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Abstract 

The problem of rejection of persistent unknown-but- 
bounded disturbances can be solved using the well- 
known I1 design approach. However, in spite of its 
success, this theory suffers from the fact that the re- 
sulting controller may have arbitrarily high order, even 
in the state-feedback case. In addition, system perfor- 
mance is optimized under the assumption of zero initial 
conditions. In this paper we propose a new approach 
to the problem of synthesizing k e d  order controllers 
to optimally reject persistent disturbances. The main 
result of the paper shows that this approach leads to 
a finite-dimensional convex optimization problem that 
can be efficiently solved. 

1 Introduction 

A large number of control problems can be recast as the 
problem of synthesizing a controller capable of stabiliz- 
ing a given linear time invariant system while, at the 
same time, minimizing the worst case response to some 
exogenous disturbances. When the signals involved are 
persistent bounded signals, with size measured in terms 
of peak time-domain values, it leads to Z1 optimal con- 
trol theory [9, 3, 4, 61 (see also [l] for earlier related 
work). 

The I1 theory success lies on the fact that it directly 
incorporates time-domain specifications. Moreover, it 
furnishes a complete solution to the robust performance 
problem [5]. However, in contrast with X, and Xz 
control, 1' optimal controllers can have arbitrarily high 
order [7]. Moreover, this theory cannot accommodate 
non-zero initial conditions. 
Motivated by these difficulties, in this paper we propose 
a new approach to synthesizing fixed order controllers 
for persistent disturbance rejection in SISO systems. 
This approach is based upon considering an expanded 
class of problems that includes .tl theory as a limit case 
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(when the order of the controller is free). 

The basic idea of the paper is the concept of equal- 
ized performance. In plain words a a linear SISO plant 
of order n achieves an equalized performance level p 
if, whenever n consecutive output values have magni- 
tude less than p, the same condition is repeated in the 
future. Thus having finite equalized performance is 
a stronger property than stability (while having finite 
.tl induced norm is equivalent to asymptotic stability). 
Nevertheless, as we show in the sequel, finite equalized 
performance can be achieved by closing the loop with 
a controller having at least the same order of the plant. 

The main results of the paper can be summarized as 
follows. 

0 the problem of finding a fized order controller 
achieving a given equalized performance level p 
leads to a linear programming problem whose di- 
mension is know a priori and it does not depend 
on the problem data. 

0 The optimal value of p (and the corresponding 
controller) can be computed in polynomial time. 

0 The proposed technique is applicable even in 
cases where l1 theory breaks down, such as when 
the plant has zeros on the stability boundary. 

For brevity, some of the results are presented without 
proofs for which the reader is referred to the full version 
of the paper [2]. 

2 The equalized performance problem * 

2.1 Notation 
Given a sequence h E l l ,  its A-transform is de- 
fined as H ( A )  ef C ~ o ~ A ' l .  Given a polynomial 
P(A) = Cy=oqAi we denote its coefficients vector as 
U = [a, a1 ... u,,-1IT. The vector a deprived 
of the leading coefficient will be denoted by E, i.e. 

dcf 

d d  T ii = [a1 ... %-I] . 
'Note that this is the inverse of the usual I transform. There- 

fore for causal, stable systems H(X)  is analytical in /XI < 1. 
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2.2 Definitions and Preliminary Results 
Consider a stable SISO plant defined by the following 
transfer function: 

x(k) Sf 

To this plant we can associate the following ARMA 
model 

i b0 0 0 ,.. 0 
C B  bo 0 ... 0 

CAB CB bo ... 0 
... ... ... 0 

CAk-=B ... ... CB bo 

' " 1  C A  

n n 

e ( k )  = - q e ( k  - i )  + C b j w ( k  - i) (2) 
i=l j =O 

or equivalently, the set of equations: 

e ( k )  = al(k)+bow(k) 
(3) 

For any positive integer k we have that 

where 

I . I  

(5) 
Considering the above relationship in the case k = n es- 
tablishes a (well-known) correspondence- between any 
minimal quadruple (A, B, C ,  D )  and the ARMA model 
(2), in the following sense: Given any w(k)  and any ini- 
tial condition z( 0), the corresponding ouput sequence 
e(k) of the former is an admissible evolution of the lat- 
ter. Conversely, any evolution of the ARMA model is 
an admissible output sequence for the system having 
the state space realization (3), for a suitable choice of 
the initial state ~(0). Since dn) is invertible (recall 
that (A, B, C, D )  is minimal), determining z(0) is im- 
mediate. Also note that for a given sequence w(k) ,  
there is a one to one correspondence between the first 
n valves of e ( k )  and the initial condition ~(0). 

