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Abstract-In this paper we focus our attention on the deter- 
mination of upper bounds of the I” norm of the output of 
a linear discrete-time dynamic system driven by a step input, in 
the presence of both persistent unknown, but, I” bounded dis- 
turbances and memoryless time-varying model uncertainty. For 
the same type of systems we also analyze the transient behavior 
of the step response in terms of its overshoot. The problem is 
solved in a constructive way by determining appropriate invari- 
ant sets contained in a given convex region. Finally, we show 
how to extend these results to continuous-time systems. 0 1997 
Elsevier Science Ltd. 

1. Introduction 
In most practical situations the mathematical model of a dy- 
namic system must include some uncertainties and disturbances 
due to unmodeled dynamics and/or time-varying conditions. In 
this paper, we investigate the problem of robust performance (in 
the I” sense) of dynamic systems subject to parametric time- 
varying memoryless uncertainties and in the presence of 
I” bounded disturbances. The problem of interest is to deter- 
mine a bound on the worst-case I” norm of the output due to 
a step input, and with zero initial conditions. Additionally, 
motivated by the case where no uncertainties are present, we are 
also interested in establishing whether or not the system exhibit8 
an overshoot with respect to its steady state output value. 

Khammash and Pearson (1991) provided robust performance 
conditions with respect to unknown but bounded disturbances. 
However, in many real problems, some design specifications are 
given in terms of the output to a given, fixed test signal (such as 
a step). Since the unit step belongs to the unit ball of I”, this 
problem can be addressed using the techniques proposed by 
Khammash and Pearson (1991) for structured dynamic uncer- 
tainty. However, this approach will yield a conservative bound, 
since these results provide the worst-case I” bound of the output 
over the set of all possible I” bounded inputs and dynamics. 

The problem of robust step response performance under 
structured dynamic uncertainty has been addressed by Kam- 
mash (1994), where necessary and sufficient conditions for 
robust steady-state tracking have been provided, and by Elia 
etal. (1995), where separate lower and upper bounds for the 
maximum overshoot due to a given, fixed reference signal are 
given. These bounds are not tight in the sense of having 
a non-zero gap. This gap can be eliminated by assuming non- 
causal (i.e. not physically realizable) uncertainty blocks. Thus, 
applying those results to our problem where the uncertainty is 
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restricted to be memoryless entails a double level of conserva- 
tism: the first due to the fact that the results by Elia et al. (1995) 
allow for dynamic uncertainty, and the second due to the fact 
that the conditions provided there are tight only for non-causal 
blocks. 

In this paper, we provide a non-conservative bound for the 
case where the input signal is a step. This bound is obtained 
using a method baaed upon the construction of a suitable poly- 
hedral region. These regions have been previously used in the 
context of robust stability analysis and-synthesis (see, for in- 
stance. Barabanov. 1988: Blanchini. 1994. 1995: Blanchini and 
Mian{ 1996; Bertsekas and Rhodes, 1971; Brayton and Tong, 
1979, 1980; Michel et al., 1984; Ohta er al., 1993; Olas, 1991; 
Sznaier, 1993; Zelentsowsky, 1994 and references therein). Addi- 
tionally, by exploiting this construction we present necessary 
and sullicient conditions for the existence of overshoot, and 
a way to compute both the steady-state output value and the 
overshoot in cases where the latter is present. The paper is 
organized as follows. In Section 2 we introduce some basic facts. 
In Section 3 we show how to obtain nonconservative bounds of 
the worst-case value of the step response in the presence of both 
bounded noise and parametric uncertainties. In Section 4 we 
exploit a similar technique to establish whether or not there exist 
overshoot, and if so, to compute it. Section 5 illustrates these 
results with a simple example. Finally, Section 6 contains some 
concluding remarks. 

