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Rational C1 Suboptimal Compensators 
for Continuous-Time Systems 

Franco Blanchini and Mario Sznaier 

Absfruct- The persistent disturbance rejection problem (L1 optimal 
control) for continuous time-systems leads to nonrational compensators, 
even for single inputlsingle output systems [1]-[3]. As noted in [2], the 
difficulty of physically implementing these controllers suggest that the 
most significant application of the continuous time L1 theory is to furnish 
achievable performance bounds for rational controllers. In this paper we 
use the theory of positively invariant sets to provide a design procedure, 
based upon the use of the discrete Euler approximating system, for 
suboptimal rational L1 controllers with a guaranteed cost. The main 
results of the paper show that i) the L1 norm of a continuous-time system 
is bounded above by the I' norm of an auxiliary discrete-time system 
obtained by using the transformation I = 1 + TS and ii) the proposed 
rational compensators yield L1 cost arbitrarily close to the optimum, 
even in cases where the design procedure proposed in [2] fails due to the 
existence of plant zeros on the stability boundary. 

I. INTRODUCTION 
A large number of control problems involve designing a controller 

capable of stabilizing a given linear time-invariant system while 
minimizing the worst case response to some exogenous disturbances. 
This problem is relevant, for instance, for disturbance rejection, 
tracking, and robustness to model uncertainty (see [2] and references 
therein). When the exogenous disturbances are modeled as bounded 
energy signals and performance is measured in terms of the energy 
of the output, this problem leads to the well known If, theory. The 
case where the signals involved are persistent bounded signals leads 
to the C1 optimal control theory, formulated and further explored by 
Vidyasagar [l], [3] and solved by Dahleh and Pearson both in the 
discrete [4] and continuous-time [2] cases. 

The C' theory is appealing because it directly incorporates time- 
domain specifications. Moreover, it furnishes a complete solution to 
the robust performance problem [ 5 ] .  In contrast with the discrete time 
1' theory, however, the solution to the continuous-time C1 optimal 
control problem leads to nonrational compensators, even for single 
inputhingle output (SISO) systems. As noted by [2], the difficulty 
of physically implementing these controllers suggest that the most 
significant application of the continuous time C1 theory is to provide 
performance bounds for the plant. 

Since it is well known that for discrete-time SISO systems I' theory 
leads to finite-dimensional controllers, an approach to synthesizing 
finite dimensional controllers for continuous-time systems is to use 
a discrete-time controller connected to the plant through sample and 
hold devices. Indeed, in the past few years, considerable attention 
has been focused on sampled-data systems ([6-91 and references 
therein). In particular, synthesis of suboptimal C' controllers for 
these systems was addressed in [7], [8]. By using fast sampling, the 
sampled-data system is approximated with a time-varying discrete- 
time system, which is then "lifted" to yield a higher-dimensional, 
linear time-invariant (LTI) system. Finally, the suboptimal controller 
is designed by applying optimal I' theory to the lifted system. 
Hence, this approach results in finite-dimensional controllers (albeit 
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time varying). It does not yield a guaranteed cost, however, in the 
sense that, due to intersampling effects, the I' norm of the discrete- 
time system used in the design process can be significantly lower 
than the L' norm of the resulting closed-loop sampled-data system. 
Additionally, the use of sample and hold elements usually entail 
a performance loss, which may be significant, since the control is 
constrained to remain constant during the sampling period. While 
these effects can be alleviated by using fast sampling, this will result 
in very large order controllers (see [7] for details). 

In this paper we use the theory of positively invariant sets to 
provide a design procedure, based upon the use of the discrete 
Euler Approximating System (EAS), for suboptimal rational C1 
controllers. The main results of the paper show that i) the L' 
norm of a continuous-time system is bounded above by the I' norm 
of the corresponding EAS, and ii) the optimal C' system can be 
approximated arbitrarily close by a rational compensator related to 
the optimal I' compensator for the EAS by the simple transformation 
z = 1 + 7s. 

Our approach represents a significant departure from the sampled- 
data approach since it directly yields a continuous-time, LTI rational 
controller. Moreover, it provides a "guaranteed" cost, since the C' 
norm of the resulting closed-loop system is bounded above by the 
1' norm of the auxiliary discrete-time system used to carry out the 
design. 

