4 Appearance-Based Parts 

'The groups of appearances can be compactly stored 
a.nd efficient,ly retricvrd by construrting parametrized 
manifolds interpolating the projections of the individ- 

Table 1: XBPs Database Sa.niple. The ABPs of each 
object are represented by one of their appearances. 

\Object)  ABPs Representat ives  1 
I c d e 

ual appearances into eigenspaces obtained by apply- 
ing the Karhunen-Loeve compression method [la] to  
a scale and brightness normalized set of appearances. 
These manifolds are very similar to the ones proposed 
in [lo], which have been shown to be successful when 
used to recognize and locate zsolated objects. However, 
until now they have been used to represent appear- 
ances of complete objects and therefore have failed in 
the presence of occlusion. In this paper, we propose 
to  use this type of representation with parts, to  take 
advantage of their good localization properties while 
addressing the occlusion problem. Formally, we define 
appearance-based parts: 

-An appearance-based part (ABP) is 
a parametrized manifold in a space spanned 
by a given set of scale and brightness normal- 
ized appearances of parts, representing a col- 
lection of appearances of a part. obtained by 
varying the viewing conditions within a given 
space. 

ABPs can be easily constructed with the software 
package SLAM [ll] developed at Columbia University; 
it only requires to have 1) a set of appearances of parts 
spanning an eigenspace; and 2) a collection of appear- 
ances of parts to  obtain the corresponding manifold. 
The set used to  span the eigerispace can be chosen in 
many ways. It can be, for example, the set of all the 
collections of appearances of parts for a single or sev- 
eral objects. Table 1 shows representative appearances 
for the ABPs of three objects. 

2.5 Appearance-Based Relationships 
Although it is possible to  identify some objects by 
recognizing some of their distinctive ABPs, recogniz- 
ing general objects having several "common" parts re- 
quires the use of spatial relationships between the parts 
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being recognized. ABPs, as described earlier, are ob- 
tained by utilizing only one 2D primitive in each im- 
age to set up an eigenspace. It is also possible to use 
more than one 2D primitive to establish eigenspaces 
representing relations between regions. Appearance- 
based relations (ABRs) are developed by merging ad- 
jacent ABPs to create new training sets that also are 
represented as manifolds in the corresponding spanned 
eigenspace. Table 2 shows representative appearances 
for the ABRs of three objects. 

3 Object Recognition 
The ABPs and ABRs described above are the basis 
for our object recognition system. Let ABP and ABZ 
represent the sets of the union of the ABPs and -AB%, 
respectively, for all the objects in a given database. 
Then, an object m can be represented using a relational 
description 

D, = {Ri, R2) 

where RI C ABP is a unary relation and R2 C ABR 
is a binary (adjacency) relation. For example, the rela- 
tional description of the object “HoleCube” is formed 
by a relation RI comprised of all the ABPs shown in 
the first row of Table 1 and a relation R2 comprised of 
all the ABRs shown in the first row of Table 2. 

Similarly, an MDL segmentation of an image can be 
described using a relational representation 

where SI is a unary  relation formed by a set of parts 
or image regions and S2 is a binay relation, formed by 
a set of pairs of adjacent parts. 

The main difference between these representations 
is that the description of an object is made in terms 
of ABPs and *4BRs - i.e. collections of appearances - 
while the description of an image segmentation is made 
of a particular instance of these appearances. 

ABP hypotheses are generated by projecting each 
segmented region into the eigenspace obtained during 
training, and finding the closest points on the closest 
manifolds to this projection. While the manifolds pro- 
vide hypotheses for the part identity, the closest point 
on each manifold provides a hypothesis for its pose, - 
i.e. hypothesis for an appearance of the part. 

Let f be a mapping from parts in the segmented im- 
age to appearances of parts in the model. The mapping 
f represents a set of ABP hypotheses. Then, i fp  is the 
projection of an image part into the ABP eigenspace, 
and a is the closest point on the closest manifold to  p, 
we have 

f (PI = a 

The actual distances between the projections and the 
manifolds d(p,al = Ilf(p) -pll are quantitative measures 
of the goodness of these hypotheses, with the smaller 
the distance d(,.,,, the better the match. 

