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Abstract 
In contrast with li, and 1-12 control theories, the problem of 

persistent disturbance rejection (1' optimal control) leads to dynamic 
controllers, even when the states of the plant are available for feed- 
back. Using viability theory, it has recently been shown, in a non- 
constructive way [li'], that in the state-feedback case, the same per- 
formance achieved by any dynamic linear time invariant controller 
can be achieved using memoryless non-linear state feedback. In this 
paper we give an alternative, constructive proof of these results for 
discrete and continuous time systems. The main result of the paper 
shows that in both cases, the I' norm achieved by any stabilizing 
state-feedback linear dynamic controller can be also achieved using 
a memoryless variable structure controller. 

1 Introduction 
A large number of control problems involve designing a 
controller capable of stabilizing a given linear time invari- 
ant system while minimizing the worst case response to 
some exogenous disturbances. This problem is relevant 
for instance for disturbance rejection, tracking and robust- 
ness to model uncertainty (see [19] and references therein). 
When the exogenous disturbances are modeled as bounded 
energy signals and performance is measured in terms of the 
energy of the output, this problem leads to the well known 
1-1, theory. On the other hand, if performance is mea- 
sured in terms of the peak value of the output, it leads to 
1-12 theory. Finally, the case where the signals involved are 
persistent bounded signals, with size measured in terms of 
the peak time-domain values, leads to the I' optimal con- 
trol theory, formulated by Vidyasagar [19, 201, and solved 
by Dahleh and Pearson both in the discrete and continu- 
ous time cases [7,8], by using duality to recast the problem 
into a linear-programming form. 

The I' theory is appealing because it directly incorpo- 
rates time-domain specifications. Moreover, it furnishes 
a complete solution to the robust performance problem. 
However, in contrast with 'H, and 1-12 control where it is 
well known that (sub)optimal controllers having the same 
order of the plant can be found and that a separation prin- 
ciple holds, I' optimal controllers c m  have arbitrarily high 
order. It has been shown through examples [lo] that, even 
in the state feedback case, where (sub)optimal1-1, and 1-12 

static controllers can be found, optimal linear 1' controllers 
can be dynamic and of arbitrarily high order. 

Restricting the compensator to be linear does not entail 
any loss of performance, since it has been recently shown 
[16] that, in terms of the I' cost, nonlinear compensators 
offer no advantage over linear feedback. However, recent 
work by Shamma [17] shows that non-linear feedback can 
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in [17] that the I' cost achieved by any dynamic linear full 
state feedback controller can be also achieved by using a 
memoryless non-linear state feedback. 

The present paper is motivated by these results, which 
although furnishing an important existence result, are non- 
constructive. Here we show that, given any dynamic full 
state feedback controller achieving an 1' cost P d ,  a memo- 
ryless variable structure controller can be found achieving 
the same cost, and we give an explicit expression for this 
controller, both for discrete and continuous time systems. 
Moreover, we establish some connections and give a per- 
spective on some earlier results on disturbance rejection 
using state feedback controllers. 

The problem of the rejection of persistent disturbances 
using state feedback has been considered as far back as 
1970, [2, 1, 121. These papers addressed the problem of 
finding a static state feedback control, possibly under con- 
trol input constraint, guaranteeing the permanence of the 
state in an given time-dependent set, under set-constrained 
disturbances. The problem was solved by finding a se- 
quence of sets (the reduced target tube) in which the state 
could be confined by means of an appropriate control ac- 
tion. This idea can be used to find optimal controllers, 
by computing the target tube for increasing values of the 
disturbance bounding set, until such a set is found to be 
empty. Unfortunately in general the target tube is not 
a polyhedron, even in the case in which the constraints 
sets are polyhedra (this is the main link with the 1' the- 
ory since the unit ball of the infinity norm is a polyhe- 
dron). Although the target sets could be approximated by 
using ellipsoids, this approximation is usually rather con- 
servative. Thus, the set of control actions that maintain 
the state confined to the ellipsoidal approximations could 
be empty, even though the problem is feasible. This the- 
ory was abandoned, probably in view of the computational 
complexity which was not apparently compatible with the 
computer technology of that time. Only recently, these re- 
sults where reconsidered and extended to periodic systems 
[18], in connection with distribution systems. 