The paper is organized as follows: In Section I1 we introduce the 
notation to be used, and we restate the main results concerning the 
C1 problem. In Section I11 we introduce the discrete-time EAS, and 
we propose a method for designing suboptimal rational controllers, 
yielding cost arbitrarily close to the optimal 13' cost, based upon 
the use of the optimal 1' theory for the EAS. In Section IV we 
present a simple design example, and we compare our controller 
to the optimal C' controller. Finally, while this paper was being 
reviewed, a completely different approach to synthesizing suboptimal 
rational L1 controllers was proposed by Ohta et al., [lo]. We explore 
the connections with our approach in Section V, where we also 
summarize our results and point to some open questions. 

11. PROBLEM FORMULATION AND PRELIMINARY RESULTS 

A. Notation 
By L, we denote the Lebesgue space of complex valued transfer 

matrices which are essentially bounded on the imaginary axis with 
norm llT(z)ll,  A sup{a,,,[T(jw)]}. 'H, denotes the set of stable 
complex matrices G(s) E Cm, i.e., analytic in 9 ( s )  2 0. R'H, 
denotes the subset of 'H, formed by real rational transfer matrices. 
I ,  denotes the space of bounded real sequences { e k }  equipped with 
the norm llellm e sup,lek). I' denotes the space of real sequences, 
equipped with the norm 11q111 = l q k l  < 03. Lp(R+)  denotes 
the space of measurable functions f ( t )  equipped with the norm 

l l f l l P  = ( s ,  I f ( t ) l P d t ) P  < ca. RC' denotes the subset of C' 
formed by matrices with real rational Laplace transform. Given 
a function q ( t )  E C' we will denote its Laplace transform by 
Q ( s )  E Cm, and, by a slight abuse of notation, we will denote 
as 11Q(s)111 e ~ ~ q ( t ) ~ ~ l .  Throughout the paper we will use packed 
notation to represent state-space realizations, i.e., 

1 

G(s) = C ( s 1 -  A)- 'B  + D = 
A (S) 
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Fig. 1. The generalized plant. 

A + BzF + LCz + LDzzF 

F ( -R,(Cz + D22F) 

Finally, given two transfer matrices T = (Ftk Fi:) and Q with 
appropriate dimensions, the lower linear fractional transformation is 
defined as h ( T ,  Q) A 2'11 + T12Q(I - TzzQ)-'Tz1. 

- L  Bz + LDzzRb 

0 Rb ) ( J )  
Rc - R ~ D z z R ~  

B. The C' Optimal Control Problem 
Consider the system represented by Fig. 1, where S represents the 

system to be controlled; the scalar signals w E Cm and U represents 
an exogeneous disturbance and the control action respectively and 
where C and y represent the output subject to performance constraints 
and the measurements available to the controller respectively. As 
usual we will assume, without loss of generality, that any weights 
have been absorbed in the plant S. Then, the L' optimal control 
problem can be stated as: Given the system (S) find an internally 
stabilizing controller U(.) = K(s)y(s) such that the worst case (over 
the set of all w( t )  E Cw, llwll, 5 1) maximum amplitude of the 
performance output ( ( t )  is minimized. 

To guarantee that this problem is well posed, in the sequel we will 
assume that Tz(s) does not have zeros on the jw-axis, including 00. 

Theorem I (Dahleh and Pearson 121): Let Tz(s) have n distinct 
zeros Zk in the open right-half plane and no zeros on the jw-axis. 
Then: 

subject to 

Furthermore, the optimal error 4 has the form 

m 

i = O  

and satisfies the interpolation condition 
m 

@(Zk) = C 4 t e - z k t '  = Tl(Zk), k = I , * * ' , R . .  
i = O  

Remark I :  From ( 5 )  it follows that the optimal compensator has 
a nonrational Laplace transform. 

