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Abstract— This paper considers the worst–case estimation
problem in the presence of unknown but bounded noise.
Contrary to stochastic approaches, the goal here is to confine the
estimation error within a bounded set. Previous work dealing
with the problem has shown that the complexity of estimators
based upon the idea of constructing the state consistency set
(e.g. the set of all states consistent with the a-priori informa-
tion and experimental data) cannot be bounded a-priori, and
can, in principle, continuously increase with time. To avoid
this difficulty in this paper we propose a class of bounded
complexity filters, based upon the idea of confining r–length
error sequences (rather than states) to hyperrectangles. The
main result of the paper shows that this can be accomplished by
using Linear Time Invariant (LTI) filters of order no larger than
r. Further, synthesizing these filters reduces to a combination
of convex optimization and line search.

I. INTRODUCTION

Classical stochastic estimation methods are not well suited

for situations where it is of interest to obtain hard bounds on

estimation errors or where the only information available on

exogenous disturbances is a bound on a suitable norm (or, al-

ternatively, a set-membership characterization). These cases

can be handled by resorting to a deterministic, unknown-but-

bounded approach where the goal is to design an estimator

that minimizes, in a suitable sense, the worst case estimation

error due to exogenous inputs only known to belong to a

given set. Initial work in this area dates back to the early 70’s

[12], [3], where it was shown that in the case of ℓ2 bounded

exogenous disturbances, the set of states consistent with the

experimental observations is an ellipsoid whose center and

covariance matrix can be recursively obtained via a Kalman–

filter like estimator. Unfortunately, this is no longer the

case for point-wise in time (e.g. ℓ∞ like) constraints on the

disturbance. In this case, even constraining the disturbances

to belong to an ellipsoid at each point in time does not lead to

easily characterizable consistency sets for the states, although

these sets can be conservatively overbounded by an ellipsoid.

Worst case estimation in the presence of ℓ∞ bounded

disturbances was studied in [8], [10], [18] (see also the

survey [9]). The main result of these papers shows that

pointwise optimal estimators can be obtained as the product

of a subset of past measurements and a (time varying) gain.

Both the gain and the set of relevant measurements result
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from solving a linear programming optimization problem.

However, this optimization problem involves all past mea-

surements. Thus, the complexity of these estimators grows

with time. In the case of stable systems, given ǫ > 0, ǫ–

suboptimal approximations can be found by simply dropping

all measurements older than an a-priori pre–computable

horizon N(ǫ). Still, guaranteeing a small approximation error

requires large values of N (see [18] for details.) Moreover,

the filter is non–recursive, in the sense that current estimates

are obtained by solving an LP problem that involves all avail-

able information, rather than by propagating past estimates.

The use of nonlinear recursive filters was proposed in

[16], where the idea is to bound the set of possible states

consistent with the output observations by a set whose center

is propagated recursively and whose shape can be found by

solving (at each instant) an optimization problem. Still, the

complexity of the resulting observer is potentially high and

its sub-optimality properties hard to ascertain.

A semi–recursive algorithm was proposed in [19]. In the

case of known initial conditions, the optimal ℓ∞ estimation

problem is reduced to an ℓ1 model matching problem [2], [6],

[5] that can be solved (with arbitrary precision) by using the

techniques in [5]. The case of unknown initial conditions

is handled by first pre–computing an horizon N after which

the estimation error due to these initial conditions falls below

a pre-specified error level ǫ. The complete, semi–recursive

estimator is obtained by using a non–recursive pointwise

optimal estimator similar to that in [18] for the first N-1

time steps, switching afterwards to the recursive ℓ1 estimator.

Since this estimator is based on solving a 2–block ℓ1 model

matching problem its complexity (and hence that of the

overall estimator) cannot be bounded a priori.

An alternative approach involves set–valued observers

[14], [15], where pointwise optimal estimators are obtained

by recursively applying the Fourier–Motzkin algorithm to

construct a polyhedral set guaranteed to contain the states

of the plant. An ℓ∞ point–wise optimal estimator is then

obtained from these sets, by simply using as estimate of

the unknown output z the center zc of the set of all output

values compatible with the present set estimate of the state.