The main result of this paper shows that a finitely de- 
termined polyhedral invariant set can be constructed based 
on the optimal linear I' controller. Projecting this set onto 
the state space we find a (polyhedral) set, which plays the 
role of the target tube. This set induces a piecewise linear 
controller (i.e. a controller which is linear in any simplicial 
sector of the set), which stabilizes the system and yields 
an I' cost which is E away from the optimal cost, where E 

can be made arbitrarily small. These results are extended 
to the continuous-time case, using the results in [6] .  

In Section 2 we 
introduce the notation to be used and we formally state 
the problem. In section 2.3 we show how to compute a 

The paper is organized as follows. 
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finitely determined positively invariant set N for the closed 
loop system obtained using the optimal linear 1’ controller. 
Section 3 contains the main result of the paper. Bounded 
disturbance rejection is achieved by confining the states 
of the plant to the set N. In turn, this can be achieved 
by using a piecewise linear controller. In section 4 we ex- 
tend these results to the continuous-time case. Section 5 
presents a simple example. Finally, in section 6 we present 
some concluding remarks. 

2 Preliminaries 

2.1 Notation and Definitions 
Given a matrix A, we denote by A; its i-th row. For z E R” 
we define IzI as the vector with components Iz;l. We de- 
note the l-norm as 11z111: ? Iz;I and the infinity norm 

as Ilzll,kmax; 1z;I. I’ denotes the space of absolutely 
summable sequences h = {h;} equipped with the norm 
Ilhlll= C lhjl < CO. I ,  denotes the space of bounded se- 

quences h = {hi} equipped with the norm llhllm 

03. We denote by l’, the space of bounded vector se- 
quences { h ( k )  E @}. In this space we define the norm 
llhll, A supIlh;(k)ll,. Assume now that H : 1% -+ l’, 
is a bounded linear operator defined by the usual convolu- 
tion relation y = H * U .  If we denote by H ( k )  the Markov 
parameters of H, its induced 1% --t I& norm is given by: 

i=O 

A m  
k=O 

sup [hi[ < 
k>O 

I 

n 00 

IIHIIi m y c  Ilhijll1 = m y c  llhi(k)lli 
j=1 k=o 

Assume now that the operator is proper rational and has a 
state-space realization (A, B, C, D).  Then ll(A, B ,  C, D)lll 
denotes IIHII1. 

Definition 1 Consider the discrete-time dynamic system 
z ( t  + 1) = f ( z ( t ) , d ( t ) )  where z ( t )  E R” and where d is an 
element of the unit ball of I , .  A convez, compact set P 
containing the origin is said to be A-contractive for this 
system i f  for  all x E P we have f ( z , d )  E AP, 0 5 X 5 1 
for all ( Id( ( ,  5 1. In  the special case X = 1, then P is said 
to be positively invariant. 

2.2 Statement of the Problem 
Consider the linear time-invariant plant: 

where z ( t )  E R”, u ( t )  E Rg, d(t)  E R”’ and z ( t )  E @ 
represent the state of the system, the control input, the 
exogenous disturbances and the controlled outputs respec- 
tively. As usual, the symbol D represents the operator 
Zl{r(t)} =.{z(t  + 1)). Given an internally stabilizing lin- 
ear dynamic state feedback controller with state-space re- 
alization: 

(2) 
DW(t) = AKW(t) + B@(t)  

u ( t )  = CKW(t) + DKz( t )  

the corresponding closed-loop system is given by: 

(3) 

where A c  is a stable matrix. Assume that the controller is 
such that the closed loop I ,  to I, induced norm is equal 
to p, i.e: 

(5) 

Then, the problem that we address in this paper is the 
following: 

P rob lem 1 Given e > 0, find an intenally stabilizing 
static feedback control u ( t )  = @ ( z ( t ) )  such that t h e  I ,  to 
I ,  induced norm of the closed loop system does not exceed 
1 + r. 