D. Existence of Suboptimal Rational Controllers 
In this section we consider the problem of approximating the 

optimal cost po with controllers in RC'  . First note that, without loss 
of generality, we can assume t k  = ( k  - 1)T, T > 0, k = 1,. . . , n. 
Indeed, from Theorem 9 in [2] it follows that, given 6 > 0, we 
can take T small enough and 4% such that the corresponding cost p 
satisfies po 5 p 5 po( 1 + 6). Define 

;, t E [ t z  - f ,  t ,  + $1; 
0, otherwise. 

m 

2=0 

It is immediate that f: E 13' and, for E 5 T 

Ilf'lll = SUP Ilf' * 4lcc = 11d111~ 
W E L O O ,  IIuII=' 

Moreover,!t is easily shown that for E small enough there exist 4; 
such that f ( t )  = 4:f:(t) satisfies the interpolation constraints 

IC = 1 , " . , n  -F; ( zk )  = ~ l ( z k ) ,  

and such that 4: + c$~ as E + 0. Finally, since the set of functions 
with rational Laplace transfer functions is dense in 13' [12] it can 
be shown (see Appendix A) that given 7 > 0 small enough, there 
exist a function f'(t) E RL' such that Ilf'(t) - f'(t)lll 5 7 and 
such that f'(t) satisfies the interpolation constraints. It follows that 
the suboptimal error f'(t) can then be achieved by the stabilizing 
rational compensator Q( s) = (F'( s) - TI (s))/Tz (s). These results 
are summarized in the following lemma. 

Lemma I :  Suppose that the C' optimal control problem has a 
(nonrational) solution with optimal cost po. Then, for any pr > po 
there exists a suboptimal intemally stabilizing compensator K' E 
R L '  such that the resulting closed-loop transfer function satisfies 
I I T < W l l l  I P'. 

III. PROBLEM SOLUTION 
Although Lemma 1 guarantees the existence of a suboptimal 

rational compensator, the proof is not constructive. In this section 
we address the issue of finding a suboptimal rational controller. To 
that effect we introduce the concepts of the EAS and of positively 
invariant sets [13]. 
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Theorem 3: Consider a strictly decreasing sequence T~ + 0, and n n 

let p,  = infKstablllzlngIITC(fUEAS)III denote the optimal 1' cost for the Ea, Re{zLk} + CcYz+n 1m{zrk} 

A. Dejinitions 

EAS is defined as the discrete time system 
Dejinition I :  Consider the continuous time system (S). Then, the 

A rk 5 1 

where T > 0. 
Remark 2: Let T ( s )  and T(EAS) ( z ,  T) denote the transfer matri- 

ces of (S) and its EAS respectively. From the definition it can be 
easily seen that T ( E A S )  ( z ,  T) = T (  s) I z = l + r s .  Moreover, given any 
controller K( s) we have that the corresponding closed-loop systems 
satisfy 

TCi(s) = Fr(T(s), K ( s ) )  

(2, T )  = Tc, (s) IZ=lfTS = F, ( T ( E A S ) (  z ,  T), K ( E A S ) (  z ,  7)) 

where Ii(EAS)(z,  T) = Ii(s)Iz=l+rs. 
Dejinition 2: Consider the system 

k ( t )  = A z ( t )  + B v ( t )  (6) 

Proof: The proof will be split into two parts. First we show 
that the sequence p1 is nonincreasing. To this aim, for a given T ,  let 
K ( z ,  T )  denote the optimal 1' controller for the EAS and consider 
the controller Iic(s) = A-(z, T) Iz=l+Ts. Then, the corresponding 
closed-loop systems are related by 

A 

and, from Theorem 2, we have that S,, is stable. Let C E ( T )  denote 
the closure of the origin-reachable domain of (EA&) with the 
bounded input llvll 5 1 and define 

A Z(E) = {z: IIC,rz + Dc,vl(oo 5 E for all 1 1 ~ 1 1  5 1) 

where x E R" and u ( t )  E R C Rm. A set C C R" is a positively 
invariant set of (6) if for any initial condition 2o E 

definition holds for the case of discrete-time systems. 

and for any The set C E ( T ~ )  is positively invariant for the EAS. Therefore, 

z E ~ C E ( T ~ )  and all l lvll 5 1 
the corresponding trajectory .(t, zo, v ( t ) )  E for all t ,  A similar denoting by acE(Ta) the Of we have that for 

(10) ( I +  r ,Aci )z  + ~ , B c , v  E C E ( T ~ )  
B. Proposed Design Method 

In this section we introduce a method for finding suboptimal 
rational controllers yielding cost arbitrarily close to the optimal. An 

the ill-posedness arising from the existence of zeros on the jw-axis. 
The key to establish these results is to show that i) the 1' n o m  of 
the EAS is an upper bound of the C1 norm of the continuous-time 
system (Theorem 2) and ii) the optimal C' cost is recovered when 
the parameter T + 0 (Theorem 3). 