However, propagation of these estimates is not recursive,

e.g. zc(k + 1) cannot be directly constructed from the past

estimates zc(k − i). Moreover, in principle the complexity

of the estimator (measured in terms of the number of

hyperplanes defining the set observer) is not bounded a-priori

and increases with time.

Motivated by the high complexity entailed in the ap-

proaches above, the goal of this paper is to synthesize fixed
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order recursive filters for systems subject to ℓ∞ bounded

disturbances, with guaranteed worst case estimation error.

Our main results show that this problem can be reduced

to a linear programming problem, provided that the initial

condition is confined to a suitable set. For initial conditions

outside this set, the estimation error converges, in finite time,

to the design value.

II. PRELIMINARIES

For ease of reference, the notation used in the paper is

summarized below:
‖y‖∞ ∞ norm of the vector y ∈ Rn: ‖y‖∞

.
=

maxi |y|i.
‖M‖1 ∞ → ∞ induced norm of matrix M ∈

Rn×m: ‖M‖1
.
= maxi

∑

j |Mij |

ℓ1n, ℓ∞n extended Banach spaces of vector valued

real sequences {y}∞0 ∈ Rn equipped

with the norms ‖y‖ℓ1
.
=

∑∞
i=0 ‖yi‖∞ and

‖y‖ℓ∞
.
= supi ‖yi‖∞, respectively.

Bℓ1, Bℓ∞ unit balls in ℓ1, ℓ∞.

Bℓ∞(µ) scaled unit ball in ℓ∞n . Given µ
.
=

[

µ1 . . . µn

]

Bℓ∞(µ)
.
= {e ∈ ℓ∞n : ei/µi ∈ Bℓ∞}

‖G‖ℓ∞→ℓ∞ ℓ∞ to ℓ∞ induced norm of the operator

G : ℓ∞ → ℓ∞, e.g. ‖G‖ℓ∞→ℓ∞
.
=

supy 6=0
‖Gy‖ℓ∞

‖y‖ℓ∞

y(λ) λ–transform of a sequence {yk}
∞
0

y(λ)
.
=

∑∞
i=0 ykλk

In the sequel, scalar ARMA models of the form

y(k) = −
n

∑

i=1

aiy(k − i) +
m

∑

i=0

biv(k − i); n ≥ m (1)

will be associated with their corresponding λ–transform

representation1:

y(λ) =

∑n

i=0 biλ
i

∑m
i=0 aiλi

v(λ)
.
= G(λ)v(λ) (2)

The notion of equalized performance, introduced in [4]

(see also [11]) will play a key role in obtaining bounded

complexity filters.

Definition 2.1: Consider an LTI plant described by a

model of the form (1). Given r ≥ n, the plant achieves an

equalized r–performance level µ if, whenever the input and

output sequences {v}, {y} satisfy |v(t)| ≤ 1 and |y(t)| ≤ µ
for all t = k, k−1, . . . , k−r+1, then ‖y(k+1)‖ ≤ µ (thus

‖y(k+ i)‖ ≤ µ, for i > 0). In particular, the case r = n will

be simply referred to as equalized performance.

As shown in [4], only superstable plants (in the sense of [11])

achieve (finite) equalized performance. However, any stable

plant achieves finite equalized r–performance for some large

enough r. Further, if a SISO plant achieves r–performance

1This representation can be obtained from the the standard z–
representation by simply setting λ = 1/z.

µ for some finite r, the it achieves r′–performance µ for any

r′ > r.

Next, we recall, for ease of reference, some properties

concerning the relationship between equalized performance

and the ℓ∞ induced norm.

Lemma 2.1 ([4]): Given a stable, LTI SISO plant y(λ) =
G(λ)v(λ), as in (2) with finite r-equalized performance µ(ro)
for some ro ≥ n, the following holds:

1) ‖G‖ℓ∞→ℓ∞ ≤ µ(ro), with the equality holding for FIR

plants.