In the sequel we will show constructively that this problem 
admits a piecewise linear solution. In order to establish 
this result we will first introduce some preliminary results, 
giving a geometrical interpretation of (5). 

2.3 Preliminary Results 
Proposit ion 1 Consider the set: 

~ ( p )  = { I :  IccIl 5 pi - 6 1 ,  (6) 
where I = [ 1 1 ... 1 IT E @ and 6 E P is the vec- 
tor whose i-th component is given by 6; I I D C ~ ~ I ~ .  Then 
equation (5) holds i j  and only if the origin-reachable state 
set R, of the system with (ldll, 5 1 is included in the set 
= ( P I .  

Proof. First notice that (5) holds iff &, is included in the 

it is easily shown that this set coincides with the set 3,~). 
set [17] {I: ICC~ + Dcdl I = i, V d : ~ ~ d ~ ~ ,  L l}. But 

U 

R e m a r k  1 The number p is the smallest positive having 
the property that %, 5 Z(p) .  

Proposit ion 2 Let E be any mat+ (possibly a zero ma- 

tpi.) such that the pair ( ,Ac) is observable. Then 
the set R, is included in El the set 

N = {I :  IEII I v,ICCtI I pi - 6 )  

where v = II(Ac,Bc,E,O)(11. 

Proof. Since the system (3) is asymptotically stable, R, 
is a bounded set. The statement follows immediately from 
Proposition 1 by including the components of 2‘ = E( 
among the controlled outputs. 

0 
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The set N introduced in Proposition 2 is a convex and 
compact polyhedral set. It can be represented in the form: 

N = (t:l@tl 5 r} (7 )  

Remark 2 The set N will be used to guarantee asymptotic 
stability and disturbance rejection i n  cases where the pair 
(Ac,  C C )  is not completely observable. If (Ac ,  CC) is an 
observable pair, then E can be taken to be zero. In  this 
case it sufices to consider @ = CC and r = pi - 6.  

The set N defined above has the property of includ- 
ing the origin-reachable set Rm of the closed-loop system. 
The set R ,  is of course an invariant set for the closed- 
loop system. In fact it is the minimal invariant set since 
any invariant set must include it. The existence result of 
[17] is established by showing that there exist a memoryless 
state-feedback controller that renders this set viable. How- 
ever, the set R, is difficult to  compute. In this paper we 
will pursue a different approach that furnishes a construc- 
tive proof of the result in [17] and an explicit expression 
for the non-linear controller. This approach requires the 
following steps: i) finding the maximally invariant (in the 
sense of containing any other invariant sets) included in 
N ,  ii) obtaining a A-contractive polyhedron by perturb- 
ing N ;  iii) projecting this polyhedron into the plant-state 
space. This yields a viable polyhedron and an associated 
piecewise-linear asymptotically stabilizing control law. 

Proposition 3-For each E > 0 there exists A : 0 5 A < 1 
and an integer k such that the set 

(8) k-1 

,=O 
- C A ( J ) ,  k = 0 , 1 ,  . . . ,  k} 

where A(j) is the vector whose i - t h  component is 
l l [ @ ( + ) J ~ ] , l l ~ ,  is a A-contractive, convez, compact poly- 
hedron containing the origin in its interior and such that: 

(9) 

Proof. The set S(e,A) is contractive for the system 
(Ac, Bc) if and only if it is an invariant set for the system 
(%, F). First, we show that the set S(E,A, CO), if it is 
not empty, is invariant for (%, F). Equivalently, we must 
show that for any ( E S(E, A ,  m): 

By substituting p in the k-th inequality defining the set 
S(t, A, m) in (8) we have: 