ABP hypotheses with distance dtp,aj 5 T1, where TI  
is a small threshold can be taken as successful hypothe- 
ses. Other -4BP hypotheses with somewhat larger dis- 
tances Ti 5 d, 5 T J ,  where TJ is a secorid threshold 
such that 5!’1 > T I ,  can be verified or discarded by 
composing them with the adjacency relationship. The 
composition of the relation S2, with f is denoted 5’2 o f  
and is given by 

5’2 o f = { (al, a?) is a point on an XBR E I221 
(a1,u2) is the closest point to the projection 
of a pair of image parts(p1, p2) E 5 ’2 ,  

with f(p1) = a1 andf(pJ) = a2 and such that 
a1 and az are points on ABPs E RI} 

This composition takes pairs of adjacent parts in 
the image and maps them, part by part, into the 
appearance of a relationship, provided that their ob- 
ject hypotheses are compatible. The distance be- 
tween the projection of a pair of adjacent image parts 
and the closest point on the closest -4BR manifold 

tative measurement of the goodness of the hypothesis. 
Thus, an ABR hypothesis €or a pair of image parts 
( p i , p , )  with distance d(pl,p2)(al,a2) I T3, where T3 is a 
threshold, is said to verify the ABP hypotheses for the 
component parts, PI and p2. 

d(P1,P2)(a*,a2) = I I ( P 1 7 P 2 ) O f -  @l.P2)11 is also a quanti- 

4 Experiments and Results 
Figure 5 shows images of the objects in our current 
database. The ABP database corresponding to these 
objects has a total of 66 ABPs and the ABR database 
has a total of 80 AB%. 

Examples of cluttered scenes with busy backgrounds 
are shown in Figure 6. The first column shows the 
original image, the second column shows their MDL 
segmentation, and the following columns show the ap- 
pearances of the ABPs and ABRs that were hypoth- 
esized and verified by the recognition algorithm. It is 
seen that in spite of the occlusion between the objects 
and segmentations problems such as the merging of 
some of the object parts with the background, all the 
objects and their pose are correctly identified. 

Figures 7 (a) and (b) show images of two scenes with 
three objects from the database, set up on top of a 
rotating table. In order to study the performance of 
the recognition algorithm, twelve images of each scene, 
from different points of view, wcre taken by rotating 

88 1 



Objec t  ABRs Rcpresontatives 
rl r2 r3 r4 r5 rti r7 r X  r9 

Figure 5:  Object Database. 

the table in increments of 30 degrees. Figure 7 (c) 
shows plots of the false alarms vs misdetections for the 
ABPs. as the threshold T2 used to hypothesize them is 
varied from 0.01 to 0.1. The best results for both scenes 
are obtained when the threshold T2 is 0.05. The associ- 
ated probabilities of false alarm are 0.1622 and 0.1421; 
the probabilities of niisdetection are 0.1571 and 0.036. 
Figure 7jd) shows plots of the false alarms and mis- 
detections for the ABRs, as the threshold T3 is varied 
while holding Ti constant a t  a value of 0.05. The best 
threshold value for T3 is 0.08, with probabilities of false 
alarm of 0.2424 and 0.2364 and probabilities of misde- 
tection of 0.3451 and  0.3247. Finally. the plots for the 
probabilities of falsp alarm versus niisdetection for the 
ABPs as the threshold TI is varied while TJ = 0.05 
and T3 = 0.08 are shown in Figure 7(e). The best 
threshold value for TI is 0.03 resulting in probabilities 
of f a h  alarm of 0.2524 and 0.236 and probabilities of 
misdetwtion of 0.301 arid 0.212. 

Figure 6: Results for cluttered scenes. (a) Cluttered 
scenes. (b) YIDL segmentations. (c) ABP and ABR 
hypotheses. 

5 Conclusion 
In this paper we introduced a new object representa- 
tion using appearance-based parts and relations. ABPs 
and .\13Rs arc defined based on thc XDL principle and 
are automatically lcarncd from collections of images 
without< requiring ad hoc pal-anletrrs. They capture 
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Figure 7: False alarm versus misdetections for rotating 
scenes (a) and (b). (c) for ABPs as T2 varies. (d) 
ABRs as T3 varies, T2 = 0.05. (e) for ABPs as TI 
varies, Tz = 0.05 and T3 = 0.08. 

not only local shape but also intrinsic reflectance p r o p  
erties, pose in the scene and illumination conditions. 
Furthermore, ABPs and ABRs are compactly stored 
using an eigenspace representation parametrized by 
pose and illumination. Thus, the proposed representa- 
tion can be used with generic objects and it is robust to  
occlusion and segmentation variations. Experimental 
results using images with cluttered backgrounds show 
that the ABPs and AB& are useful for object recog- 

nition in the presence of occlusion. 
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