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Abstract 

In this paper we focus our attention on the determins- 
tion of upper bounds of the I" norm of the output of 
a linear discrete-time dynamic system driven by a step 
input, in the presence of both persistent unknown-but- 
I" bounded disturbances and memoryless time-varying 
model uncertainty. For the same type of systems we also 
analyze the transient behavior of the step response in 
terms of its overshoot. The problem is solved in a con- 
structive way by determining appropriate D-invariant sets 
contained in a given convex region. Finally, we show how 
to extend these results to continuous-time systems. 

1. Introduction 
In most practical situations the mathematical model 
of a dynamic system must include some uncertain- 
ties and disturbances due to unmodeled dynamics 
and/or time varying conditions. In this paper we in- 
vestigate the problem of robust performance (in the 
lo" sense) of dynamic systems subject to parametric 
time-varying uncertainties and in the presence of I"? 
bounded disturbances. The problem of interest is to 
determine a bound on the worst-case I" norm of the 
output due to a step input, and with zero initial con- 
ditions. We are also interested in checking, similarly 
to what happens when no uncertainties are present, 
if the system presents an overshoot with respect to 
its steady state output value. 
In [5] robust performance conditions with respect 
to unknown but bounded disturbances are provided. 
However, in many real problems, some design speci- 
fications are given in terms of the output to a given, 
fixed test signal (such as a step). In principle this 
problem can be addressed using the techniques pro- 
posed in [5]. However, this approach will yield a con- 
servative bound, since these results provide the worst 
case I m  bound of the output over the set of all possi- 

'Dipartimento di Matematica e Informatics, Universitlr 
degli Studi di Udine, Via delle Scienee 208,33100 Udine - Italy, 
Email: blanchiniQuniud.it 

'Dipartimento di Elettronica e Informatics, Universitlr degli 
Studi di Padova, Via Gradenigo 618, 35131 Padova - Italy, 
Email: mianiQuniud.it 

3Department of Electrical Engineering, The Pennsylvania 
State University, University Park, PA 16802, Email: m s 5  
naierQfrodo.ee.psu.edu. Supported in part by NSF grant ECS- 
9211169. 

ble I" bounded inputs. 
The problem of robust performance under structured 
operator (dynamical) uncertainty blocks has been ad- 
dressed in ill], where necessary and sufficient condi- 
tions for robust steady state tracking have been pro- 
vided and in [9], where lower and upper bounds for 
the maximum overshoot are given. 
In this paper we provide a nonconservative bound 
for the w e  where the input signal is known. This 
bound is obtained using a method based upon the 
construction of a suitable polyhedral region. Using 
the same construction we also provide necessary and 
sufficient for the existence of overshoot and a way to 
compute both the steady state output value and the 
overshoot, when present. 

2. Preliminaries 
2.1. Notation 
Given a closed, convex set S we denote its interior 
as int(S}. A polyhedral set S will be represented 
by a set of linear inequalities S = {x : Fix 5 
g;, i = 1.. . ., s}, as well as by its dual representa- 
tion S = {cmv(a,)} in terms of its vertex set {xi}, 
which will be denoted by wert{S}. In the sequel we 
will use matrix compact notation to describe com- 
ponentwise assignments as well as componentwise in- 
equalities. Thus, in this notation a polyhedral set is 
expressed by the matrix inequality S = (x : Fx 5 g} 
where F is a s x n full column rank matrix and g 
represents an s-column vector. Finally d(a, S )  will 
denote the distance between a point x and a set S, 
computed as d ( z ,  S) = infVEs 112 - yII. 

