
Proceedings of the 35th TM13 1:50 
Conference on Decision and Control 
Kobe, Japan December 1996 

Worst case Z" to I" gain minimization: dynamic versus 
static state feedback. 

Franco Blanchini Mario Sznaier 
Dipartimento di Matematica e Informatica 

Universiti degli Studi di Udine 

Via delle Sdenze 208, 33100, Udine, Italy 

Department of Electrical Engineering 

The Pennsylvania State University 

University Park, PA 16802 

blanchini@uniudit msznaierQfrodo.ce.psu.edu 

Stefan0 Miani 
Dipartimento di Elettronica e Informatica 

Univwitci di Padova 

Via Gradcnigo 6, 35131 Padova, Italy 

miani@dimi.uniud.it 

Abstract 

It has been recently shown that for the problem of op- 
timal rejection of persistent disturbances using full- 
state feedback, static non-linear controllers can re- 
cover the performance level achieved by any linear 
dynamic controller. In this paper we complement 
these results by showing that for this problem non- 
linear dynamic time-varying finite dimensional, pos- 
sibly discontinuous, compensators do not offer any 
advantage over memoryless time invariant nonlinear- 
compensators. Moreover, we show that the best pos- 
sible (over the set of all stabilizing controllers) distur- 
bance rejection can be achieved by using globally Lip- 
schits piecewise-linear controllers. 

1 Introduction 

A common problem arising in many engineering appli- 
cations is to design controllers capable of stabilizing a 
given linear time invariant system while, at the same 
time, minimizing the worst case response to some ex- 
ogenous disturbances. When the signals involved are 
persistent bounded signals, with size measured in terms 
of peak time-domain values, it leads to I' optimal con- 
trol theory ([l] [9] [lo]). 
The I1 theory is appealing because it directly incor- 
porates time-domain specifications. However, 1' opti- 
mal controllers can have arbitrarily high order. This 
fact, along with the well known fact that for the full- 
state feedback case both 3t, and T t z  control prob- 
lems admit static (sub)optimal controllers, prompted 
the study of full-state feedback optimal I1 controllers. 

To the best of our knowledge, this problem was first ad- 
dressed in a set-theoretic framework in the early 1970's 
[3] [14]. However, this line of research was abandoned, 
due probably to the complexity of the resulting con- 
troller, which was not compatible with the computer 
technology available at that time. 
More recently, it was shown in El21 that the optimal 
linear 1' state-feedback controller can be dynamic, 
with arbitrarily high McMillan degree. However, if 
the class of admissible controllers is expanded to in- 
clude non-linear control laws, then the performance 
achieved by any internally stabilizing dynamic linear 
state-feedback controller can be recovered using static 
non-linear state feedback [17]. Constructive proce- 
dures to synthesize this static non-linear feedback law 
have been presented in [2][3][4] [8] [18]. A question that 
arises then is whether or not nonlinear controllers can 
outperform linear controllers. 
Denote by p m r ,  ~ N L S  and ~ N L T V  the optimal 
loo to lm induced operator norms over the sets of 
causal norm-bounded linear time-invariant compen- 
sators, the set of non-linear static compensators and 
the set of non-linear time-varying compensators re- 
spectively. In [16] it was shown that ~ L T I  = ~ N L T V  
for the cases where either i) Tz = I (or has a stable 
inverse), or ii) the non-linear compensator is differen- 
tiable at the origin. If these conditions fail, then we 
can have ~ N L T V  < ~ L T I ,  as shown by a simple static 
counterexample in [19] involving a system of the form: 