Theorem 2: Consider the system 

and, by convexity, for 0 < 7;+1 < T~ we have 

additional advantage of this method is that it can be used to remove ( I  + T ~ + I A ~ ~ ) ~  + ~,+iB,rv  E C E ( T ~ ) .  ( 1 1 )  

Hence CE(T*T,) is positively invariant for (8) [15], with T = T ~ + I .  

Since C E ( T ~ )  contains the origin, then it includes C E ( T * + I )  so 
CE(Tz+1) c x E ( T t )  z ( c L a ) .  It that 

pz+l = min{E: C ( T ~ + I )  C Z(E)} I P ~ .  

C = Cix + Di iv .  

Assume that the corresponding ( E A S )  

Z k + i  = ( I  + TA)xk -k TBlVk 

i k  = Clxk + DiiVk 

is asymptotically stable and such that 

Then system (7) is asymptotically stable and such that 

Since p,  is a nonincreasing sequence, bounded below by po (from 
Theorem 2), it follows that it has a limit p* 2 po. From Lemma 1 
we have that, given any E > 0, there exist a rational controller Ii(s) 
that achieves an C1 cost pr such that po 5 pcLT 5 po + 0.56. Let 

( 7 )  denote the 1' norm of the closed-loop EAS achieved using the 
controller I i ( z ) ,  z = 1 + TS. From Theorem 2, we have that there 
exists T* such that for all T 5 T*, ~ E ( T )  5 pCLr + 0 . 5 ~  5 po + E. 

Therefore, since p, = infKstablllzlngIIT:VEAS'(z, r,)lll we have that, 
for all i such that T~ 5 T*, po I p,  5 ~ E ( T , )  5 po + E. Hence, 
p* = 1imtAmpt  = po. 

Next, we recall the main result regarding the SISO discrete-time 
I' optimal control problem. 

Theorem 4 (Dahler and Pearson [2]): Let Tz (2) have a distinct 
zeros z k  outside the closed unit disk. Then 

(7) 

(8) 
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Furthermore, the optimal error 4 satisfies 

4 k  = 0, whenever ( T k l  < 1 

TABLE I 
COST AND CLOSED-LOOP SYSTEMS FOR SEVERAL VALUES OF 7 

Note that from (14) it follows that the optimal compensator is rational. 
Since, if a rational controller l i ( z )  yielding an Z1 cost p~ is found 
for (8), then l<(rs + 1) internally stabilizes (7) and yields an C1 cost 
pc 5 P E ,  it follows that a rational compensator can be synthesized 
using the EAS with suitably small T. By combining this observation 
with the results of Theorems 2, 3, and 4, we can state now the main 
result of this section. 

Theorem 5: Consider the ,C1 optimal control problem for SISO 
continuous time-systems. A suboptimal rational solution, with cost 
arbitrarily close to the optimal cost, can be obtained by solving a 
discrete-time 1' optimal control problem for the corresponding EAS. 
Moreover, if Ay( z )  denotes the optimal I' compensator for the EAS, 
the suboptimal C1 compensator is given by l<(rs + 1). 

Remark 3: Since the optimal discrete-time closed-loop plant has 
all its poles at the origin, it follows that the closed-loop continuous 
time-system has all its poles at s = ( - l /~) .  

Remark 4: The transformation 1 + TS maps the imaginary axis, 
except the origin, outside the unit disk. Hence, our approach maps 
plant zeros on (-jm, jco) - (0) outside the unit disk, providing 
a guaranteed cost rational continuous-time compensator in the cases 
in which the optimal C 1  theory developed in [2] fails. In particular, 
it provides rational continuous-time compensators for strictly proper 
continuous-time plants which have no zeros at the origin. In this case, 
in view of Theorem 1, we can achieve a cost which is arbitrarily 
close to the infimum of the set of all costs associated with rational 
compensators. 