2) µ(r) ↓ ‖G‖ℓ∞→ℓ∞ .

A. Why equalized filtering?

As already shown in [13], [16] recursive set valued ob-

servers based upon the idea of propagating a set known

to contain the (unknown) state of the plant have high

complexity. To avoid this difficulty, in this paper, rather than

attempting to confine the state, we will work directly with

the estimation error and attempt to design a filter such that,

if at some time instant to the past r values of the error

are “captured” in an r-hyperrectangle, then this property will

hold for all t > to and all ||v||ℓ∞ ≤ 1, ‖w‖ℓ∞ ≤ 1. Further,

we are interested in synthesizing the tightest hyperrectangle

satisfying this property. The main result of this paper shows

that this can be accomplished by reducing the problem to

an equalized performance one. Moreover, contrary to the

controller design case considered in [4], in the filtering case

the results are easily extended to MIMO systems by simply

considering a collection of component–wise filters.

z

z

1

2

k

k−1

k−2

k−r

Fig. 1. The equalized filtering idea: actual (black dots) versus estimated
(circles) trajectories

III. PROBLEM SETUP AND PRELIMINARY RESULTS

Consider an LTI plant subject to ℓ∞ bounded disturbances,

with state space realization:

xk+1 = Axk + Bvk (3)

zk = Hxk (4)

yk = Cxk + Dwk (5)
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or, equivalently,with λ–transform representation

z(λ) =
M(λ)

d(λ)
v(λ) (6)

y(λ) =
N(λ)

d(λ)
v(λ) + Dw(λ) (7)

where z ∈ R
s, y ∈ R

q , v ∈ R
p and w ∈ R

q represent

the output to be estimated, the measurements available to

the filter, process and measurement noise, respectively, and

where d(λ) = det(I − λA). For the time being, we will

assume that z is a scalar, but this assumption will be relaxed

later. Our goal is to design a filter of the form:

ẑ(λ) =
B(λ)

a(λ)
y(λ) (8)

such that the estimation error

e(λ) = z(λ) − ẑ(λ) (9)

is confined to an hyperrectangle. The complete filtering

scheme is illustrated in Fig. 2. In the sequel, we will limit

z

z

e
+(λ)

(λ)d
(λ)

d(λ)

(λ)

a (λ)

w

v
M

N

By
+D

Fig. 2. The filtering scheme.

our attention to filters that belong to the class of generalized

Luenberger observers, defined as follows:

Definition 3.1 ([7]): A system of the form

ξk+1 = Pξk + Lyk (10)

x̂k = Qξk + Ryk (11)

ẑk = Hx̂k (12)

is a generalized state observer for system (3)–(5) if P is a

stable matrix and x̂k − xk → 0 as k → ∞, when w(k) ≡ 0
and v(k) ≡ 0.

Next we recall a characterization of the class of the gener-

alized state observers.

Lemma 3.1: The system (10)–(12) is a generalized ob-

server for (3)–(5) iff P is stable and there exists a full rank

matrix T such that

TA − LC = PT, (13)

QT + RC = I, (14)

Proof: See [7], [17].

Remark 3.1: The standard Luenberger observer corre-

sponds to the choice T = I and R = 0. Selecting a “tall”

T matrix leads to a higher order observer, with additional

degrees of freedom that can be used to optimize performance.

Next we show that restricting the filter to be a generalized

observer imposes a constraint on its structure.

Lemma 3.2: If the filter (8) is a generalized state observer

for system (3)–(5), then the polynomial matrices M(λ) (of

dimension 1 × p), N(λ) (of dimension q × p), B(λ) (of

dimension 1× d) and the polynomials a(λ) and d(λ) satisfy

the following condition:

M(λ)a(λ) − B(λ)N(λ) = C(λ)d(λ) (15)

for some polynomial matrix C(λ).
Proof: From equations (10)–(14) it follows that:

[Tx − ξ]k+1 = TAxk − Pξk − L(Cxk + Dwk) + TBvk

= P [Txk − ξk] + TBvk − LDwk

xk − x̂k = xk − Qξk − RCxk − RDwk

= Q[Txk − ξk] − RDwk

Consider now the change of variables η = x and θ = [Tx−
ξ]. In term of these variables the state space representation
of the combined plant–filter system is given by:
[

ηk+1

θk+1

]

=

[

A 0
0 P

] [

ηk

θk

]

+

[

B 0
TB −LD

] [

vk

wk

]

ek =
[

0 HQ
]

[

ηk

θk

]

+
[

0 −HRD
]

[

vk

wk

]

Thus η is unobservable from e. Hence, the modes of A
are canceled in the transfer function Te,η . From (6)–(9) it
follows that:

e(λ) =

[

M(λ)

d(λ)
−

B(λ)

a(λ)

N(λ)

d(λ)

]

v(λ) +

[

B(λ)

a(λ)

]

Dw(λ)

=

[

M(λ)a(λ) − B(λ)N(λ)

a(λ)d(λ)

]

v(λ) −

[

B(λ)

a(λ)

]

Dw(λ)

Since d(λ) = det(I −Aλ), the cancelation of the modes of

A in Teη implies that M(λ)a(λ) − B(λ)N(λ) has d(λ) as

a factor, precisely what (15) states.

Since we are interested in generalized observer like filters,

in the sequel we will limit our attention to polynomial

matrices satisfying (15) for some C(λ). It is trivial to show

that in this case the estimation error is governed by the

equation

e(λ) =
C(λ)

a(λ)
v(λ) +

B(λ)

a(λ)
Dw(λ) (16)

IV. EQUALIZED PERFORMANCE FILTERING

We are now in the position to formally state the equalized–

performance filtering problem.

Problem 4.1: Given an integer r ≥ n and µ > 0 find a

filter of the form (8) of order r satisfying the constraint (15)

and such that a(λ) is stable (i.e. all its poles are outside the

unit circle) and

|ek| ≤ µ, k = 0, 1, 2, . . . , r − 1 ⇒ |et| ≤ µ
for all t and all sequences v, w ∈ Bℓ∞

(17)

Note that the problem above does not explicitly make any

assumptions on xo, the initial conditions of the plant. As

we will show later, if the plant achieves an equalized
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performance level µ < ∞, then there exist a set of initial

conditions Xo(µ) such that if xo ∈ Xo(µ) then |ek| ≤ µ for

all k. For initial conditions outside this set, the condition will

be satisfied after a finite number of steps.

Theorem 4.1: An rth order filter of the form (6)–(7) with:

a(λ) = 1 + a1λ + · · · + arλ
r

B(λ) = B0 + B1λ + · · · + Brλ
r

C(λ) = C0 + C1λ + · · · + Crλ
r

solves Problem 4.1 above if and only if

µ‖[a1 a2 . . . ar]‖1 + ‖[C0 C1 . . . Cr]‖1

+ ‖B0D . . . BrD‖1 ≤ µ
(18)

Proof: From (16) the ARMA model relating the signals

e, v, w is given by

ek = −
r

∑

i=1

aiek−i +
r

∑

i=0

Civk−i +
r

∑

i=0

BiDwk−i (19)

Thus, if |ek−i| ≤ µ and i = 1, 2, . . . , r, v, w ∈ Bℓ∞ then

|ek| = | −
r

∑

i=1

aiek−i +
r

∑

i=0

Civk−i

+
r

∑

i=0

BiDwk−i| ≤
r

∑

i=1

|ai||ek−i|

+

∥

∥

∥

∥

∥

∥

[C0 C1 . . . Cr]





vk−1

:
vk−r





∥

∥

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

∥

∥

[B0D B1D . . . BrD]





wk−1

:
wk−r





∥

∥

∥

∥

∥

∥

∞

≤
r

∑

i=1

|ai|µ + ‖[C0 C1 . . . Cr]‖1

+ ‖[B0D B1D . . . Br]D‖1 ≤ µ

Therefore the condition is sufficient. To prove necessity, start

by rewriting (19) as

|e(k)| = |[µa1 . . . µar C0 . . . Cr B0D . . . BrD]x|
.
= |Ξx|

where x
.
=

[

ek−1/µ . . . ek−r/µ vk . . . vk−rwk . . . wk−r

]T
.