Z ( t )  = &(t) + D U ( t ) ,  y ( t )  = W ( t ) ,  (1) 

for which ~ N L S  < ~ L T I .  This example can be eas- 
ily extended to the state feedback case by using delay 
augmentation to introduce dynamics as follows: 
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Since the augmentation sees no feedback, any feedback 
U = Q y  for (1) produces the same norm as the state 
feedback U = Qz for (2). Thus we have that for this 
case ~ N L S  < ~ L T I .  This is due to the fact that in the 
state feedback case the condition T2 = I usually fails. 
While this example shows that in the state-feedback 
case non-linear static controllers can improve the per- 
formance of linear controllers, the question of whether 
or not arbitrary non-linear time-varying, non smooth 
compensators can improve the performance of static 
non-linear controllers is still open. The main result of 
this paper shows that for the state-feedback case this 
question has a negative answer, i.e. ~ N L T V  = ~ N L S .  It 
follows that when searching for the optimal controller, 
the search can be limited to memoryless non-linear 
controllers. Moreover, within this class, performance 
arbitrarily close to optimal can always be achieved by 
using a piecewise linear, globally Lipschits controller. 
This result will be established by taking into account 
the more general case in which the system is affected 
also by parametric memoryless model uncertainty. 

2 Existence of suboptimal static state feedback 
controllers 

In the sequel we denote by l l . l l p ,  p = 1,- the p norm for 
vectors and 11 . l l f F ,  the 1P norm for sequences. Given a 
set S c R" and v E RI we denote by US A (va, a E S} 
and by conV{S} the closure of its convex hull. Given 
a point a E R", we define its distance to the set S as 
Dist(z, S )  = inf 112 - yII. 

Definition 1 Consider the discrete-time dynamic sys- 
t e m  

where z ( t )  E R", U E C, c P,  and Ild(t)lll- 5 1. 
A conuea, bounded set P containing the origin in i t s  
interior is  said t o  be X - E,-contractive for this sys- 
t e m  if for all 1: E P there ezwts  U E E, such that 
f ( z , u , d )  E XP, 0 5 X 5 1 for all lldlloo 5 1. In the 
special case X = 1, P is said t o  be C,-inuariant [13]. 

Remark 1 In the special case of autonomous systems 
of the form 

VES 

4 t  + 1) = f (+I1 4 t ) I  4 t ) )  (3) 

+ + 1) = f ( 4 t ) , 4 t ) )  (4) 

this definition reduces t o  the usual definition of X- 
contractivity (positive invariance in the X = 1 case), 
i.e., for all z E P ,  f(z,d) E XP, for all ildll.o 5 1. 
For simplicity and b y  a slight abuse of notation, we 
will use the term X-contractive (positively invariant) 
for both systems (3) and (4) when the meaning i s  clear 
f r o m  the contezt. 

Definition 2 Consider the autonomous sys tem (4). 
Given a sequence d = {d(O),d(l),...} and an initial 

condition x,, denote b y  q5(tlx,,d) the solution at the 
time t.  The origin-reachable state set Rm is  defined as 
Rm2 (E:  E = d(t10,  d) ,  t > 0, IIdIIim I 11. 
Consider the linear uncertain plant: 

z(t + 1) = A ( w ( t ) ) z ( t )  + B i d @ )  + & ( w ( t ) ) u ( t ) .  
z ( t )  = C z ( t )  + D l l d ( t )  + D1au( t )  

(5) 
where z ( t )  E R", u(t) E Rq, w ( t )  E R s ,  d ( t )  E R" and 
z ( t )  E RP represent the state of the system, the con- 
trol input, parametric model uncertainty, the exoge- 
nous disturbances and the controlled outputs respec- 
tively. We assume that A(w) and &(w) are of the 
form: 

8 s 

with 
8 

w k { w  : CUJ; = 1, w; 2 O}, 
i= l  

and that w(t )  is a memoryless parameter. Suppose that 
a stabilising nonlinear full state (possibly time-varying) 
feedback compensator of the form: 

is given. Note that we do not require any regularity 
assumption for this compensator which may even be 
discontinuous. It is well known that closing the loop 
with the controller (7) is equivalent to applying the 
state feedback: 

to the following augmented linear system 

(9) 