2. Preliminaries 

2.1. Notation. Given a closed, convex set S we denote its 
interior as int{S}. A polyhedral set S will be represented either 
by a set of linear inequalities S = {x: Fix I gi. i = 1, . . . , s}, or 
by the dual representation in terms of its vertex set {xi), denoted 
by vert{S}. In the sequel we will use matrix notation to describe 
componentwise assignments as well as componentwise inequali- 
ties. Thus, in this notation a polyhedral set is expressed by the 
matrix inequality S = {x: Fx I g} where F is an s x n full col- 
umn rank matrix and g represents an s-column vector. Finally, 
we denote by [].I[ the Euclidean norm in R” while dist(x, S) 
denotes the distance of a point x from a set S, defined as 
dist(x,S) = inf,,sllx - ~(1. 

2.2. Problem statement. Consider the uncertain n-dimen- 
sional discrete-time system with m command inputs u(k), 4 dis- 
turbance inputs d(k) and p outputs: 

x(k + 1) = A(wfk))x(k) + Bu(k) + Ed(k), 

y(k) = Cx(k), 
(1) 

where w(k) is an uncertain time-varying parameter, A(w) is 
a matrix polytope of the form 

A(W) = i 4wdkL 
i=t 

(2) 
W(k)EW = w: wirO, i wi = 1 

i= I 

2183 
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where Ai, B, E are given real matrices of appropriate dimen- 
sions and where the disturbance d(k) belongs to D, the I” unit 
ball, i.e. D = {d: Ildll,= I 1). 

For these systems we are interested in determining a non- 
conservative bound for the peak value of the step response, i.e. 
the problem we address is the following: 

Problem 1. Given the system (1) with zero initial state, and a step 
input of the form u(k) = U, k 2 0, find 

pcinr = inf{ ~:lly(/c)ll~= I p for all sequences we W, 

d(k)> II& I 1). 

In order to simplify the exposition in the sequel we make the 
following assumption. 

Assumption 1. There exists a matrix A0 belonging to the matrix 
polytope such that the triplet (A,, B, C) is reachable and observ- 
able. 

Under Assumption 1 it is easily shown that a necessary and 
sufficient condition for Problem 1 to have a finite solution 
p < + co is that the autonomous system x(k + 1) = 
A(w(k))x(k) is asymptotically stable. Thus, in the sequel we will 
limit our attention to asymptotically stable systems. 

Definition 2.1. Given a convex compact set D, consider the 
system x(k + 1) = A(w(k))x(k) + Ed(k), where d(k)E D. A set P in 
state space is positively D-invariant for this system if for every 
initial condition x(O) E P we have that x(k) E P for every k > 0, for 
every admissible disturbance d(k)ED and every admissible 
sequence w(k). 

Remark 2.1. Note that positive D-invariance is a property that 
depends both on the system and the admissible disturbance set 
D. In the sequel, for brevity we may sometimes omit an explicit 
reference to the system and talk about D-invariant sets whenever 
the system in question is clear from the context. 

3. Main results 
In this section we introduce the notion of limit set, i.e. the set 

to which all the trajectories “converge”. We show that although 
from a theoretical point of view the performance of a system can 
be characterized by this set, this may not be practical due to the 
difficulty in computing it. 

3.1. Limit set. Let us now introduce an “extended distur- 
bances” system which treats the command inputs of system (1) 
as disturbances: 

x(k + 1) = A(wjk))x(k) + Ed’(k), 

y(k) = Cx(k), 
(3) 

where E’ = [B I?], d’(k) = [UT(k) P(k)lT and the extended dis- 
turbance d’(k) is constrained to belong to the polyhedral set 

D’ = { [UT(k) d’(k)]‘: u(k) = U, lld(k)ll,z s 1). 

We formalize now the definition of limit set that we use in the 
sequel. 

Definition 3.1. Given the system (3), we will define the (possibly 
empty) limit set Y as the set of all states x for which there exist 
admissible sequences w, d and a non-decreasing time sequence 
tk such that 

lim $(O,tt,w(*),&(.)) = x, 
L-+m 

where limk, + & = + co and $(O, tk, W(.),C( .)) denotes the 
value at the instant tk of the solution of (3) originating at x0 = 0 
and corresponding to w and d’. 

Lemma 3.1. If system (1) is asymptotically stable then the 
limit set _Y is non-empty and the-state e;olution of system 
[equation (3)], for every initial condition x(O) and admissible 
sequences d’(k)E D’ and w(k)E W, converges to Y (i.e. 

lim ,,,dist(x(t), U) = 0). Moreover, 55’ is bounded and it is D’- 
invariant for system (3). 