From the hypothesis it follows that x is an arbitrary element

of Bℓ∞. Hence

sup
‖x‖∞≤1

|ek| ≤ µ ⇐⇒ ‖Ξ‖1 ≤ µ

or, equivalently,

|e(k)| = |µa1| + |µa2| + . . . |µar| + ‖[C0 C1 . . . Cr]‖1

+ ‖[B0D B1D . . . BrD]‖1 ≤ µ

which proves necessity. To conclude the proof, we need to

establish that condition (18) implies stability of the filter.

This follows immediately from the fact that it implies

‖[a1 a2 . . . ar]‖1 =
r

∑

i=1

|ai| = ρ < 1

In the sequel we will refer to filters satisfying (18) as r–

equalized filters, with performance µ or, whenever clear from

the context, simply as equalized filters.

V. OPTIMAL FIXED–ORDER SYNTHESIS

It is not difficult to see that equalized filter synthesis re-

duces to a combination of convex optimization and bisection.

To this effect, note that, for fixed µ, (18) is convex with

respect to ak, Bk and Ck, and (15) is a linear constraint in

such variables. Hence finding a pair (a,B) so that 15 and

(18) are satisfied reduces to a convex feasibility problem.

Finally, the optimal µ can be found via bisection. These

observations are summarized in the following algorithm.

Algorithm 5.1: 0.- Select µ > 0, tolerances ǫ and δ,

and set µ− = 0.

1.- Solve the feasibility problem (18) subject to (15). If

it is unfeasible, set µ = 2µ and go to step 1, else set

µ+ = µ.

2.- Solve the feasibility problem for µ = (µ+ + µ−)/2.

3.- If it is feasible, set µ+ = µ else set µ− = µ.

4.- If µ+ − µ− < δ then STOP, else go to step 3.

A. The multi–output case

In the previous sections we considered the case where z,

the quantity to be estimated, is a scalar. The main result of

this section shows that these results can be extended to the

multiple outputs case, z ∈ Rs by simply considering an array

of single–output filters, each of which estimates one of the

components of z. To this effect, we begin by extending the

definition of equalized filtering performance to the multi–

output case.

Definition 5.1: The filter (8) with error ẑ − z = e ∈ Rs

is said to achieve a vector equalized performance level µ
.
=

[

µ1, µ2, . . . µs

]

if it is stable and:

ek−j ∈ Bℓ∞(µ), j = 1, 2, . . . , r ⇒ ek ∈ Bℓ∞(µ);
for all sequences v, w ∈ Bℓ∞

(20)

The next result shows that vector equalized performance is

equivalent to component–wise scalar equalized performance.

Theorem 5.1: A filter F : y ∈ ℓ∞n → ẑ ∈ ℓ∞s achieves

a vector equalized performance level µ iff each component

Fi : y ∈ ℓ∞n → ẑi ∈ ℓ∞ achieves scalar equalized perfor-

mance (in the sense of (17)) µi, where ẑi denotes the ith

component of ẑ.

Proof: Clearly, if each component Fi achieves an

equalized performance level µi, the overall filter F obtained

by stacking each component satisfies the conditions in Defi-

nition 5.1. Conversely, assume that the filter F satisfies (20).

Note that the multiple–output version of the filter (19) can

be written in terms of its h component as follows

eh
k = −

r
∑

i=1

ah
i eh

k−i +
r

∑

i=0

Ch
i vk−i +

r
∑

i=0

Bh
i Dwk−i (21)

and that the error terms eh
k−i, i = 1, 2, . . . , r can be

initialized independently in each “partial filter”. Assume now
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that for a given i the corresponding mapping Fi does not

satisfy (17). Then, it is easily seen that initializing all the

other variables ej , j 6= h, to ej
k−i = 0, i = 1, 2, . . . , r leads

to violation of (20).