Denote the closed-loop system by: 

where 

In the sequel, we will assume that the controller (7) 
is such that the resulting closed-loop system has the 
following properties: 

2396 



Property (i): Finite Im to  I" induced gain: control law VI(() & 4 ( z , & t )  renders the set gg) 
invariant for the system (9). Consider now a point 

sup 112111- i p < 00 (11) E = -4( t ,O,w,d,d)  E - f ig) ,  Clearly the control 
772(() = -VI(-() renders this set invariant. Now, any 
point ( in the set B can be written as convex combina- 
tion of elements of gg) and - f ig):  

lldlll- I 1 t € ( O ) = O  

For convenience we add a usmalln perturbation 2, re- 
sulting in the following modified system: 

€(i + 1) 

IMt)IIm I 6, (12) 

= W t ) ,  qz, 5,  t ) ,  w ( t ) , d ( t ) )  4 J(t>,  
Z(t) = W t ) ,  @(x, 5, t ) ,  w ( t ) ,  d ( t ) ) ,  

Denote by kg) the O-reachability set of (12). Note 
that R, c Ac). We require the following additional 
two properties for the modified system. 

Property (ii): Continuity of RE) with respect to full di- 
mension perturbations: For each e l  > 0 there exists 
6 > 0 such that 

sup D i d ( ( ,  a m )  5 e1 
€ERE) 

(13) 

Properdy (iii): Continuity of the cost with respect to f i l l  
dimension perturbations: For each e > 0 there exists 
6 > 0 such that 

P -  SUP llzllza. I P + €  (14) 
Il4lt-  5 %  
11411.. <s 

<(0)=0 

Note that assumptions (ii) and (iii) are both reason- 
able and desirable from a practical standpoint. How- 
ever, they can be weakened at the price of much more 
involved proofs. 

( = a!&+ 062 (17) 

where the scalars L Y , ~  2 0, a! + = 1, and where 
€1 E fig) and (2 E -R&. To this point we associate 
the control: 

Since the controls q1 and q 2  map (I and (2 in 82) 
and -&? respectively, for all w E W ,  lldlloJ I 1 and 
liJllm 5 6, it follows from the linearity of (9) and the 
convexity of 3, that the control q guarantees that (' = 
Pit, q ( f ) , w ,  d )  + d' E 3, for all w E W ,  lldllm I 1 and 
lldllm 5 6- 
To establish the output bound, we recall that proper- 
ties (i) and (6) imply that for all f E Rg) we have 
b(t ,O,w,d,(I)  = < for some t > 0 and that Ilz(t)lloo = 
Ilc(<, a((, t ) ,  w( t ) ,  d(t))llm 5 p+ e .  Takiig the control 
q(<) as above we have that v ( z , 2 )  = h(z ( t ) ,  2 ( t ) ,  t )  and 
thus we get 

IIZ(t)llCn = IlCz + Dlld + D12v(z1 q l l m  I P + 6. 

By symmetry for -E E -Bz), the control -q(()  guar- 
antees the same output bound. Now for any ( E we 
take the control (18) and thus 

Lemma 1 For every e > 0 there ezists 6 > 0 and a 
static control 

ll~lloo = IlC[a<1 + P&l + Dlld 

that renders the set Since the set is invariant for the modified system 
(12), it is clearly invariant for the original system (10). 
However the positive invariance property alone is not 
sufficient to guarantee asymptotic stability of the re- 
sulting closed-loop system. In the following lemma we 
establish closed-loop asymptotic stability by showing 
that is a contractive set for the original closed-loop 
system (10). 

s = cav(fig) U -fig> 
positively invariant for the closed-loop system (f 2) and 
guarantees the following output bound: 

IlZllm = llcz + Dlld + D d z ,  5)IloJ L P + €1 (16) 

for all d such that [ ld(lm 5 1. 