Proof. Boundedness and convergence follow immediately from 
the asymptotic stability of A(w) which is equivalent to the 
existence -of a norm _ II.II, ihat is a Lyabunov function 
(Molchanov and Pvatnitskii. 1986:Blanchini and Miani. 1996) 
gnd such that the &rresponhing induced matrix norm satisfies 
llA(w)ll. 5 1 < 1. Denoting by Q(k,h) = A(k - l)A(k - 2) . A(h) 
we have that ll@(k,h)ll. I Ikeh. Thus, 

II 
k-1 

Ilx(k)ll. = @(k,O)x(O) + c W,i + l)EV?) 
i=0 II * 

I ikllx(0)ll. + (1 + I + “. + at-l) sup {IlE’d’II.~ 
&D’ 

To establish invariance we need to show that for every x E Y we 
have 

A(w)x + E’d’ E 0 

for every w E W and 6 ED’. Suppose by_contradiction that there 
exists x E 4p such that y = A(J)x + FS@Z’ for some d and d;. 
We will show that in this case for any arbitrary x0 and k > 0 
there exists t > 0 and appropriate sequences w and d’ such that 
the solution of equation (3) corresponding to the initial condi- 
tion x0 satisfies 11x(t) - yll I l/k. Setting f = I and repeating the 
same argument taking as initial condition x(t,.) we have that 
there exists tt+l > tt such that (Ix(&+,) - yI/ < l/(k + 1). Pro- 
ceeding along this line we will have that YEY, leading to 
a contradiction. 

For any arbitrary initial condition x,-,, the corresponding state 
evolution is x(t) = x&) + XL(t) where xF and xL denote the 
forced and free motions, respectively. From asymptotic stability 
we have that Ilx,,(t)ll +O. Since from the definition of 
pLP(Ixp(t) - xl\ can become arbitrarily small for appropriate se- 
quences w, d’ and t > 0, the same property holds for [lx(t) - x 11. 
Let M denote the largest value over w g W of the induced matrix 
norm II A(w)ll. Since x E Z’, by definition there exists t > 0 such 
that Ilx(t - 1) - XII < l/kM. Let x(t) = A(G)x(t - 1) + E’d’. 
Then 

lb@) - YII = II AWCx@ - 1) - xl II 

I IIA(WI Il(x(t - 1) - 411 2 ;. 

Finally, to establish closedness consider a sequence ytc Y such 
that lIylr - yl( I 1/2k. We need to show that yedip. Using the 
same argument as before we have that, since yI E Y, then for all 
x0 and k > 0, there exist t > 0, and appropriate sequences w and 
d’ such that 11x(t) - ytJI I 1/2k. Thus, the condition 
11x(t) - yI( I l/k can be always achieved for arbitrary k > 0 and 
a sufficiently large t. 0 

Define now the set 

Xl&) = {x: IlCXllm 5 PC). (4) 

A value p c + to is said to be admissible if p > pinf. Clearly, 
a necessary condition for p to be admissible is that .Y E X&c). 
This condition is not sufficient because even if it holds there may 
be trajectories starting from the origin outgoing from X&J) and 
ultimately entering in it again to reach Y. Thus, knowledge of 
Y alone does not give enough information to assess the com- 
plete (rather than asymptotic) system behavior. To compute the 
maximum overshoot one should reconstruct all possible trajec- 
tories starting from the origin, by propagating forward in time 
the effect of the uncertainties as shown by Barmish and Shan- 
karan (1979), to reconstruct the reachability sets RI, (the set of all 
states that can be reached in k steps from the origin for all 
admissible w and d). However, as indicated by Barmish and 
Shankaran (1979), this technique leads to non-convex sets RI. 
This difficulty can be circumvented by considering the sequence 
of convex-hulls & = conv{Rtj rather than the sequence {Rt}. It 
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can be shown that this sequence can be generated recursively 
and that it “converges” to 2, the convex hull of Y. It is 

compact. Moreover, Pcm) coincides with the maximal invariant 
set contained in any compact polyhedral set S such that 

immediate to verify that the output of the system is bounded by P&@ c S E X,(p). From the stability of equation (3) we have 
p if and only if & s X,(p), for all k > 0. However, proceeding in that its state trajectories converge to Y c int{X&)}. Thus, 
this way may not be realistic due to the large computational 
effort required to compute the sets & and the lack of a reason- 

proceeding as in Blanchini and Miani (1996), Lemma j:l, it can 
be shown that there exists k’ such that PO*“) = PI’*) = P(@. 