Next we recall the usual t1 performance definition: 

Definition 1 The plant (1) has P, performance less 
than pt1 i g  for ai(0:) = 0 ,  i = 1,. . .n, and for all 
sequences w(k) ,  k = 0,1,. . ., such that Iw(k)l 5 1, we 
have le(k)l 5 pt1. 

Motivated by this dehition, we introduce now the con- 
cept of equalized performance. 

Definition 2 A stable plant of the form (1) has (fi- 
nite) equalized performance less than p iff for le(i)l 5 
p, i = 0 , .  . .n - 1, and foT Iw(j)l 5 1, j = 0,1,. . ., 

The term equalized stems from the fact that the defi- 
nition above is strictly equivalent to setting the first n 
values of Ie(k)I all equal to 1.1 (in all possible ways) and 
requiring that le@)] 5; p in the future. 

So far we have considered the case where the length 
of the output string coincides with the McMillan de- 
gree of the plant (in the sequel we will sometimes refer 
to this case as the natural performance case). How- 
ever, addressing some technical points such as stable 
pole/rero cancellations requires extending this defini- 
tion to strings of length N > n. 

Definition 3 A stable plant of the f o r m  (1) haa 
(finite) equalized N-performance lesa than p i f f  for 
le( i ) \  5 p ,  i = 0, ... N - 1, and all sequences w(k), 
k = 0,1, ..., lw(k)l 5 1, compatible with e ( i ) ,  i = 
0 , .  . . , N - la we have that 

Thus a plant achieves equalized N-performance less 
than p if whenever a string of N consecutive output 
values e(O), e(l), , . . , e(N - 1) is below the magnitude 
p, then the same condition is repeated in the future, for 
all possible values of the exogenous disturbance w that 
could have generated the sequence of output values for 
some appropriate initial condition. In the special case 
where n = N ,  the sequences Ie(k)l 5 p and lw(k)l 5 1, 
k = 0, 1, . . . , n- 1 can be chosen independently. On the 
other hand, if N > n!, then the constraint Ie(i)l 5 p, 
i = 0,  . . . N - 1 imposes an additional constraint on the 
first N values of the sequence w(k).  

The set of admissible initial conditions, i.e. the set of 
initial conditions that, together with an appropriately 
chosen sequence of disturbances, generate a sequence 
of N outputs having magnitude less than p9 is given 
by: 

'in the sense that theria exists an initial condition z(0)  such 
that the output corresponding to this initial condition and the 
sequence of inputs w(k) ,  hi = 0 , .  . . , N - 1 is precisely e(;), i = 
0,. .. , N - 1. 
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Remark 1 T h e  set X ( N ) ( p )  always contains the on'- 
gin. If ( A , C )  is observable, it is a compact polyhe- 
dron (because the w(k)  are bounded). Furthermore, 
X ( N ' ) ( p )  c X ( N ) ( p ) ,  i f  N' > N .  

Lemma 1 If a plant has  equalized N-performance less 
t han  p, it also has equalized N-performance less than  
pt f o r  all p1 2 p .  

Proof: Follows immediately from linearity, by scaling. 
0 

This lemma implies than once N consecutive output 
values are below a given level p' 2 p, then Ie(k)l 5 p1 
for all k. Thus we can introduce the following defini- 
tion. 

Theorem 2 Let  p 2 0. T h e  plant (1) has equalized 
n-performance less t han  p ifl the  following condition 
holds: 

clll4ll + llblll I c1 (9) 

Therefore the equalized n-performance level pn of the 
plant is given by 

Remark 4 From Theorem 2 we have that i f  b # 0 ,  a 
necessary condition f o r  a plant t o  hnue f inite n equalized 
performance is  lliilll < 1. It is clear tha t  this condition 
implies sys tem stability. If b = 0, a necessary condition 
i s  lliilll 5 1. 

We consider now the general case where N 2 n. To 
this effect define m = N - n and consider the following 
set of m+ 1 equations 

e(n) = 
e(n + 1) = 

cy=, aie(n - a) + cT=o b jw(n  - a), 

Er=, aie(n + 1 - i) + cy=o bjw(n + 1 - a), 

e ( N )  = cy=, a;e(N - i) + b jw(N - a) 

Eliminating e ( N  - l), e ( N  - 2), . . . , e ( n ) ,  yields: 
(11) Definition 4 T h e  equalized N performance level pN of 

a stable plant is defined as: p N  = inf(p : the  plant has 
equalized N-performance less or equal t han  p}. 

n N 

Remark 2 It is easy t o  show that not all stable plants 
have f inite equalized N-performance f o r  a given N .  
However, as we show in section 3, any stable plant 
achieves equalized N-performance f o r  some p > 0 pro- 
vided tha t  N i s  su f ic ien t ly  large. 