Proof. First note that &) is an invariant set for 
the system (12). Given admissible sequences w ,  d and 
2, denote by +(t, 0, w ,  d, 2) the corresponding trajec- 
tory originating at  E = 0. BY construction, given any 
point (1 E RE) there exists a finite t > 0 and ad- 

(1 and 4(t -t l,OIw?p,Gi> E Rg) for all w ( t )  E W ,  
Ild(t)llm 5 1 and Ild(t)ll, _< 6. It follows that the 

Lemma 2 The static function v(() defined in (15) is 
such that there ezists X < 1 such that for every ( E 3, 

P ( t ,  rl(t), w ,  d )  E As (20) 

for all w E W and lldllm L 1. 

Proof. Define the &ball a s  L36 = {( : l l ( l l m  5 6) and missible sequences w 1  d ,  d, such that # [ t ~  o, w ,  d ,  2) = define the set (see [17] [3] [5]) 

s' = {< : ( + d' E 3, for all 2 E ~ 6 ) .  
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Since t ? ~  has full rank, 3' is in the interior of 3. Since 
3' and s are both convex and compact sets and since s 
contains the origin in its interior, it follows that there 
exists a positive A < 1 such that 3 c As. Consider 
first the perturbed system (12). The control 7/10 guar- 
antees that, for all w E W ,  lldllm < 1 and lldllm 5 6, 
(' = F'( ( ,q ( ( ) ,w ,d )  + d E B. Hence, we have that for 
the original system ( lo) ,  F ' ( f , q ( ( ) , w , d )  E 3 C A s .  
This means that 3 is A-contractive for system (10). 0 

Define now the projection p of 3 as: 

P = { z :  3 5 : ( =  [ zT 5T ]'E 3). (21) 

Clearly the set f' can be rendered contractive for the 
original system (5) by any selection 3 in the set-valued 
map V (  z) defined as: 

@(z) E V(z) = 

{v (z ,  a), for some 5 s.t. [ x~ ST I' E B l ( 2 2 )  

Since the control (15) guarantees that, for all ( E s, e' = p ( ( ,  Q((), w ,  d )  E As, for all w E W and Ildll.. 5 1 
and since the projection of As is A@, it follows from (9) 
that for all w E W and lldlloo 5 1 

2' = A(w)z + B~(w)~(z) + Bid E AP. (23) 

Now note that since condition (16) does not depend 
explicitly on S1, it holds for all z E P .  Thus @(z) is 
such that the output bound (16) is satisfied, for all d 
such that lldllm 5 1 

IIZIIoo = IICz + Dlld + Dla@(z)llm 5 p + E. (24) 

We can now summarize the results of this section in 
the following theorem. 

Theorem 1 A s s u m e  that  the system (5) with the dy- 
namic time-varying control (7) satisfies conditions (i)- 
(iii). Then ,  f o r  each E > 0 there ezists a stabilizing (in 
the sense that if d ( t )  = 0 then z ( t )  -+ 0 )  static nonlin- 
ear controlu = @(x) such that the resulting closed-loop 
I* t o  1" induced gain does no t  ezceed p + E .  

Proof. We have already established the existence of 
a static control law u = @(z) rendering the compact 
set @ contractive. Since I? contains the origin in its 
interior, it follows that for any trajectory such that 
z(0) = 0, the control law U = @(z) guarantees that 
z ( t )  E @, for all w ( t )  E W and lldlli- 5 1. Since the 
output bound (16) is satisfied for every z E j, it follows 
that the I" to I" induced norm does not exceed p + e .  
The fact that the control 3(z) asymptotically stabilizes 
the system can be established proceeding as in [5], by 
exploiting the fact that since the 0-symmetric set P 
contains the origin as an interior point, it induces a 
norm that is a Lyapunov function for the system. 0 