able stopping criterion (i.e. how many elements of the sequence Finally, the proof of equation (5) can be found in Blanchini 
R, to compute). (1992, 1994). 0 

Thus, to solve the problem we will pursue a different approach 
leading to conditions related to a single convex set rather than 
a sequence. We state now the basic result of this section which 
will be used to give a solution to Problem 1. 

Lemma 3.2. Given p > 0, the response of the system [equation 
(l)] to the input u(k) = U satisfies IIyII,- < p for every pair of 
sequences w(k)E W, d(k)ED if and only if system (3) admits 
a V-invariant set P such that OE P s X,(p). 

Problem 1 can now be solved by determining the maxi- 
mal D’-invariant set contained in X,(p) for several values 
of p and checking whether or not this set contains the origin. 
Then 

0 If p > pinr we get a positive answer. 
l If p < pi.f we get a negative answer. 

Proof: To show necessity consider the set P obtained by taking 
the convex hull of all the states belonging to the trajectories of (1) 
emanating from the origin for all possible sequences w and 
d when the system is driven by the step input u = U. The set P is 
contained in X,(p)), contains the origin and it can be easily 
proven to be invariant for (3). The sufficiency is obvious. 0 

Note that in both cases we get an answer in a finite number of 
steps, although there is no a-priori bound for such a number. In 
the first case this is due to Theorem 3.1. In the second case, this 
follows by the fact that the sequence of closed sets Per) is ordered 
by inclusion and Pcm) is their intersection. Thus, 0 $ F”) if and 
only if 0 4 Pck) for some k. 

3.2. Computation of the maximal D’-invariant set. Lemma 3.2 
provides a general condition, given in terms of the existence of 
a w-invariant set P, OE P G X&L), guaranteeing that a given 
performance level p is achieved. In this subsection we provide 
a procedure to compute such a set if it exists. This is accomp- 
lished by finding the maximal D.-invariant set for system (3), i.e. 
a set that contains any other invariant set in X,(p). The proce- 
dure relies on two stopping criteria (Theorems 3.1 and 3.2) that 
also allow to decide whether or not OE P. 

Thus, the solution to Problem 1 can be obtained by starting 
from the initial set X,(p) and computing the sequence of sets 
P”) until some appropriate stopping criterion is met. Note that 
the first positive criterion cannot be checked in a finite number 
of steps by propagatingjbrward in time the reachability sets Rk, 
because at each instant k we cannot guarantee that the pre- 
scribed output level will not be violated in the future. The next 
theorem provides a new negative condition that will become 
fundamental in the next section, to address the overshoot prob- 
lem. 

Given a compact set S, we can define its preimage C(S) as the 
set of all the states x that are mapped into S by the linear 
transformation A(w)x + E’d’, for all admissible d’ E D’ and w. If 
S is polyhedral with a matrix representation of the form 
S = {x: Fx 5 g}. then C(s) can be represented by 

Theorem 3.2. If the set P(‘) c int{X&)} for some k, then the 
system (3) does not admit a p-invariant set contained in X,(p). 

C(S) = {x: F(A(w)x + E’d’) 5 g, for all d’ E D’ and 

w satisfying equation (2)). 

proof: Suppose that there exists k such that PC’) c int{X&)} 
and system (3) admits an invariant region, and hence a maximal 
one Pcm) c int{X&)}. Define v as 

Since the set D’ is itself polyhedral, the set C(S) is defined by the 
following inequalities (Blanchini, 1994): 

v% inf dist(x, Pcm)) 
.+X”W) 

C(S)={x:FA,x<g-6, i=l,..., r}, 

where the components of the vector 6 are given by 

aj = max FjE’B. 
d’ED’ 