This condition holds since it is strictly equivalent to the 
(k+1)-th inequality for ( and ( E S(e,A,w). Next we 
show that S(e, A, M) is the maximal invariant set con- 
tained in N ( r ) .  To this effect, assume that there exists 

a set >, S(e, A, M) c S C N ( E ) .  Consider a point ( E 4, 
i S(e,A,,). Hence i violates the inequalities (8) for 
some k .  Using-the same argument as before we have that 
( ( t  + 1) = q[(t) + F d ( t )  violates the (k-1)-th for some 
d ( t )  : Ild(t)ll 5 1. Proceeding by induction we have that 
[(i + IC) violates the constraint 0 and therefore is not in 
N ( e )  against the assumption that S C N ( E ,  A,  CO). There- 
fore S(e, A)  is the maximal invariant set contained in N ( e )  
for ( y ,  F), or equivalently, the maximal A-contractive 
set for ( A c ,  Bc). From Proposition 2, R, is included in 
N .  Then, for any positive E ,  we can chose A smaller but 
sufficiently close to  1, such that every eigenvalue of A,  has 
modulus strictly less that X and such that the reachabil- 
ity set &(A)  of the system (%,?) is included in N ( E ) .  
This implies that the set S(E,X) is not empty. Moreover, 
by construction, ( A c , ~ )  is observable and therefore the 
set S(E, A) is compact. From proposition 1, we have that 
R, E S(e, A, ,) c N ( E )  is equivalent to having each com- 
ponent of the output strictly bounded by I?; + e, i.e: 

Hence the vector I?, = T(+ei - A(') has positive com- 
ponents and so S(E, A) contains the origin in its interior. 
Moreover, since the the right hand side of the inequalities 
in (8) is bounded below by I?, and the matrix (2) is 
Hurwita, it follows from the compactness of S(E, A, ,) that 
there exists 6 such that for k > k the inequalities in (E) 
become redundant. 

0 

Remark 3 It can be shown, (see [3] for  detaikr) that t h e  
number b i n  the proposition above can be chosen as the  
minimum integer having the property that the set in (8) 
does not change i f  k is increased. Thus, computing t h k  set 
can be reduced to a linear programming problem. Moreover, 
we show in the sequel that in the case of the optimal I' 
controller, k is bounded by n,, the dimension of the closed- 
loop system. 

Propositicn 4 Assume that Ac has only zero eagenval- 
ues. Then k = n, where nc is the dimension of Ac. 

Proof. Follows immediately from the fact that Ac is a 
nilpotent matrix. 0 

3 Main results 
In this section we use the results of proposition 3 to  obtain 
a memoryless state feedback controller. This result will 
be established by finding an appropriate viable set P_and 
the corresponding control action. Since the set S(e, A, k) is 
contractive, for each of its vertices (, we have that: 

&ti + Bcd E AS(€, A, K), V lldllm I 1, (10) 
Denote by P the projection operator defined as PI = x and 
consider the set P = P[S(e,  A ,  k)] .  P is a convex, compact 
polytope, containing the origin in its interior, with vertices 
given by by z, = P(j, for some (j E uert{S(e ,  A, k)}. In the 
sequel we show that there exists a static feedback controller 
rendering the set P A-contractive, and such that the I ,  to  
I ,  induced norm of the closed-loop system is less or equal 
1 + e. To construct this controller we start by finding an 
appropriate control vector for each vertex of P. 
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Proposit ion 5 For each vertex x,  of P the control vector 

U ,  = DkX, + CKWr = [DK C K ] f ,  (11) 
is such that 

Az,+Eld+Bzu, E AP, for all d: lldllm 5 l(12) 
and 

llzlIm = /ICs, + D11d + DlZU,/lm 5 ( p  + E) (13) 
Proof. First note that the projection of AS(€, A, A)  is given 
by AP, so from (10) we have: 

P(A& + &d) E AP, V lldllm I 1 

Equation (12) follows immediately from ( 3 )  and (11). By 
construction, (, E N ( E )  defined in (9). Since the inequal- 
ities defining the set E ( p  + E )  in (6) are a subset of those 
defining defining N ( E ) ,  it follows that (, E Z ( p  + E ) .  From 
proposition 1, we have that for all d : lldllm 5 1. 

z,(d) IICz,tDlld+D12~,1lm = IICct*+Dcdllm 5 ( P t e )  