Remark 3 Since the  set  X ( N ) ( p )  includes the  origin, 
it follows tha t  ptl 5 p N .  In the special case where 
pl(~1 = pN the  plant is said t o  be N-equalized 

e ( N )  = z a ! " e ( n -  i) + ~ b ~ m ) u ( N  - j )  (12) 
i=l j = O  

where the ai"), i = 1,2,  ..., n, and the b;", j = 
0,1,. . ., N, are functions of the coefficients ai and b j  
of (2). This expression, combined with Definition 3, 
leads to the following result: 

Theorem 3 
The  plant (1) has equalized N-performance less t han  
p if: . -  

3 Equalized performance characterization 
where 

IT id") = [.\",.. . , a y ]  , b(") = [ab"),  . . ., b p  
In this section we present some properties of plants 
achieving a given equalized N-performance level p. 

T . 
Here we use the ARMA model (2) and we assume that 
llbll # O to  avoid critical cases (the case llbll = O will be Therefore a n  upper bound f o r  the  equalized. N -  
reconsidered later). performance level of a n  nth-order plant is given by 

(14) Theorem 1 If the  plant (1) has equalized N -  
performance (N 2 n) less t han  p then  it has  equalized 

p N  = I1 b(") I I  1 
1 - Ilii(")lll' 

N'-performance less t h a n  I.( f o r  all N' > N. 

Proof* If follOws 
X ( N ' ) ( p )  c X ( N ) ( p ) .  

Next we address the issue of computing the equalized 
N-performance level of a given plant. 

We stress the fact that this condition is only sufficient. 
Note that, contrary to  the case where N = n, here 
necessity fails because now the sequences e ( k )  and w(k)  
cannot be chosen independently. Note that stability of 
the plant implies that as m ---f 00 then the coefficients 
aim) + 0. This leads to the following important facts: 

from the fact that 
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Corollary 1 If the plant (1) is stable, it has finite 
equalized N-performance less than p for some N = 
n + m, with m suficiently large. 

Corollary 2 If the plant (1) has a finite impulse re- 
sponse then it is N-equalized for all N > n. 

Next we establish that as N increases the equalized 
N-performance level pN approaches from above the t? 
performance level. 

Theorem 4 
Let p" 2 limN,m pN = lirn,,,+m If the plant 
(1) is stable, then its N-equalized performance pN level 
approaches its performance level pp as N - 00, i.e. 

n+m 

j =O 
pm = m d m  lim I $ ~ ' I  = pp (15) 

Finally, we address the issue of equalized performance 
in the case where the plant realization is non-minimal. 
This is important in the context of synthesis because 
even if we start from a minimal realization, stable 
pole/zero cancellations may appear in the resulting 
closed loop system. 

Theorem 5 Consider any arbitrary monic polyno- 
mial C(A) and assume that the ARMA model 
C(A)A(A)y(A) = C(A)B(A)w(A) of order N has equal- 
ized N-performance less than p .  Then the ARMA 
model A ( t ) y ( z )  = B(z)w(z) abo has equalized N -  
performance less than p .  

Proof: The proof follows from the fact that 
C(A)A(A)y(A) = C(A)B(A)w(A) corresponds to the 
ARMA model obtained by combining the equations in 
(11) using the coefficients of C(A). 

4 Optimization of the equalized performance 

In this section, we consider the problem of synthesizing 
k e d  order controllers such that the resulting closed- 
loop optimally rejects (in the equalized performance 
sense) persistent disturbances. Consider a SISO plant 
of the form: 
8 

where 

where U, w ,  y and e represent the control input, ex- 
ogenous disturbances, measurements available to the 
controller and performance output respectively. Then 
the optimal equalized performance problem can be pre- 
cisely stated as: 

Problem 1 Given the SISO linear time-invariant 
plant ( I  7) with McMillan degree r,.find a linear time- 
invariant compensator of a given order s > r such that 
the equalized n performance of the resulting closed-loop 
system i3 minimized, where n = s + r .  