For every initial condition x0 4 P (m) there exist sequences a and 
zsuch that the corresponding trajectory escapes from X,(p), i.e. 
x(k)#X,(p) for some E Let x(k) and y(k) denote two system 
trajectories, corresponding to the same sequences KJ and % but 
different initial conditions. The updating equation for the differ- 
ence e(k) = x(k) - y(k) is 

By recursively defining the sets P@), k = 0, 1, . as 

p(o) = X,(p) pcu = C(PW l,)npW 1) 

it can be shown (Blanchini, 1994) that Pcm) is the maximal 
p-invariant set contained in X,(p). We now introduce a 
theorem guaranteeing that this set can be expressed by a finite 
set of linear inequalities (i.e. it is polyhedral) and thus can be 
finitely determined. 

e(k + 1) = A(Kfk))e(k). (6) 

Since (6) is stable, for any arbitrary v > E > 0 there exists 6 > 0 
such that, for 11x(O) - y(O)11 < 6, we have /Ix(k) - y(k))11 5 E, for 
k > 0. On the other hand, we can take x(0)$ Pcm) and ME Pcm) 
such that 11x(O) -y(O)// i 6. Now we have u(k)e P@) and 
x(k)$X&) which implies that l/e(k)ll 2 v leading to a contradic- 
tion. 0 

Theorem 3.1. Suppose that system (3) is asymptotically stable. 
Then, if dp t int(X&)} for some p > 0, the maximal D’-invari- 
ant set contained in X,(p) is polyhedral. Moreover, in this case 
there exists k’ such that Pm) = Pck*’ and this k’ can be selected as 
the smallest integer such that PC’) satisfies the vertex condition 

These results suggest the following constructive procedure for 
finding a robust performance bound: 

A(w,)xj f E’df E PC’), 

for every xj~vert{P”‘},dj E vert{D’} and w,~vert{W}. 

(5) 

Procedure 3.1. The problem data are the system matrices, the 
input amplitudes U, the disturbance set D and a candidate 
output bound p 

Proof: Consider the system x(t + 1) = &x(t) + BU and let 
P; denote its largest invariant set contained in X,(p). Assump- 
tion 1 implies that this set is comuact (Tan and Gilbert. 1991). 
Let P” denote the maximal D^inva&ant set of system (j) 
contained in X,(p). Since P” s p6m) it follows that P” is also 

0. Set k = 0 and set PC”) = X,(p) = {x: F@)x < g@)}. 
1. Consider the set Q”’ = (x: F”‘A,x I g”’ - Zk), i = 1, . . . ,r}, 

where the vector Sck) has components SjkJ = maxdsD. Fik&*d, 
where FP’ is the hth row of F”). 

2. Compute the set plk+ 1) = QW,pW 

Flk’x 5 g’k’}. 
Let Pck) = {x: 
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3. If O$Pck+‘) or pCk+l) c int{X&)} then stop, the procedure 
has failed. Thus, the output does not robustly meet the 
performance level fi. 

4. if pk+‘) satisfies the vertex condition (5) stop (this implies 
P(“l) = Pcm). the maximal D*-invariant set). 

5. Set k = k + i and go to step 1. 

Theorem 4.1. The system (1) has a steady-state value b < p if 
and only if the largest p-invariant region contained in X,(p) for 
system (3) is not empty. 

This procedure can then be used together with a bisection ProoJ If the maximal invariant set is not empty, since all the 
method on p to approximate arbitrarily close the optimal value trajectories converge to Y (Lemma 3.1), then 4p c X&c), thus 
pinr, that solves Problem 1. In fact, if the procedure stops at step sufficiency is obvious. For the necessity note that, by definition, 
3 we conclude that p < pinr and we can increase the value of the the limit set Y is such that for any %‘E 9, any large t> 0 and any 
output bound p. Else, if the procedure stops at step 4, we have small E > 0, there exist t 2 < w and d’ such that [lx(t) - %I1 I; E. 
determined an admissible bound for the output, say p > pinr. Suppose that the largest invariant set in X,,(p) is empty, then 
that can be decreased. The procedure may fail to converge for necessarily Y $X,(y). Thus, take PE Y such that %$X,(p). 
the value p = pi,+ However, it can be shown that for any value Since X,(p) is a closed set then admissible sequences w and 
of p # pinr the procedure terminates in a finite number of steps. d’ exist such that the corresponding solution x(t), starting from 
Nevertheless, the possibility of an endless loop can be averted by the origin, is outside X0@) for arbitrary large values of t. It 
putting an a priori limit on the number of iterations. follows that p(.. > p. 0 