IV. A SIMPLE EXAMPLE 
Consider the SISO plant used in [2] 

s - 1  
s - 2  

P ( s )  = - 

and assume that the output and measurement equations are given by 

< = Pu 

y = -Pu + v 

where v E P. 
The optimal L' controller is given by [2] 

( S  - 2)(1.7071 - 4.1213e-0 88145) 
I<Ll = (15) ( s  - 1)(-0.7071+ 4.1213e-0 88148) 

and yields an optimal cost po = 5.8284. For T = 0.1, the Youla 
parameterization of the EAS, with F = -2.9091 and L = 0.3667 
yields 

1 7 6 ( ~  - 1.1) 
1 2 5 ( 1 . 1 ~  - 1 ) ( 1 . 2 ~  - 1) 

TI = 

( 2  - l . l ) ( 2  - 1.2) 
(1.12 - l j(1.22 - 1)' 

T2 = 

cont 5.83 1.7071 - 4.1213e(-0.RR14) 

0.1 6.18 1.84 - ('f4d3f 

0.2 6.49 
0.5 7.34 16 

7 7(1+0.5~)~ 
_ _  

Solving for the optimal Z1 compensator yields optimal cost pd = 
6.184, with the corresponding optimal Q and compensator I<E.~s  
given by 

Q ( z )  = 2.4309 - 0.0525zf' + 0 . 0 6 0 7 ~ - ~  + 0 . 2 0 8 9 ~ ~ ~  
+ 0 . 4 0 0 4 ~ - ~  + 0 . 6 5 4 2 ~ - ~  + 0 . 9 5 5 4 ~ ~ ~  + 1.3458z-' 

+ 1.83432-' - 3.2895z-' (17) 

I i E A S  = h(J, Q ) .  
Finally, the transformation z = TS + 1 yields the corresponding 
compensator for the continuous time system. These results, along 
with the results of several designs obtained using different values of 
T, are summarized in Table I. 

v. DISCUSSION AND CONCLUSIONS 

A recent research effort [1]-[4] has lead to techniques for designing 
optimal compensators that minimize the worst case output amplitude 
with respect to all inputs of bounded amplitude. In the discrete- 
time SISO case, minimizing the I' norm of the closed-loop impulse 
response yields a rational compensator. Unfortunately, the solution to 
the continuous-time version of the problem is nonrational. Thus, given 
the difficulty of physically implementing a system with a nonrational 
transfer function, in most cases this theory is primarily used to furnish 
a performance limit for any linear feedback compensator. 

In this paper, we have proposed a suboptimal design technique 
which enables us to compute near-optimal continuous-time rational 
compensators by applying the 1' theory to the Euler forward approx- 
imating system, followed by the transformation z = 1 + TS. We have 
shown that the C' norm of the resulting closed-loop system is upper 
bounded by the l1 cost of the corresponding EAS and that the optimal 
C' cost is recovered as the parameter T -+ 0. 

One appealing feature of our technique is that through the use of 
the simple transformation z = T S  + I, it removes the ill-posedness 
due to the presence of zeros on the imaginary axis (except for those 
at the origin). This property allows us to obtain a guaranteed cost 
compensator even in the cases (such as strictly proper plants) where 
the C' theory developed in [2] is not applicable. Moreover, our 
results also apply to MIMO systems. Although in this case the 1' 
optimal control problem leads to infinite-dimensional optimization 
problems, there are currently efficient methods to get approximate 
rational solutions by solving suitable truncated problems [ 161. These 
methods can be combined with our approach to furnish suboptimal 
rational solutions to general multiblock L1 problems. 

Finally, while the present paper was under review, a method for 
synthesizing suboptimal rational L' controllers was proposed by 
Ohta et al., [IO]. While this approach is completely different from 
the approach proposed here, there seems to be strong connections 
between them. Noteworthy, when the parameter X in [lo], (17) is 
set equal to T in (EAS), both approaches lead to a closed-loop 
system with all the poles located at s = ( - l / ~ ) .  In fact, it is 
conjectured that both approaches yield the same closed-loop system. 
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Although consistent numerical experience supports this fact, so far 
no general proof is available. Research is currently being pursued in 
this direction. 

APPENDIX A 
PROOF OF LEMMA 1 

Consider a strictly decreasing sequence f 3  -+ 0 and define 

t ,  = (2 - 1)T, 12 2 m. 