2.2. Problem statement 
Consider the uncertain n-dimensional discrete time 
system with m command inputs ~ ( k ) ,  q disturbance 
inputs d(k) and p outputs: 

x(k + 1) = A(w(k) ) z (k )  + Bu(k) + Ed(&) 

where w(k) is an uncertain time-varying parameter, 
A(w) is a matrix polytope of the form 

Y(k) = CX(k> (1) 

A(w) = c:=1 AiW(k), 
w(k) E w = (w : w; 2 0, w; = l}, 

(2) 
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where Ai, E ,  E are given real matrices of appropriate 
dimensions and where the disturbance d(k) belongs 
to the 1” unity ball, i.e.: lId(k)llloo 5 1. 
For these systems we are interested in determining 
a non conservative bound of the output of the sys- 
tem step response, i.e. the problem we address is the 
following: 

Problem 1 Given the system ( I )  with zero initial 
state, and a step input of the form u(k) = U, k 2 0, 
find: 

(3) 
pint = { inf p : IIy(k>lli- 5 p for 

w(k)  E W , d ( k ) ,  Ildllt- I 1) 
In order to simplify the exposition we make the fol- 
lowing assumption. 

Assumption 1 There exists a matrix A0 belonging 
t o  the matrix poly tope  such that the triplets (Ao, B, C )  
and (Ao, E, C )  are reachable and observable. 

Under assumption 1 it easily shown that a necessary 
and sufficient condition for Problem 1 to have a fi- 
nite solution p < +oo is that the autonomous sys- 
tem r(k + 1) = A(w(k))r(k) is asymptotically sta- 
ble. Thus, in the sequel we will limit our attention to 
asymptotically stable systems. 

Definition 2.1 Consider the system r(k + 1) = 
A(w(k))r(k) + E*d*(k) ,  where d*(k) E D* a con- 
vez and compact set. A closed and convex set P as 
positively D* -invariant (D* -invariant for brevity) for 
this system if for every initial condition x ( 0 )  E P we 
have that x(k) E P for every k 2 0, for every admis- 
sible disturbance d(k) E D* and every sequence w(k )  
as in (2). 

Given a convex set C define I ( C )  as the class of all 
D*-invariant sets included in C. If SI and SZ are in 
I (C)  then the following properties hold 

i) 
ii) 
This means that the class of I (C)  together with the 
operations of intersection and convex hull is a lat- 
tice. Hence it admits a supremum and an infimum, 
that is there exist a maximal and a minimal D*- 
invariant set in I (C) .  Therefore given a convex set 
C the “largest” and “smallest” D*-invariant sets (i.e. 
the D*-invariant set which contains any D*-invariant 
subset of C and respectively the one which is included 
in any D*-invariant subset of C) are both well de- 
fined. 

their intersection S1 n S, is in I (C);  
their convex hull conv(S1 U Sa} is in I (C) .  

3. Main Results 

3.1. Limit set 
Let us now introduce an “extended disturbances” sys- 
tem which treats the command inputs of system (1) 

as disturbances: 

r(k + 1) = A(w(k) ) z (k )  + E*d*(k) 
Y(k) = C x ( k )  (4) 

where E* = [B E], d*(k) = [uT(k) 6r (k ) lT  and the 
extended disturbance d* (k) is constrained to belong 
to the polyhedral set 

D* = ( [ u T ( k )  dT(k)]T : u ( k )  = U, Ild(k)lllm 5 1). 

Definition 3.1 Given a dynamic system as in (4), 
the limit set C is defined as the set of all the states 
x for which there exist some sequences w ,  d* and t k  
such that 

where limk-r+m t k  = +oo and + ( O ,  t k ,  TU(.), d*(.)) de- 
notes the trajectory of system (4) originating at ro = 
0 and corresponding to w and d*. 

Lemma 3.1 If system (1) is asymptotically stable 
then the state evolution of system (4), for every posst  
ble disturbance d*(k) E D* and every sequence w ( k ) ,  
converges to the limit set C which is compact and is 
the minimal D*-invariant set for system (4).  

Define now the set: 

XO(c1) = (. : IlCrlloo 5 PI. (5) 