Remark 3.1. So far we have considered an output of the form 
y(k) = Cx(k). These results can be easily extended to the proper 
plant case (i.e. y(k) = Cx(k) + Pu(k) + Qd(k)) by considering as 
initial set the polyhedron 

Theorem 4.2. The system (1) driven by an input of the form 
u(k) = U has no overshoot if and only if for every p > /J.. the 
maximal invariant set contained in X,(p) contains the origin. 

X,(p)= {x: lGx+PJJl IP- llQillI. i= l;,~,), 

where CiPi and Qi denote the ith rows of C, P and Q respectively, 
and (1. II1 denotes the l-norm for vectors. As before, the peak 
value of the output is the smallest value of p such that the largest 
invariant set in this region contains the origin. 

Proof: Since p 2 H. then system (3) admits a maximal D’-invari- 
ant set P E X,(p). Suppose now that system (1) has no over- 
shoot and that O$P. This implies that the zero initial state 
evolution is such that Ilyll,- > p for some sequence w and 
d’ (because otherwise OEP). The proof of the necessity follows 
now by noting that hCinr > llyllI- > p 2 H., i.e. the system has 
overshoot. The sufficiency is obvious. 0 

4. The overshoot and steady-state problem 
We have seen that arbitrarily good approximations of the 

Im norm of the output of system (I), when driven by a step input 
of the form u(k) = U, can be obtained by checking whether or 
not system (3) admits a maximal invariant set contained in 
a suitable region. However, the 1” norm of the output does not 
provide a complete characterization of the system’s performance 
during its transient. A better performance assessment can be 
accomplished by establishing whether or not the output exhibits 
overshoot and, in this case, by determining its value. If no 
uncertainties are present, the overshoot is measured with respect 
to the steady-state value. Since in our case the system under 
consideration is subject to uncertainty and affected by 
exogenous disturbances in addition to the reference input, before 
proceeding any further we must specify the definition of 
“steady-state output value” with respect to which the overshoot 
will be measured. 

Corollary 4.1. System (1) has overshoot if and only if there 
exists a value p such that the maximal p-invariant set contained 
in X,(p) for system (3) is not empty and does not contain the 
origin. In this case, the overshoot value p,,, is the difference 
between the infimum of the values of p for which the maximal 
invariant region in X,(p) contains the origin and the infimum 
value of p for which the system admits a non-empty invariant 
region in X&c). 

These results can be combined with those of the previous 
section and the bisection method mentioned after Procedure 3.1 
to obtain bounds on the I” norms of both the overall trajectory 
and its asymptotic value. Note that, in addition to the critical 
cases where p = p,, and p = bnf, we have the following three 
situations: 

Definition 4.1. Consider system (1) driven by an input step of the 
form u(k) = U. The (upper) steady-state value of the system 
evolution is defined as 

(i) p < pc.,: In this case P@) is empty and this can be es- 
tablished in a finite number of steos because P@’ is the 
intersection of the closed sets PCs, ordered by inclusion. 
Thus, Pcm) is empty if and only if emptiness of P(t) occurs 
for some finite k. 

p(s. = sup lim sup II CWII cm. 
**,w f-m 

(7) 

The definition of overshoot for the systems under considera- 
tion in this paper is: 

(ii) p.. < p < P~,,~: In this case the condition 0 4 Pa) occurs in 
a finite number of steps. Moreover, from Theorem 3.1 it 
follows that Ptm) = Pck) for some finite k. 

(iii) flci.f < p: Again from Theorem 3.1 we have that this 
inequality can be established in a finite number of steps. 

Dejnition 4.2. System (1) has (upper) overshoot if there exist 
sequences w and d such that pcinr > A.. In this case the positive 
number p,,&pinf - pss is called the overshoot value. If p,,. = 0 
we say that the system has no overshoot. 