0 

Now we are able to prove the main result of the pa- 
per. For each vertex x,  of P, equation (11) provides a 
control action that drives the state to the set AS(€, A,  A). 
Following an approach similar to that in [14, 41, we will 
exploit this property to synthesize a piecewise linear con- 
trol which makes P contractive for the closed-loop system, 
hence guaranteeing both asymptotic stability and satisfac- 
tion of (5). Consider the family of matrices X ( h )  defined 
by: 

X ( h )  = [ x t ' z t ) .  . . x k ) ] ,  x t )  E vert{P},j = 1,. . . ,n(14) 

obtained by selecting n different vertices of P, and the 
simplex 

(notice that the origin is a vertex of s h ) .  The vertices 
forming the matrices X ( h )  can be selected in such a way 
that sh has a non-empty interior, sh n & has empty in- 
terior if k # h ,  and & &  = P. Each point x € & is 
uniquely determined by the vector of coefficients aj given 
by: = [X(')]-'z ( X ( h )  is invertible since int{Sh} is 
non-empty). Finally, for each matrix X ( h )  consider the 
matrix U(h) formed by considering the controls U$ associ- 
ated to each vertex by means of Proposition 5 and define 
the following linear-variable structure control (141: 

U = 9(z) = K(%, with = U(h)[X(h)]-l (15) 

where h is such that z E s h .  It is easily seen that this 
control action renders the set P A-contractive. Moreover, 
it can be shown that the control function O(z) is Lipschitz 
on P [5]. By using these observations we can state now the 
main result of the paper: 

Theorem 1 Assume that the system (1) with the linear 
state feedback dynamic controller (2) is internally stable 
and satisfies the condition (5). Then for each E > 0 the 
static state nonlinear controller (1 5) is stabilizing and such 
that 

SUP 11z11.. I P + '  
IldllDD 51 

Proof. The fact that the control (15) is stabilizing if 0 I 
A < 1 in proved in [4]. We prove now that the dosed- 
loop induced norm is bounded above by p + e. Denote by 
z(t ,  0) the trajectory corresponding to the initial condition 
x ( t )  = 0. Since P is invariant, i t  follows that x(t,O) E P 
for all t .  Since P = U h S h ,  x(t,O) E s h  for some h,  hence 
z(t,O) = X ( h ) c ~ ( ~ ) .  The correspondin control action is 
given by: 21 = U(h)[X(hl ] - l z  = Uch)afh). From (13) we 
have that 

I IZ ( t ) l lm  = llCz + Diid + Di1uIIm = 
= (ICX(h)a(h) + Dlld + D1zU(h)a(h)ll, 
5 5 C Y F ) ~ ( C X ~ )  + Dlld + Dlzu$)Ilm (16) 

,=1 

L ( p +  e) for all lldllm L 1 
0 

Remark 4 We recall that i f  a n-dimensional polytope S 

has nf  faces, then it has no more that ( ) vertices. The 

projection P of t h e  polytope on a n'-dimensional subspace 

h a  no more than n; ( n:fn, ) faces and no more 

than ( $ ) vertices. However, these upper bounds are in 

general overly conservative. Tighter bounds exist for some 
classes of polytopes (see [I$] for details). Likewise, the 
number of simplicial sectors can be bounded by a function of 
the number of vertices and the number of k-faces. We omit 
this discussion here for brevity. However we emphasize the  
fact that although t h e  number of sectors is an exponential 
function of the problem data, consistent experience shows 
that the complexity of the controller tends to be reasonably 
low. For instance, for the  example given in  [17/1 the set S 
derived there coincides with the set P derived here. In this 
case, since t h e  set is afine to a diamond (i.e. to a set with 
2n vertices), Theorem 1 results in  a linear static controller 

R e m a r k  5 Alternatively, the control law can be computed 
on-line, by solving an optimization problem parametrized 
in 1: and having U as the  unknown, as suggested in [d]. 
This alternative is particularly eficient in cases where t h e  
control dimension is low. In particular, for single control 
input systems the problem reduces to finding an admissible 
point in  t h e  intersection of several intervals. 