A value p < +oo is admissible if p > pint. Clearly a 
necessary condition for p to be admissible is that the 
set C is contained in the region X o ( p ) .  This condition 
is not sufficient because even if C c Xo(p)  there may 
be trajectories starting from the origin that leave the 
region &(p) and ultimately enter in it to reach C. 
Thus the knowledge of C does not give enough infor- 
mation to assess the complete system behavior. So, 
in principle, to compute the maximum overshoot, one 
should reconstruct all the possible trajectories origi- 
nating from the origin. This could be done by propa, 
gating forward in time the effect of the uncertainties 
as shown in [l]. Denote by Rk the set of all states that 
can be reached in k steps from the origin for all ad- 
missible w and d. As noticed in [I] the propagation 
of the uncertainties effect forward in time produces 
non-convex reachability sets Rk. However, it can be 
shown with the same technique used in [l] that, de- 
noting by kk the convex hull of Rk, the sequence of 
convex sets kk can be generated recursively. It can be 
shown that f i k  “converges” to 2, the convex hull of C. 
It is immediate to verify that the system has a per- 
formance less or equal to p if and only if & C Xo(p) ,  
for all k > 0. However, proceeding in this way might 
be not realistic because of the computational effort 
necessary to compute f i k  and because there is no a 
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reasonable stopping criterion for the procedure (i.e. 
how many i i k  to compute). 
We will solve this problem proceeding in a different 
way, leading to a condition related to a single convex 
set. We state now the basic result of this section 
which will be used to give a solution to Problem 1. 

Lemma 3.2 Given p > 0 ,  the response of the sys- 
tem (1) t o  the input  u(k) = U satw$es Ilylll- 5 p 
for every pair of sequences w(k) ,  d*(k) E D* i f  and 
only i f  the maximal D*-invariant set f o r  system (4) 
contained in Xo(p)  contains the origin. 

3.2. Computation of the maximal D*-invariant 
set 
In this section we provide a procedure to compute the 
maximal D*-invariant set for system (4). 
Given a compact set S, we can define the preimage set 
C(S) of S as the set of all the states z which, under 
the mapping A(w)x  + E*d*, are mapped in S for all 
d* E D* and w as in (2). If the set S is polyhedral it 
can be represented as S = ( x  : F z  5 g}, hence C(S) 
can be expressed as 

C(S) = { 2 : F(A(w)z + E*d*) 5 g, 
for all d* E D* and w as in (2)) (6) 

As the set D* is itself polyhedral, the set C ( S )  is 
defined by the following inequalities [3] 

C(S) = {Z : FA;x 5 g - 6, i = 1 , * - 9  V I ,  

where the vector b has components 

By recursively defining the sets Ptk) ,  k = 0 , l . .  . as 
P(0) = xo(p), P(k) = C(p(k-1)) n p ( k - 1 1 ,  

we have that P(co) is the maximal D*-invariant set 
contained in X o ( p ) .  
We now introduce a theorem which guarantees that 
the maximal D*-invariant set contained in Xo(p)  can 
be expressed by a set of linear inequalities (i.e it is 
polyhedral) and thus can be finitely determined. 

Theorem 3.1 Suppose that  system (4) i s  asymptot- 
ically stable. Then,  i f  L is contained in the interior 
of X o ( p )  f o r  some p > 0 ,  the maximal D*-invariant 
set contained in Xo(p)  is  polyhedral. Moreover in this 
case there exists k* such that  P(m)  = Pk* and this k* 
can be selected as the smallest integer such that P ( k )  
satisfies the vertex condition 

A(w)z ,  + E*d,* E P ( k )  (7) 

for  every x j  E v e r t { P ( k ) }  and d; E vert{D*}. 

Proof. Let Piw) denote the largest invariant set con- 
tained in X o ( p )  for the system z( t t -1)  = A o z ( t ) + B U .  
Since Pi”) is compact [18] and since the maximal 
D*-invariant set contained in Xo(,u) is included in 
Pim), it follows that hence P(m)  will be equal to 
the maximal invariant set contained in any com- 
pact polyhedral set S containing PO(..) and con- 
tained in Xo(p) .  Now from the stability of (4) we 
have that the state trajectories converge exponen- 
tially to C c in t {Xo(p)} .  Thus, proceeding as in 
[5], it can be shown that there exists k’ such that 
P(6*+1) = P(k*)  = P(..). Finally, the proof of (7) 
can be found in [2]. 0 

To solve Problem 1 we determine the maximal D*- 
invariant set contained in X o ( p )  defined as in (5) 
for several values of p and we check if this set contains 
the origin. Then 

If finf < p we get a positive answer 
a If finf > p we get a negative answer. 