In the sequel we show that this problem reduces to 
a finite-dimensional convex optimization problem. To 
this effect consider a controller of the form: 

where p is a monic psolynomial of degree s. The corre- 
sponding closed-loop system is: 

where d(s )  is the characteristic polynomial of A. The 
polynomial [nlln22 - n12n21] has d as a factor, i.e. 

nll(A)naz(A) -- n12(A>nzi(A) = d(A)fi(X) 

[ W ) P ( 4  - n 2 2 ( ~ ) ! d ~ ) I . O )  = b(Abll(A) 

thus 

- q ( ~ ) f i ( ~ ) l w ( ~ ) .  
(20) 

(21) 

This last expression can be rewritten as: 

dci(P, q)P)+)  = ncdp, q)(A)w(A). 

Without loss of generality (by using an appropriate 
scaling if necessary), p(A)  and q(A) can always be se- 
lected such that the polynomial &(p, q ) ( A )  hac its in- 
dependent term equal t o  one, that is 

de&, q ) ( A )  = 1 .t &,J + dci,2A2 + - - * (22) 

This additional equatlity constraint guarantees both 
that the resulting loop is well-posed and that it has 
McMillan degree n = s + r .  

From Theorem 2 it follows that the closed loop system 
(21) achieves equalized performance 5 p ,  if and only if 

PIl&dPl dl11 + IIncdP, dl11 I P- (23) 

Since ncz(p, q ) ( ~ )  andl &(p, q ) ( A )  are affine functions 
of the coefficients of the polynomials p(A) and q(A) ,  
and since the additional constraint (22) is equivzslent 
to a linear constraint involving only the leading coef- 
ficients of q and p, it follows that synthesizing a con- 
troller achieving a k e d ,  given performance level p > 0 
is equivalent to finding an interior point in a convex set 
in the combined p, q space. Moreover, denoting by 

B + [ ; ] ,  

condition (23) above can be written as follows 
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where 9 and 1E are suitable matrices whose entries are 
functions of the plant coefficients. Thus for each can- 
didate p, the problem of synthesizing a controller that 
achieves e-qualized performance less than p (or estab- 
lishing that none exists) reduces to  solving a feasibility 
problem that can be recast into a Linear Programming 
form. If s, the order of the controller, is chosen to 
be at least as large as r ,  the order of the plant, this 
LP problem is always feasible for some p large enough. 
This follows from the fact that in this case p and q can 
be chosen so that the corresponding closed-loop is a 
FIR, and thus (Corollary 2) has finite equalized per- 
formance. These results are summarized in the next 
Theorem, stating the main result of the paper. 

Theorem 6 Consider a sy s t em of the  f o r m  (16) with 
McMil lan  degree r .  T h e n  f o r  each s 2 r there ez- 
ists a compensator of the  f o r m  (18) such  tha t  the re- 
sulting closed-loop sys tem has  f ini te  equalized (r + s)- 
performance. Furthermore, g iven  s, the  problem of 
synthesizing a controller of order s t ha t  minimizes the 
equalized performance level c a n  be solved by a globally 
converging procedure, entailing only the  solution of a 
~ e q u e n c e  of LP problems, each one  having 6n + 7 vari- 
ables, 4n +- 5 inequality and 4n + 5 equality constraints. 

Remark 5 Since both the  number  of constraints and 
variables are a f i n e  func t ions  o f  n, it follows that  syn- 
thesizing a controller tha t  achieves a g iven  equalized 
performance level can  be solved in polynomial t ime.  
Thus, computing the  optimal equalized level (within a 
given tolerance) can  also be accomplished in polynomial 
t ime .  

Note that the synthesis algorithm proposed in Theorem 
6 works even if the order of the controller is selected to 
be smaller than r ,  the order of the plant. However, in 
this case there is no a-priori guarantee that the prob- 
lem will be feasible, even for a sufficiently large value 
of p. From a practical point of view, the initial value of 
the controller order so should be selected equal to ther 
order of the plant. This guarantees that the parametric 
problem will have a solution for some b. Once the o p  
timal value of the equalized performance is established 
for this case, we can proceed, if necessary, to decrease 
the order of the controller it9 needed. This leads to a 
non-increasing sequence p:t > 0. As we state next, 
this sequence converges to  the optimal L1 cost. 

Theorem 7 Consider an increasing sequence s; 2 r 
and let f i  denote the  opt imal  equalized performance 
level achievable wi th  a controller of order si. Assume 
that  the  plant satisfies the  standard assumptions of L1 
theory and let p l ~  denote the  opt imal  achievable L1 per- 
formance  level. T h e n  pj --+ pl1. Moreover,  there ezists 
s' such tha t  pj = pl1 f o r  all si 2 s'. 