U = Kz, wi thK = [ -2/3 01. 

4 The continuous-time case 
The result of last section can be easily extended to the 
continuous-time case as follows. Consider a system of the 
form (1) and the controller (2) where V represents now the 
derivative. We recall that, although in the continuous-time 
case, the optimal L1 solution is in general non rational [8], 
[6] and [15] provide procedures for synthesizing sub-optimal 
rational controllers, yielding f? cost arbitrarily close to the 
optimum. By using the results of [6], we will show that, 
given a rational controller yielding an L1 cost p then, there 
exists a non-linear static compensator of the form (15) such 
that the Lm to Lm induced norm of the closed-loop system 
is bounded by e + p, with E arbitrarily small. To establish 
this result, we make use of the Euler approximating system 
(EAS). The EAS of the closed loop system (3) is defined 
as: 
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where r is a positive parameter. We remark that applying 
the EAS of the compensator (2) to the EAS of (1) will 
result in the closed-loop system (17). 

Proposi t ion 6 Assume that the continuous-time closed- 
loop system (3)) where D is the derivative operator, is such 
that sup Iltllco, = /I. Then, for each E there ezists a 

positive r such that the I ,  to I ,  induced n o m  of (17) is 
bounded above b y  p + t .  
Proof. See [SI. 

In view of the theorem above, the following result is a 
straightforward application of the results of the previous 
section. 

T h e o r e m  2 Assume that the continuoustime closed-loop 
system (3), where 2, is the derivative operator, is such that 

sup IIzII-c, = p.  Then, ~ O T  each E there exists a static 
IIdllr,51 
state feedback of the form (15) such that the L, to L, 
induced n o m  of the closed-loop system i s  bounded above 
b y p + E .  

Proof. From Proposition (6), we can find a discrete-time 
system with I ,  to I ,  induced norm equal to p + f. Using 
the result of Section 3, we have that there exists a linear- 
variable structure controller that achieves a cost /I+€. Now 
we just have to apply this compensator to the continuous 
time system. Using the result of [5], we have that a) this 
control (which is Lipshite) is stabilizing; and b) the set P 
derived for the discrete-time system is also an invariant set 
for the continuous-time system. So, applying exactly the 
same argument of the proof of Theorem 1, we conclude 
that ))zJJ, < p + €,for all d : Ildll, 5 1. 

Ildllr,<l 

0 

-0.5819 0.7802 
-0.7629 -0.5946 

Remark 6 In [21] we furnished a procedure to find a value 
of the parameter r such that the resulting rational con- 
troller will yield an I' cost < p + e .  The present procedure 
can be combined with this technique to find the value of r. 

-4.2265 -3.2299 0.7954 
2.2154 -2.4388 0.3995 

With this compensator, the I' cost is 4.2059. Set- 
ting A = 0.99 we have that the cost of the modified sys- 
tem ( A c / X , B c / X , C c , D c )  is equal to 4.3434. The pair 
( A c ,  Cc) is observable, so in this case there is no need to 
consider a matrix E .  Since the closed-loop system has all 
its poles at zero, A; = 0 and only ten delimiting planes 
are necessary to define the set S(X, E ,  5) = {a[ < I'} where 
ip is the observability matrix of the closed loop system and 
r = [ 4.3434 3.3333 1.9830 1.9829 1.9829 I T .  Pro- 
jecting this set into the plant state space we derive the 
origin-symmetric set P ,  whose vertices are 

211 = [ -3.186 -4.557 -6.274 1 = -VZ 

213 = [ -1.163 -3.218 -1.269 ] = -7~4 

Vg = [ 1.163 3.218 5.612 ] = -06 

~7 = [ 1.243 -1.173 0.084 ] = -v.g 
~g = [ 3.186 4.557 1.931 ] = -vi0 

~ 1 1  = [ 1.243 1.173 4.259 ] = - V I Z  

~ 1 3  = [ 3.186 -1.257 -2.149 ] = -vi4 

vi5 = [ 3.186 1.257 -2.194 ] = -vi6 

These vertices form 28 symmetric simplicial sectors each 
one characterized by a triple of vertices. In each of these 
sectors, we apply a linear gain. The sectors and their as- 
sociated gains are shown in Table 1. 