Note that in both cases we get an answer in a f inite 
number of steps. In the first case this is due to The- 
orem 3.1. In the second case, this follows by the fact 
that the sequence of closed sets P ( k )  is ordered by in- 
clusion and P(..) is their intersection. Thus 0 @ P(m) 
S a n d  only if 0 P(&)  for some k .  A further nega- 
tive answer can be derived by the following theorem. 
This negative criterion will become fundamental for 
the overshoot problem in the next section. 

Theorem 3.2 I f t h e  set P (k )  i s  contained in the in- 
terior of Xo(p)  f o r  some k, t hen  the system (4) does 
not  admit a D* -invariant set contained in Xo(p) .  

Proof. Suppose there exists k such that P ( k )  is con- 
tained in the interior of Xo(p)  and system (4) admits 
an invariant region, hence a maximal one P(m) ,  con- 
tained in i n t { X o ( p ) } .  Define the quantity U as 

For every initial condition z o  @ P(O0) there exist se- 
quences fii and 3 such that the corresponding trajec- 
tory satisfies 

SUP IIC4k)llM = P > P 
6-m 

and hence there exists L such that z(&) doesn’t belong 
to X&). If we compute the system evolution start- 
ing from zo and yo E P(m), for the same sequences fii 
and 3, we have that the updating equation for the 
difference e ( k )  = x ( k )  - y(k) is described by 

e(k + 1) = A(fii(k))e(k) (8) 
lThis set can be obtained by starting from the initial set 

X,(p)  and proceeding backwards to compute the sequence of 
sets P(’) until some appropriate stopping criteria are met. 
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Now .(a) Xo(p)  means that lle(h)llm 2 Y ,  but 
the relation (8) is linear and the system is stable and 
hence, for every b > 0 there exists E > 0 such that, 
for every ao $2 P("), with - yolla0 < E, we have 
IIa(%) - Y(a))IIm I 6. 0 
These results allows us to derive the following con- 
structive procedure to find a robust performance 
bound: 

Procedure 3.1 The  problem data are the system 
matrices, the input amplitudes U ,  the disturbance set 
D and a test  output bound p 

0 Set  k = 0 and set P(O) = X o ( p )  = {z : F(O)z 5 

1 Consider the set  Q ( k )  = {z : F(k)Aiz 5 g ( k )  - 
i = 1, .  . . , r} ,  where the vector 6 ( k )  has 

g(O)}. 

b ( & ) ,  
components 6 ( k )  = m q E p  F(k))E*d. 

2 Compute the set P@+l )  = 
3 If 0 $2 P(k+l)  or P ( k + l )  c i n t { X o ( p ) }  then  

stop, the procedure has failed. Thus  the output 
does not  robustly meet  the performance level p .  

4 If P ( k + l )  satisfies the vertices condition (7) stop 
(this implies P ( k + l )  = P" the  mazimal  D*- 
invariant set). 

n P ( k ) .  

5 Set  k = k + 1 and go t o  step 1. 

This procedure can then be used together with a bi- 
section method on p to approximate arbitrarily close 
the optimal value bnf, that solves Problem 1. In 
fact if the procedure stops at  step 3 we conclude that 
p < pjnf and we can increase the value of the output 
bound p .  Else, if the procedure stops at  step 4, we 
have determined an admissible bound for the output, 
say p > pint, that can be decreased. The procedure 
may fail to converge for the value p = bnf. How- 
ever, it can be shown that for any value of p # 
the procedure terminates in a finite number of steps. 
Nevertheless, to avoid the possibility of an endless 
loop we might put a bound on the maximum admis- 
sible number of iterations. 