Since all Zk are distinct, T can be selected such that e--zaT # 
z # J .  It follows that F has full row rank since it contains a 
Vandermonde matrix. We will show that there exists J such that 
F'3 has full row rank for all j 2 J. Assume, to the contrary, that 
there exist a sequence Z = { j l ,  3 2 , .  . .} such that for J E 2, F3 

does not have full row rank. Then, there exists X3,  ( ] A 3  / I D L )  = 1, such 
that X3FJ = 0. Thus, since et  --.) 0 and Zk, k = 1 , .  . ' , m are in 
the open right-half plane, we have that for any 6 > 0 there exists 
J such that 

m 

I ~ l J A q o o J P - z ' ~ ~  - FkfJ (& ) I  
1=0 

5 0 3 ( z , f J )  5 6 V j  E 2, j 2 J ,  k = l , . . . , n  . 
('42) 

Since I)X311, = 1, the sequence X3 has an accumulation point 
X such that l l i l l w  = 1 and kF = 0. But this contradicts the 
fact that has full row rank. Hence there exist coefficients & 
such that f ( t )  = &fz'(t)  satisfies the interpolation constraints 
@ ( z k )  = T l ( z k ) .  Moreover, since lim,,o F ~ ( z )  = e - z t k  it follows 
that 4: can be selected such that 4: + Q ~ .  Hence Ilf*lll + 114111. TO 
complete the proof consider a sequence F: of rational approximations 
to F: (in the I' topology) and define 

since 

APPENDIX B 
PROOF OF THEOREM 2 

Denote by A the set of eigenvalues of A and define 
@ ( A )  e minxE* 2[(-re(A)/1X12)]. Then (8) is asymptotically 
stable if and only if (7) is stable and 0 < T < @(A). Therefore, 
if A is asymptotically stable, then (7) must be so. Let CC and 
C E ( T )  denote the closures of the origin-reachable sets of (7) and 
(8), with 1 1 ~ 1 1  5 1. It follows that pc = min{E: CC Z( f ) }  and 
p~ = min{E: C E ( T )  C Z ( E ) } ,  where Z(6) is defined in (9). The 
set C E ( T )  is convex and positively invariant for (8) SO, denoting 
by ~ C E ( T )  its boundary we must have that for x E ~ C E ( T )  and 
for all U such that ( (v ( (  I 1 

( I  + T A ) ~  + ~ B i v  E C E ( T ) .  (B1) 

Let C,,(,)(x) denote the tangent cone to C E ( T )  at x .  From the 
convexity of C E ( T )  and (Bl)  it follows that 

This condition implies [15] that the set C E ( T )  is a positively invariant 
set for (7). Since C E ( T )  contains the origin, it follows that it must 
contain CC. Hence CC & C E ( T )  

To prove the second part of the theorem consider the asymptotically 
stable continuous time systems 

Z ( ~ E ( T ) )  and p c  5 ~ E ( T ) .  

j: = A x +  B l v + 6 w  033) 

X = A x + 6 w  (B4) 

where w( t )  E Lw,  Ilw(t)ll 5 1 is a fictitious disturbance and 6 is 
a positive weighting parameter. Denote by C&(6) and C w ( 6 )  the 
closures of the respective origin-reachable sets. Then C> (6) is given 
by the Minkowsky sum of CC and Cw(6) .  Note that the asymptotic 
stability of A guarantees that these sets are compact. 

For p > pc the set Z ( p )  contains Z ( p c )  in its interior so, by 
an appropriate choice of 6 the set C, (6) can be made small enough 
to guarantee that C&(6) & Z(p) .  To complete the proof, we show 
that there exists T* such that for any 0 < T 5 T * ,  the set C*,(6) 
is a positively invariant set of (8). Indeed, if this is the case then, 
since C>(S) contains the origin, it also contains the set C E ( T )  and 
therefore C E ( T )  Z ( p ) .  It follows that ~ E ( T )  5 p. The set C>(6) 
contains the origin in its interior since (B3) is controllable from the 
input w. Since C>(6) is invariant for (B3), for each x E aC>(6) ,  
and for all llvll 5 1, IlwII 5 1, the vector Az+Blv+6u:  belongs to 
the tangent cone to C&(6) at x .  It follows that there exists a strictly 
positive T such that 

(B5) x + T ( A X  + Blv) E int[C:(6)], 

where int (.) denotes the interior of the set. Define 

Vllvll I 1 

T ( Z )  = SUP{T: z + T[AX + Blv] E C g ( 6 )  V ~ ~ V I I  5 l}. 