5 Example 

Consider the following system, taken from [7]: 

/ 2.7 -23.5 4.6 I 1 1 \ 

P O 0 1 0 0  

The optimal L1 controller has order 16. The corre- 
sponding closed closed-loop is an 18th order FIR, with 
L1 norm pp = 3.01. Table 1 shows a comparison of 
this optimal t1 controller versus the optimal equalized 
controllers obtained by selecting different values for the 
controller order. In this particular example in all cases 
the resulting equalized controllers rendered the closed- 
loop system an FIR, and thus pee  = 1-1~1. Notice that 
by the time the order of the controller is selected to be 
8, the corresponding performance is 3.07. Thus, when 
compared with the optimal t1 controller we have a sig- 
nificant order reduction (50%) at the price of about 
2% increase in cost. Note that in this case the optimal 

8 11 3.07 

Table 1: Closed-loop 1' norm for different equalized de- 
Signs. 

equalized closed-loop system has a finite impulse re- 
sponse. This raises the question of whether or not this 
is a general property of the method (as in the classi- 
cal L1 case). Numerical experiment show that in prac- 
tice the optimal equalized plant 'tends to be an FIR". 
However, there are some counterexamples where this 
property does not hold. 

6 Discussion of the method 

In this section we comment on some of the features of 
the proposed method. In particular: 

1) Recall that in Section 3 we assumed that b # 0. 
Through Theorem 2 this guarantees that lldll < 1 which 
implies asymptotic stability. If b = 0, the inequality 
plliill 5 p requires that Ili5ll 5 1, and this property 
implies only marginal stability. Thus there might be 
trajectories that do not converge (but that do not di- 
verge as well). Clearly, the feasible solutions p ,  q of (23) 
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might render n,l(p,q) = 0. The solution to this prob- 
lem is immediate. Take E arbitrarily small and replace 
condition (23) by the following condition 

PII&(P, q)II1 + Ilnci(p, 4)11i 5 P - E -  (25) 

Thus if Ilnci(p, q)111 = 0 we still have ll&(p, q)llr 5 l-e,  
and asymptotic stability is guaranteed. 
2) Since the proposed method forces the closed loop 
characteristic polynomial to satisfy Il&lll < 1, it fol- 
lows that the resulting controller internally stabilizes 
the loop. Note however that internal stability does not 
prevent the appearance of stable pole/zero cancella- 
tions. This leads to the following question: Suppose 
that an s-order controller has been found such that 
the closed-loop system achieves (s + r)-equalized per- 
formance ps+'. Assume that some zero pole cancella- 
tions occur so that the resulting closed loop has a min- 
imal realization of order n' < n = s + r. Does this re- 
duced plant achieve the same equalized n'-performance 
level? The answer is not necessarily. This should not 
be surprising, since the equalized performance frame- 
work does not assume zero initial condition. However, 
Theorem 5 guarantees that the reduced plant (of order 
n' < n) still achieves an n-equalized performance level 
less or equal than p8++. 

7 Conclusions 

In this paper we propose a new approach to  the prob- 
lem of synthesizing fixed order controllers for optimally 
rejecting persistent disturbances. This approach is 
based upon the idea of equalized performance: A plant 
has an equalized performance level p if whenever N 
consecutive output values are below p ,  then the loo 
norm of the entire output sequence is guaranteed to be 
less or equal p .  This can be thought of as a extension 
of the usual P performance criterion, and indeed both 
coincide in the case of plants having a finite impulse 
response. 

By exploiting a characterization of equalized perfor- 
mance in terms of the coefficients of an ARMA model 
of the plant, we have shown that the problem of synthe- 
sizing ficed order controllers that optimize performance 
(in the equalized sense) reduces to solving a Linear 
Programming problem whose size can be determined 
a-priori. An additional feature of our method is that 
it can be used even in cases where the plant has ze- 
ros on the stability boundary. On the other hand, it is 
well known that the traditional l1 methodology breaks 
down in these cases, leading to discontinuities in the 
cost [8]. 

An important open question is the extension of the 
method to the MIMO case. In principle this could 
be accomplished by means of a vector ARMA model. 
Clearly, the definitions in the paper could be easily 
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rephrased in a vector sense by requiring that for any 
output string e(O>, e ( l ) ,  . . . , e (n  - 1) whose element 
norms are all below p,, the norm of e ( n )  is also below p .  
However, the extension looses the physical meaning of 
the SISO equalized performance in the following sense: 
the first order multivariable system 

A = [  4, B = [  1 D = 0, 

could be associated to the equation 

However, it is immediately apparent that a true corre- 
spondence between this ARMA model and the original 
state space system does not exist, since in the former 
the output components are related by el  = ea. Thus 
the extension of the method to the MIMO case does 
not appear to be trivial. 
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