3.3. The overshoot and steady-state problem 
We have seen that an arbitrarily good approxima- 
tions of the I" norm of the output of system (l), 
when driven by a step input of the form u(k) = U, 
can be derived by checking the existence of a maximal 
invariant set contained in a proper region for system 
(4). The I" norm of the output clearly gives no ma- 
jor information on the system performance during its 
transient. Unfortunately, in most practical cases we 

cannot just judge the whole system behavior through 
its lm output norm, as this bound might prove too 
conservative. For example for a certain system we 
might accept a certain output value, provided we are 
sure it can be reached only for a limited amount of 

time. A better characterization of the transient be- 
havior of the system, similarly to what happens when 
there are no uncertainties, can be obtained by check- 
ing for the presence of overshoot and, in this case, 
by determining its value. Since we are dealing with 
uncertain systems subject to exogenous disturbances, 
the definition of steady state output value of the step 
response, with respect to which the overshoot is nor- 
mally evaluated, must first be introduced. 

Definition 3.2 Consider system (1) driven by a n  in- 
put  step o f the  f o r m  u(k) = U. TRe steady state value 
of the system evolution i s  defined as: 

(9) 

The definition of overshoot for the systems under con- 
sideration in this paper is then the following. 

Definition 3.3 Sys t em (1) has overshoot i f  there ez- 
is t  sequences w and d such that llzllm > p a s .  In this  
case the positive number par A pint - p a s  i s  called the 
overshoot value. If pas = 0 we say that the system has 
n o  overshoot. 

Note that the overshoot case is referred to the worst 
case: that is there is overshoot for some sequence 
and not necessarily for all. With these definitions we 
are now able to introduce the steady state and the 
overshoot/no-overshoot determination problem. 

Problem 2 Given a n  uncertain system subject t o  ez- 
ogenous disturbances as in (1), check i f  the system has 
overshoot and in that case determine par.  

The solution of Problem 2 is given by the next theo- 
rems and the following corollary. 

Theorem 3.3 Sys t em (1), has a steady state value 
p a s  5 p if and only the largest D*-invariant region 
contained in Xo(p)  f o r  system (4) i s  no t  empty.  

Proof. If the maximal invariant set is not empty, L is 
not empty. Since from Lemma 3.1 all the trajectories 
converge to L, sufficiency follows. For the necessity 
note that, by definition, the limit set L is such that for 
any % E L, any large t > 0 and any small E > 0, there 
exist UI and d* such that Ilc(t) - 5 E.  Suppose 
that the largest invariant set in Xo(p)  is empty, then 
necessarily L is not included in X o ( p ) .  Thus take 
% E C such that z e Xo(p). Since X o ( p )  is a closed 
set then there exist admissible sequences w and d* 
such that the corresponding solution ~ ( t ) ,  starting 
from the origin, is outside Xo(p) for arbitrary large t 
thus, p6a > p -  0 

Theorem 3.4 Sys t em (l), driven by a n  input of the 
form u(k) = U has no overshoot i f  and only i f  f o r  
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every p 2 pas (i.e. such that system (4) admits a 
D*-invariant region contained in Xo(p)), the maz-  
imal invariant set contained in X o ( p )  contains the 
origin. 

Proof. Suppose there exists p such that system (4) 
admits a maximal invariant region P, which is con- 
tained in X o ( p )  and doesn't contain the origin. This 
means that the zero initial state evolution is such that 
llzllm = f i  > p for some sequence w and d* (because 
otherwise 0 E P). The proof of the necessity hence 
follows easily by noting that p must be equal to or 
greater than llzllssl i.e. the system has overshoot. 
The sufficiency is obvious. 0 

Corollary 3.1 Sys t em (1) has overshoot i f  and only 
i f  there ezists a value p such that the mazimal D*- 
invariant set contained in Xo(p)  for  system (4) is not 
empty and does not  contain the origin. In this cwe,  
the overshoot value pOs i s  the diflerence between the 
infimum of the values of p for  which the mazimd 
invariant region in Xo(p) contains the origin and the 
infimum value of p for which the system admits a 
nonempty invariant region in X o ( p ) .  

The results reported in this section can be used in 
conjunction with those reported in the previous sec- 
tion and the bisection method mentioned after proce- 
dure 3.1 to simultaneously furnish information on the 
1" output norm of the step response of the system, 
the presence of the overshoot and the determination 
of its value, if present. Note that we have three cases: 

the critical cases p = psa and p = Clint. In the first 
case we have that P(") is empty. This can checked 
in a finite number of steps because P(..) is the inter- 
section of the closed sets P(6) ,  ordered by inclusion. 
Thus P(m) is empty if and only if emptiness of P ( k )  
occurs for a finite k. In the second case the condition 
0 P ( k )  also occurs in a finite number of steps. More- 
over from theorem 3.1 it follows that P(..) = P ( k )  for 
some finite k .  From the same theorem it follows im- 
mediately that the third case can also be checked in 
a finite number of steps. 