The quantity defined above represents the difference between 
the worst-case peak and worst-case state values. Later, we will 
also briefly discuss an alternative definition of overshoot (the 
lower one) which is the difference of the worst-case peak and the 
lower steady-state value. Note in passing that in this context 
overshoot is related to a worst-case scenario. Thus, the system 
may exhibit overshoot only for some sequences w and not 
necessarily for all. With these definitions we are now able to 
introduce the steady-state and the overshoot/no-overshoot de- 
termination problem. 

So far we have defined overshoot in terms of the upper 
steady-state value. Alternatively, the following definition can be 
considered. Assume, for simplicity, that the output y is scalar, 
and, without restrictions that the worst-case peak is approached 
by positive values of y(k) (i.e. for all E > 0 there exists k such that 
pinr - E I y(k) I pinf). The (lower) steady-state value of the sys- 
tem evolution is defined as 

& = inf liminf Cx(t). (8) 
d’,lv f-m 

The corresponding definition of lower overshoot is 
pf = pinr - & The following result characterizes this quantity. 

Theorem 4.3. Define the set ~&)&{x: p 5 Cx I pin,}. Then 
A:. = p, where $ is given by 

Problem 2. Establish whether or not system (1) exhibits over- 
shoot, and if so determine p... /?tsup{/l: Y c R&l)}. (9) 

The solution of Problem 2 is given by the following theorems 
and the corollary. 
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(note that this is equivalent to saying that ji is the largest value 
of p such that the maximal invariant set in 8&) is not empty). 
Moreover, if 6p has a non-empty interior (for instance, when 
Assumption 1 holds), the lower overshoot & = pint -d is 
positive. 

Proof: Since 9 is closed, there exists x,, such that x0 = 
argmin,,, Cx = /?. From the definition of the limit set the 
quantity i/x(k) - x011 can become arbitrary small for arbitrarily 
large k and for appropriate sequences w and d. This implies that 
for any E > 0, G(k) - Cxo I E, or equivalently Cx(k) I ji + E. 
Thus, we have PC:, I i - E, which implies, since E is arbitrary, 

that & < b. The fact that &* > ji can be established in a similar 
way by invoking the convergence of the trajectories to Ip. 0 

Remark 4.1. As a final remark we notice that the use ofinvariant 
regions allows us to extend these results to continuous-time 
systems I(t) = A(w(t))x(t) + h(t) + Ed(t) by introducing the 
Euler approximating system (EAS): 

x(k + 1) = [I + rd(w)]x(k) + sBu(k) + rEd(k), T > 0. (10) 

It can be shown that as T + 0 the maximal D’-invariant set for 
this system converges to the maximal V-invariant set for the 
continuous-time system. This enables us to solve the continu- 
ous-time case by reducing it to an equivalent discrete-time 
problem for the EAS. Moreover, the values ~~~““’ and pfz/’ for the 
continuous-time case are upper bounded by the values gAs and 
$$” computed for the EAS. 

5. Example 
To illustrate our results consider the following second-order 

system: 

0.1 
x(k + 1) = _ o.7 o,ss~Atk&) + [ ;]u(k) + [003]4k), 

y(k) = CO 31x(k) (11) 

when u(k) is the unity step, jjd(k)llrs I 1 and IA(k)1 5 0.4. 
Using Procedure 3.1 we computed the maximal invariant 

region contained in X&L) for different values of p and we found 
that the lower value for which the maximal invariant region 
contains the origin is & = 32.57 (the tolerance used in 
the bisection method is E = 0.01). Moreover, for p = 
piiT = 32.56 there is ksuch that I’(‘) is contained in 

int{X&)}. This implies (Theorem 4.2) that the system does not 
exhibit overshoot. Figure 1 shows the maximal invariant region 
of system (3) contained in X&J+). Surprisingly, the uncertain 
system (11) does not exhibit overshoot although both of the 
systems obtained by “freezing” the dynamics at either 
A = - 0.4 or A = 0.4 have overshoot. In fact, we found the 
values b’,,r = 5.283, d = 4.911 for the first system and 
& = 22.206, & = 20.492 for the second. The maximal invari- 
ant regions for the two systems contained in X&) when 1 takes 
the values p!, and &, i = 1,2, are shown in Figs 2 and 3, 
respectively. 