Hence, optimal MIMO filters can be synthesized by simply

applying Algorithm 5.1 componentwise.

VI. FILTER INITIALIZATION

In this section we consider the problem of filter initial-

ization. The main result shows that, given r measurements,

y
.
=

[

yo, y1, . . . , yr−1

]

there exists a set Xo(y, µ) and a

filter initial condition ξo such that if the unknown initial

condition of the system xo ∈ Xo(y, µ), then the estimation

error satisfies ek ∈ Bℓ∞(µ) for all k. For initial conditions

xo 6∈ Xo, then ek ∈ Bℓ∞(µ) for k > r.

Proceeding as in [3], [14], [15], [8], given a sequence of

measurements y define recursively the following sequence

of sets:

X̃k = AXk−1 + BBℓ∞ (22)

Xk = X̃k

⋂

{x : Cx − yk ∈ DBℓ∞} (23)

Zk = HXk (24)

where X̃o is a set known to contain the initial condition

(if no information is available then X̃o = Rn). Set X̃k is

the set of states that can be reached from Xk−1, while Xk

is the subset compatible with the measurements, e.g., the

best current estimate of the set of all states consistent with

the a priori information and the experimental measurements.

Finally, Zk is the corresponding set of possible values of zk.

The techniques to compute these sets are well established

(see for instance [3], [14] and references therein). Assuming

that Zk becomes bounded after some time2, the filter can be

initialized (after r measurements) as follows (see Fig. 3).

1) Compute the sets Zk−i, i = 1, 2, . . . , r.

2) For j = 1, . . . , s, let:

zj,+
k−i

.
= max

ξ∈Zk−i

{ξj},

zj,−
k−i

.
= min

ξ∈Zk−i

{ξj},

µj
k−i

.
= 1

2 |z
j,+
k−i − zj,−

k−i|,

zj,c
k−i

.
=

z
j,+

k−i
+z

j,−

k−i

2 ,

(25)

3) Let µinit,j = max
k−r≤t≤k−1

{µj
t} and choose as the first

r filter estimates ẑj
t = zj,c

t , t = k − r, . . . , k − 1.

Note that if Xo is convex, then z+, z−, and zc3 above can

be found by simply solving a convex optimization problem.

Further, if Xo is a polytope, this problems reduces to LP.

Since ‖
[

a1 . . . ar

]

‖1 < 1 by construction, it can be easily

shown that if (17) holds for some µ̃, then it also holds for all

µ ≥ µ̃. It follows that if µinit,j ≤ µj
o, the optimal equalized

performance level in (18), then the filter (8), with the

initialization above, achieves optimal equalized performance

2this condition holds for all t if X0 is compact, and for t ≥ n if (A, C)
is observable

3The estimate zc is precisely the central estimator introduced in [13].

z
1

µ

z
2

2
1

2
µ2

Fig. 3. The filter initialization

level µj
o for all initial conditions x ∈ X . On the other hand,

as we show next, if µinit,j > µj
o, then the worst case ℓ∞

estimation error is bounded above by µinit,j and converges,

in a finite number of steps, to µj
o.

Theorem 6.1: Consider a filter of the form (8). Given µ >
0 satisfying (18), for any plant and filter initial condition

pairs {xo, ξo} there exists a finite time T (xo, ξo, µ) such that

for all t > T , |et| ≤ µ.

Proof: Follows from showing that the sequence ψk
.
=

maxi=1,...,r |ek−i| is non increasing in ψk > µ and contains

a strictly decreasing subsequence. (Details, omitted for space

reasons, can be obtained by contacting the authors).

VII. CONNECTION WITH EXISTING RESULTS

Next, we briefly comment on the connection with existing

approaches. The initialization procedure described above is

equivalent to using the set valued observers proposed in [13],

[14] for the first r steps, switching afterwards to the filter (8).