Remark 3.1 A s  a final remark we notice that the 
use of invariant regions allows us t o  eztend these r e -  
sults t o  continuous-time systems &(t) = A ( w ( t ) ) a ( t ) +  
Bu(t) + E d ( t )  by introducing the Euler Approzimating 
Sys tem (EAS):  

z ( k + l )  = [I+rA(w)]a(k)+rBu(k)+rEd(k), T > 0. 

It can be shown that as r -+ 0 the mazimal  D*- 
invariant set for  this system converges to  the mazi- 
mal  D* -invariant set f o r  the continuous-time system. 
This  enables us t o  solve the continuous-time case by 
reducing it to  an  equivalent discrete-time problem for 

P < pss, pas < 1.1 < Clinf hnf < P, apart from 

(10) 

the EAS. Moreover, the values and pt:yt f o r  the 
continuous-time case are upper bounded by the values 
pEAs and pz$s computed for  the EAS. 

4. Example 

As an example consider the second order system 

a ( k + 1 )  = [ -"0:7 . 55+w(k )  Oa7 ] + [ ; ] 

when u(k) is the unity step, Ild(k)llp= 5 1 and 0 5 
w(k)  5 .8. 
Using procedure 3.1 we computed the maximal in- 
variant region contained in X o ( p )  for different values 
of p and we found that the lower value for which the 
maximal invariant region contains the origin is p L r  = 
10.86 (the tolerance used in the bisection method is 
6 = .01). Moreover for p = pGf = 10.85 there is 
L such that P(6)  is contained in i n t { X o ( p ) } ,  which, 
from theorem 3.4, means that the system does not 
present an overshoot even if both the systems obtain- 
able from A1 and A2 alone (i.e. obtained by the sys- 
tem above when there is no uncertainty and w(k)  = 0 
or w(k)  = .8 respectively), present an overshoot. In 
fact we found the values p:nf = 1.761, pt, = 1.637 
for the first system and = 7.402, p:8 = 6.831 for 
the second. Finally, Figure 1 shows the maximal in- 
variant region contained in X o ( p + )  for the extended 
system (4) and the maximal invariant regions for the 
two systems in the absence of uncertainty when the 
parameter p assumes the value /lis and p&, i = 1,2. 

5. Conclusions 

In most practical situations the mathematical model 
of a dynamic system must include some uncertainties 
and disturbances due to unmodeled dynamics and/or 
time varying conditions. This paper addresses the 
problem of robust performance (in the Zm sense) of 
dynamic systems subject to parametric time-varying 
uncertainties and in the presence of lm bounded dis- 
turbances. The problem of interest is to determine a 
bound on the worst-case I" norm of the output due 
to a step input, and with zero initial conditions. In 
principle, this problem can be recast into a standard 
1' robust performance analysis problem [lo] by mod- 
elling both the disturbance and command inputs as 
unknown elements in the 1.. unity ball and the model 
uncertainty as arbitrary LTV operators with bounded 
1" induced norm. However, this approach will, in 
general, introduce a great deal of conservatism, since 
these results provide the worst case I" bound of the 
output over the set of all possible I" bounded inputs 
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Figure 1: The maximal invariant regions contained in 
W P L )  

and all possible causal LTV operators. This situation 
can be partially alleviated by using recent results [9] 
on robust I” performance with mixed fixed inputs 
and unknown disturbances. However, at the present 
time these results have the form of a necessary and 
a sufficient conditions, separated by a non-zero gap. 
Moreover, they become very conservative for the case 
where the uncertainty is limited to memoryless time- 
varying gains. The main result of this paper provides 
a nonconservative robust performance bound for this 
case. This bound, obtained using a method based 
upon the construction of a suitable polyhedral region, 
can be computed in a finite number of steps. 
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