Since C;(b) is convex and x E aCG(6)  if (B5) holds for some 
T > 0, then it holds for all 0 < T I r ( x )  and in particular 

r ( x )  x = z + ,-[Air + Blv] E int[Cg(6)] Vllvll 5 1. (B6) 
d 

m 

IF':(*k) - F:(zk)l I / If:(t) - f:(t)/dt = /If: - f:lll 

a similar argument shows that there exist J such that .F3 has full row 
rank for j 2 J. It follows that, for any 11 > 0, there exists 4; such 

rational and satisfies the interpolation constraints F'( Zk) = TI ( z k ) .  

The suboptimal rational compensator is given by &(s) = ( F ' ( s )  - 
T1(.5))/Tz(s). 0 

Finally, we show that ~ ( x )  is bounded below by a positive number 

there exist sequences xk E a C ; ( b ) y  v k i  l l w k l l  5 and Tk > o, 
Tk + o* such that 

0 as 2 varies on the boundary of C& (6). By contradiction, assume that 

that f ' ( t )  = E,"=, 4rfAr(t) satisfies Ilf'lll - 1 1 @ 1 ( 1  5 7 ;  F' ( s )  is xk + T ~ ( A x ~  + Biv~) $! Cg(6). 037) 

Since aCg(6) and B = {U: llvl~ll 5 l} are compact sets, the 
sequence { zk, tik } E ax& (6) x 0 contains a subsequence converging 

A 
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to a point (L ,  2). Hence, without loss of generality we can assume 
that X L  -+ & and uk + 1. Select K such that 0 < T k  < $T(z)  for 
k > K .  Since c;-(n) is convex and X k  E ac&(6), (B7) implies that 

which, in view of the convergence of sk and u k  contradicts (B6). 
Therefore, there exists T I  > 0 such that for 0 < T < T I ,  

(B5) holds for all .r E a X ; . ( h ) .  It follows [14] that Z;>(b) is a 
positively invariant set for (8). The proof is completed by selecting 
T* = min { T I ,  H(‘2)) to guarantee asymptotic stability of system 

0 
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Routing with Limited State Information 
in Queueing Systems with Blocking 

Panayotis D. Sparaggis, Don Towsley, and Christos G. Cassandras 

Abstract- We prove the optimality of routing policies with limited 
state information that are employed in queueing systems with finite 
capacities and customers arriving at arbitrary instants. Using sample 
path arguments we show that, on one hand, when service times are 
exponential and capacities are equal, the round robin policy minimizes 
the expected number of losses by any time t and at the same time, 
maximizes the expected number of departures by t ,  over all policies that 
use no state information. On the other hand, when service times are 
deterministic, a modified round robin policy that makes use of limited 
state information outperforms stochastically all dynamic policies that 
have richer state information, in terms of the number of losses and the 
number of departures by t .  

I. INTRODUCTION 
A classical problem in the control of queues arises when rout- 

ing decisions have to be made for jobs that arrive in front of a 
system which consists of a number of parallel queues with iden- 
tical exponential servers. If the queue lengths are observed, then 
the ‘Join the Shortest Queue’ (SQ) policy has been shown to be 
optimal several times in the past, first by Winston [20] who proved 
that, in a purely Markovian system with infinite capacities, the 
SQ policy maximizes the discounted number of jobs that complete 
service by a certain time. Weber [17], Ephremides et al. [4], and 
Walrand (161 extended Winston’s results to systems with general 
interarrival time distributions. Menich [ 101 and Johri 171 established 
the optimality of the SQ policy in systems with state-dependent 
service rates and Poisson arrivals. Finally, Whitt 1191 called attention 
to the exponentiality assumption regarding the service times and 
presented counterexamples to demonstrate that there exist service 
time distributions for which it is not always optimal to join the 
shortest queue. All the above authors considered systems consisting 
of queues with infinite buffer capacity. Recently, Hordijk and Koole 
in [6] and Towsley et al. in [I51 extended the optimality of the SQ 
policy to finite capacity queueing systems. The common theme in the 
existing literature i s  the availability of state information that i s  used 
to determine the optimal policy. In this paper we set the problem in a 
different perspective. In particular, we address the following question, 
which is fundamental from a control standpoint “What i s  the structure 
of the optimal policy when limited state information is available?’ 
Specifically, when the queue lengths are not observed. This situation 
is common in various systems; for example, in communication 
networks, the source station typically does not have instantaneous 
state information regarding the remote destination stations. 

The paper answers the above question in the context of systems 
with finite capacities. In particular, we characterize the system’s 
performance by the following two counting processes: a) the number 
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