In this sense, the proposed algorithm resembles the approach

in [19], where pointwise optimal estimators are used until

the ℓ∞–induced filter reduces the error due to the unknown

initial conditions below a given tolerance ǫ, switching then to

the latter filter. However, the approach proposed here differs

in several aspects, in addition to its ability to fix, a–priori,

the complexity of the filter. Specifically, (i) the set–valued

filters are used for a fixed horizon (equal to the order r of the

equalized filter), as opposed to a problem–dependent horizon,

and (ii) the filter (8) is switched on after the estimation error

sequence has been driven to a hyperrectangle of size µ, the

optimal worst–case estimation error, rather than below the

tolerance ǫ (typically µ ≫ ǫ).

VIII. ILLUSTRATIVE EXAMPLES

Example 1: Consider the following second order plant:

m(λ)

d(λ)
=

λ2

1

n(λ)

d(λ)
=

(1 − 0.5λ)(1 − 2λ)

1
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and assume that the process and measurement noise satisfy

|vk| ≤ γ and |wk| ≤ β, respectively. In the sequel,

we analyze optimal filter behavior as a function of these

parameters. For 0 < γ < 2 the optimal equalized estimate is

ẑ = 0, (e.g. zero filter), with µopt = γ.

For β = 1, γ = 2, the problem admits multiple solutions,

amongst them
b(λ)
a(λ) = 0 and

a(λ)

b(λ)
=

−0.1517 − 0.4870λ − 0.1609λ2 − 0.0464λ3

1.0000 − 0.0656λ − 0.0450λ2 − 0.0464λ3

Finally, the case β = 1, and γ > 2 seems to yield,

independently of γ, the following filter:

a(λ)

b(λ)
=

−0.2463 − 0.6158λ − 0.2933λ2 − 0.1173λ3

1.0000 − 0.1173λ3

with poles at 0.4895 and −0.2448 ± j0.4239. The corre-

sponding equalized cost is given by the following piecewise

affine function of γ:

µopt(γ) =

{

γ for 0 < γ < 2
2 + κ(γ − 2) for 2 < γ

with κ ≈ 0.28.

Example 2: Next, we consider the case of a plant with

poles on the stability boundary4:

m(λ)

d(λ)
=

λ2

1 − λ2

n(λ)

d(λ)
=

(1 − 0.5λ)(1 − 2λ)

1 − λ2

In this case, the optimal equalized filter corresponding to

β = 1, γ = 8 and r = 3 is given by:

b(λ)

a(λ)
=

−0.3268 − 0.8171λ − 0.3891λ2 − 0.1556λ3

1 − 0.1556λ3

and achieves an equalized performance level µopt = 5.1

IX. CONCLUSION AND DISCUSSION

Most of the existing work on filtering in the presence

of unknown–but–bounded noise is based on constructing

first the consistency set for the states of the plant (e.g. the

set of states compatible with both a-priori assumptions and

experimental measurements). Unfortunately, this approach

leads to filters whose complexity can be arbitrarily large, and

potentially grows online. Overbounding these sets (using for

instance ellipsoids or the approach in [12], [16]), produces

conservative filters with hard–to–ascertain optimality prop-

erties. Alternatively, receding horizon based approaches to

filtering (see for instance [1]) require solving online non–

trivial optimization problems.

To avoid these difficulties, in this paper we propose a

different approach, based on the idea of equalized perfor-

mance, first introduced in [4] in the context of suboptimal ℓ1

controller design. The main idea is to, rather than attempting

to find bounded complexity sets that contain the consistency

set, work directly with r-length estimation error sequences,

confining them to the tightest possible hyperrectangle. As

shown in the paper, this can be achieved with an rth order

4Note that, due to these poles, this case cannot be handled by the approach
in [19].

LTI filter, whose coefficients can be found via convex opti-

mization. Further, as opposed to the control case, multiple

outputs can be readily handled by simply considering a

collection of scalar filters.

These results were illustrated with some simple examples.

An intriguing fact borne out of these examples is that while

in the context of control design the optimal equalized closed

loop was almost always “near dead–beat” (e.g. “almost zero”

closed–loop poles) the estimation error equation governing

the filtering error does not exhibit this feature.

Research is currently underway seeking to extend the

results presented in this paper to switched, piecewise linear

systems.
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