'In the sense that it enters the expression only through U 

To derive a Lipschitz control, we consider the follow- 
ing constructive procedure, originally introduced in 
[15]. Assume that a contractive polytope p' contain- 
ing the origin in its interior is known. For each ver- 
tex 2: of the polytope there exists a control vector 
U such that A(w)z + Ba(w)u + Bld E XP' for all 
lldllm 5 1. Partition now the state space into the 
conic sectors generated by the positive combinations 
S = {z = Cy.l a k z i b l  ai 2 0) of a n-tuple of vertices 
{z iL,  k = 1,. . . , n} belonging to the same facet of p'. 
These sectors can be selected such that U h  Sh ==. R" 
and Sh n Sk has empty interior if k # h. For a given 
sector sh, let xh and u h  denote the matrices having 
as columns the coordinates of the vertices of the sec- 
tor and the corresponding control action respectively, 
and consider the linear gain Kh = U h X t l .  Then the 
variable structure controller U = Kh(=)C renders the 
polytope p' invariant [15]. Moreover, this control law 
is globally Lipschitz in R" [6]. We use these results 
to show that for the full state feedback problem dis- 
continuous controllers do not offer any advantages over 
continuous, globally Lipschitz ones. 

Theorem 2 Under the assumptions of Theorem 1, 
given any E > 0 there ezists a n  internally stabiliz- 
ing globally Lipschitz controller such that  the resulting 
closed-loop system has an  I" t o  1" induced norm not  
ezceeding p + E .  

Proof. From Lemma 4.2 in [6] we have that the set 
$ can be always approximated by a contractive poly- 
hedron p' included in p ,  in the sense that for each 
0 < 6 < 1 there exists a contractive set such that 
(1 - 6)@ c 13' c p .  The proof follows now by con- 
sidering the variable structure controller u = U h X L 1 x  
associated with the vertices of? and proceeding as in 
Theorem 1 with the set $ replaced by p'. U 
Since 5' is contractive, this control guarantees global 
convergence of the state to p' (and if d ( t )  = 0 to the 
origin). 

3 Construct ion of a stat ic  controller 

We turn our attention now to the problem of synthe- 
sizing the control law. To this effect we introduce the 
additional assumption that the performance output is 
of the form 

(25) 
From a practical standpoint, by including the control 
output among the performance variables, we rule-out 
the possibility of the controller requiring an unrealis- 
tically large control effort. Moreover, we will assume 
that C1 has full column rank. Note that this assump- 
tion is not restrictive because if this is not the case, we 
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can always add fictitious output variables, with “small” 
weights (see [17]), in order to complete the rank of C1. 
Recall that achieving lw to I” induced gain not exceed- 
ing 1.1 is equivalent to keeping state and control inside 
the polyhedral set [8]: 

C*(P)= {z, ‘LL: IICz+Dlld+Dl2~llm i P, qldllw 5 1). 
(26) 

It can be shown (see [8] for details) that C * ( p )  is defined 
by the set of inequalities 

IlCia + Di2.2111, 5 1 - 11Dii,111 = &, i 1,. . . , p l  
(27) 

where C, and Dla, denote the i-th rows of C and Dl2. 
Due to the structure of the output (25), the set E* 
is the Cartesian product of two polyhedral convex sets 
containing the origin in their interior, C,(p) and Ca(p), 
each one obtained from the inequalities involving U and 
z respectively. Thus, given p and X < 1, the algorithm 
proposed in [5] can be used to generate SA,, (which can 
be possibly empty), the largest A-C,(p)-contractive 
set included in C,(p). Moreover, SA,, can be approx- 
imated arbitrarily close by a polyhedral set SI that can 
then be used to generate the control action, as outlined 
in the last section. Note that the algorithm in [5] re- 
quires the set x,(~) to be compact. This motivates the 
assumption on C1. It can be easily removed by modi- 
fying the procedure to handle the case where C,(p) is 
unbounded. 
Henceforth, denote by popt the smallest p guaranteeing 
the bound ( 2 ) .  From the previous section we have that 
there exists a contractive set 3 c C,(popt + E ) .  Note 
that the existence of such a set is clearly a necessary 
and sufficient condition for the algorithm in [5] to pro- 
duce a non-empty set. From the results of the previous 
section we have that: 

a) if p < popt the largest invariant (i.e. contractive 
with X = 1) set in C,(p) with U E E,(p) is empty; 

b) if p > popt there exists X < 1 such that the largest 
A-contractive set is not empty. Moreover, it can 
be shown that for all X I  2 A) the set is polyhedral. 