Our results can be compared against those by Elia et al. (1995) 
(where the uncertainties are assumed to be dynamic operators 
having I” to I” induced norm no greater than one) by eliminat- 
ing the exogenous disturbances in the example above, and re- 
casting it into the form shown in Fig. 4. Here the transfer matrix 
of the system is 

where 

P(z) = 
32 - 0.3 

zz + 1.95~ + 0.285 

W1 is a constant, and where o = A& 
From Elia et al. (1995) bounds for the step response can be 

obtained by considering the spectral radius of appropriate ma- 
trices, whose entries can be computed starting from the block 
transfer functions MI, and the reference signal r. Table 1 shows 
the values of ya.l [a lower bound of the peak of the infmity norm 
of the step response for a causal perturbation A obtained from 

Table 1. Comparison of different performance bounds 

Wl Y3.1 Y3.2 Y4.4 Ypin 

0.133 03 aJ 22.04 
0.087 650.65 G.09 650.65 11.52 
0.080 57.61 80.94 57.61 10.89 
0.050 11.74 16.49 11.74 9.073 

40 1 1 I I 

! steady state and peak v&e f 

-20 I I I I I I I I 
-20 -15 -10 -5 0 5 10 15 20 25 30 

Fig. 1. The maximal invariant region contained in X,(p). 
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-1 1 I 1 I I I a I 
-2 -1 0 1 2 3 4 5 6 7 

Fig. 2. The maximal invariant regions contained in X,,(&) and X0(&) for system 1. 

25 I I I , 
peak v@~e i j j 

-5 I I I I I I I 
-5 0 5 10 15 20 25 30 35 

Fig. 3. The maximal invariant regions contained in X,(&) and X,(&) for system 2. 

Fig. 4. The uncertainty setup. 



Brief Papers 2189 

Theorem 3.1 by Elia et al. (199511; y3.* [the upper bound System Techniques and Applications, Control and Dynamic 
of the peak of the infinity norm of the step response for a Systems, Vol. 51, pp. 129-182. Academic Press, New York. 
causal perturbation A obtained from Theorem 3.2 by Elia et al. Blanchini, F. (1994). Ultimate boundedness control for discrete- 
(1995)]; y4.4 [the worst-case peak of the infinity norm of the time uncertain system via set induced Lyapunov functions. 
step response for a non-causal perturbation A obtained using IEEE Trans. Automat. Control, 39, 428433. 
Theorem 4.4 in Elia et al. (1995)]; and yIain (the worst-case peak Blanchini, F. (1995). Non-quadratic Lyapunov function for ro- 
of the infinity norm of the step response for time-varying bust control. Automatica, 31, 451461. 
memoryless perturbation A obtained using our results), for Blanchini, F. and S. Miani (1996). On the transient estimate for 
different values of the uncertainty amplitude W1. As a final linear systems with time-varying uncertain parameters. IEEE 
remark we stress once again that the large difference observed in Trans. Circuit. Systems, 42, 592-596. 
these values is due to the conservatism entailed in recasting Brayton, R. K. and C. H. Tong (1979). Stability of dynamical 
a problem involving memoryless time-varying gains into a systems: a constructive approach, IEEE Trans. Circuit and 
dynamic I” form. Systems,CAS-26, 224-234. 

6. Conclusions 
This paper addresses the problem of robust performance 

(in the I” sense) of dynamic systems subject to parametric 
time-varying uncertainties in the presence of I” bounded 
disturbances. The main result of this paper provides a non- 
conservative robust performance bound for this case. This 
bound, obtained using a method based upon the construction of 
a suitable polyhedral region, can be computed in a finite number 
of steps. The drawback of the method is the potentially large 
number of constraints necessary to describe this region and the 
fact that the number of steps required to find it cannot be 
bounded a priori. On the other hand, as illustrated by the simple 
example, the performance bounds presented here are substan- 
tially less conservative than those achievable using previously 
proposed methods. 
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