G A I N  K1 KZ K3 SECTORS 
a -1.092 22.85 -4.600 [ 1, 3, 61 - [ 2, 4, 51 
b -1.092 22.85 -4.600 [ 1, 3,101 - [ 2, 4, 91 

d -2.025 23.50 -4.600 [ 1,10,13] - [ 2, 9,141 

f -1.458 22.98 -4.600 [ 3, 7,121 - [ 4, 8,111 
9 -1.563 22.89 -4.279 [ 3, 7,161 - [ 4, 8,151 
h -1.156 22.58 -3.865 [ 3,10,16] - [ 4, 9,151 
i -1.885 23.69 -4.921 [ 5,11,14] - [ 6,12,13] 
j -1.713 22.71 -4.600 [ 7,11,14] - [ 8,12,13] 
k -1.713 22.71 -4.600 [ 7,11,16] - [ 8,12,15] 
1 -1.713 22.71 -4.600 [ 7,12,15] - [ 8,11,16] 
m -1.713 22.71 -4.600 [ 7,14,15] - [ 8,13,16] 
n -2.025 23.50 -4.600 [10,13,16] - [ 9,14,15] 

C -1.891 24.42 -5.335 [ 1, 6,131 - [ 2, 5,141 

e -1.458 22.98 -4.600 [ 3, 6,121 - [ 4, 5,111 

Table 1. The 14 Simplicial Sectors and their 
Corresponding Gains 

Notice that due to the symmetry of the sectors, in prin- 
ciple only half as many different gains as the number of 
sectors are required. The resulting controller guarantees 
an I ,  to 1 ,  induced norm of 4.3434 for zero initial condi- 
tions. Moreover, if the initial state is outside the set P, 
then the controller guarantees a speed convergence of the 
state to P (in the sense defined in [4]) equal to X = 0.99. 
The reader may observe that it turns out that several of 
the gains are equal even in sectors that are not symmet- 
ric. This is due to the special structure of P. There are 
examples where the gains are different in non-symmetric 
sectors. However, consistent experience shows that in gen- 
eral the gains tend to be very close to each other. This 
raises the interesting possibility of reducing the complex- 
ity of the controller by combining sectors, averaging their 
gains. For the example considered here, the single gain 
K = [ -1.607 23.077 -4.61, obtained by averaging the 
gains over all sectors, internally stabilizes the plant and 
yields an I' cost of 4.7486, roughly 10% higher than the 
cost of the non-linear controller. 
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6 Conclusion 
In contrast to ‘&, and ?I2 optimal control theories, where 
the order of the optimal controller is bounded by the or- 
der of the plant, I’ optimal controllers can have arbitrarily 
high order, even when the states of the plant are available 
for feedback. It is well known that the use of non-linear 
feedback will not improve upon the performance of a LTI 
controller. However, recent results using concepts from Vi- 
ability theory [17] show that in the state feedback case, the 
same performance level can be achieved using memoyless 
non-linear feedback. 

In this paper we give an alternative, constructive proof 
of these results and we show that the same level of dia- 
turbance rejection achieved with a linear dynamic con- 
troller can be achieved using memoryless piecewise-linear 
(i.e. variable structure) controllers, both in the discrete 
and continuous time cases. 

We also establish some connections with earlier work on 
disturbance rejection. Note in passing that the results of 
section 2.3 extend the result of [ll] on constructing maxi- 
mally invariant sets to the case where the system is subject 
to persistent disturbances. 

The example of section 5 highlights an important fea- 
ture of the proposed controllers. Although the number of 
switching planes tends to be high, consistent numerical ex- 
perience shows that in most cases the gains change little 
between adjacent sectors. As pointed out there, this raises 
the interesting possibility of reducing the complexity of 
the controller by combining sectors averaging their gains, 
eventually leading to static linear controllers. Research is 
currently being pursued in this direction. 
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