With this in mind, we can synthesize the control law by 
setting first X = 1 and constructing the largest invari- 
ant set and then augmenting or reducing p depending 
on whether or not this set is empty. This leads to up- 
per (p+)  and lower ( p - )  bounds of pcpt that can be 
arbitrarily refined. Then by a proper X < 1 sufficiently 
close to 1, we assure stability. 

4 Example 

In this section we illustrate the features of the pro- 
posed controller with a simple example. Consider the 
uncertain system having the following state-space re- 
alization: 

where the uncertain time varying parameter w satisfies 
Iw( 5 U. Note that in this example C1 does not have 
full column rank. Thus, as mentioned before, in order 
to apply the proposed synthesis procedure we need to 
add a small additional fictitious output. We selected as 
additional output 2 = r2, which does not affect 
the solution. 

~ 0.4 

P O P t  
6.000 
6.719 
7.789 
9.539 
12.53 
18.99 
94.78 

- 
- np 
8 
12 
12 
12 
8 
8 
8 - 

Table 1: Optimal I’ norm versus v 

Table 1 shows the optimal l1 norm for different val- 
ues of Y 5 Y,to( = 0.615, the maximal level for which 
the system can be stabilized, and np the number of 
planes characterizing the corresponding invariant re- 
gion. From this table we have that for v = 0.4, the 
optimal closed-loop 1, to loo gain is p = 12.53. For 
this value of p, the vertices of the invariant region 
P = ( x  : z = Xa, 11011 5 1) are given by the columns 
of the matrices X and -X, (ordered in such a way that 
u2i = -vai-1, i = 1.. .4), where 

4.1640 -6.5683 -6.6273 -6.1064 7*8135 1 -7.8135 -0.1476 0.0000 x =  [ 
Finally, Figure 1 shows the set SA,, with X = 0.999 
included in the set C,(12.53), and Table 2 shows the 
different gains that constitute the variable structure 
controller (note that by construction opposite sectors 
have associated the same gain) 

5 Conclusions 

In this paper we consider the problem of persistent dis- 
turbance rejection via full-state feedback. This prob- 
lem has attracted considerable attention since it was 

Table 2: The sector gains 
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Figure 1: The set S i a z  

shown in [12] that state-feedback optimal I1 controllers 
can be dynamic, with arbitrarily high order. Recent 
work [7, 17, 181 has shown that the performance level 
achieved by any finite-dimensional linear dynamic con- 
troller can be recovered by a nonlinear, static con- 
troller, in other words p ~ ~ s  < ~ L T I .  While it is known 
that for certain problems p ~ ~ s  = ~ L T I ,  this is not true 
in general for the state feedback case, as we have shown 
with a simple counterexample. 
In this paper we complete these results by showing that 
the performance level achieved by any non-linear dy- 
namic, possibly time varying full-state feedback con- 
troller can be also recovered via static state feedback. 
Moreover, within this class, the controller can be re- 
stricted to be piecewise linear. 
While these results were derived for the discrete-time 
case, they can be extended to the continuous-time case 
proceeding along the same lines but the proofs are con- 
siderably more involved. Alternatively, from a con- 
structive point of view, the properties of the Euler 
approximating system (EAS) [6, 7, 81 can be used to 
generate contractive sets for continuous-time systems, 
proceeding as in [6]. Thus, under appropriate assump 
tions, the results presented in this paper hold also in 
the continuous-time case. 
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