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A Convex Optimization Approach to Synthesizing
Bounded Complexity Filters

Franco Blanchini and Mario Sznaier

Abstract—We consider the worst-case estimation problem in the pres-
ence of unknown but bounded noise. Contrary to stochastic approaches, the
goal here is to confine the estimation error within a bounded set. Previous
work dealing with the problem has shown that the complexity of estimators
based upon the idea of constructing the state consistency set (e.g., the set of
all states consistent with the a priori information and experimental data)
cannot be bounded a priori, and can, in principle, continuously increase
with time. To avoid this difficulty we propose a class of bounded complexity
filters, based upon the idea of confining —length error sequences (rather
than states) to hyperrectangles. The main result of the technical note shows
that this can be accomplished by using linear time invariant filters of order
no larger than . Further, synthesizing these filters reduces to a combina-
tion of convex optimization and line search.

Index Terms—Linear time invariant (LTI), filtering, worst-case esti-
mation.

I. INTRODUCTION

In several estimation problems, the only information about the noise
is a pointwise bound on the norm. Typical examples include quanti-
zation, sampling, measurement errors and, more in general, all cases
in which a stochastic characterization of the noise is not available.
In these circumstances the so called unknown-but-bounded approach,
which aims at minimizing the worst case estimation error could be pre-
ferred to stochastic estimation methods [1].

Initial work in this area dates back to the early 70’s [3], [13]. It was
immediately apparent that characterizing the set of states compatible
with measurements is in general hard. An ellipsoidal approximation
was therefore proposed, which is, in general, quite conservative.

Subsequent work on worst estimation in the presence of �� bounded
disturbances was studied in [9], [11], [18] (see also the survey [10]).
The main result of these papers shows that pointwise optimal estima-
tors can be obtained as the product of a subset of past measurements
and a (time varying) gain. Both the gain and the set of relevant measure-
ments result from solving a linear programming optimization problem.
However, this optimization problem involves all past measurements.
Thus, the complexity of these estimators grows with time.

The use of nonlinear recursive filters was proposed in [17], where
the idea was to bound the set of possible states consistent with the
output observations by a set whose center is propagated recursively and
whose shape can be found by solving (at each instant) an optimization
problem. Still, the complexity of the resulting observer is potentially
high. A semi-recursive algorithm was proposed in [21]. In the case of
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known initial conditions, the optimal �� estimation problem was re-
duced to an �� model matching problem [2], [5], [6] that can be solved
(with arbitrary precision) by using the techniques in [5]. The case of
unknown initial conditions was handled by using initially a non-re-
cursive pointwise optimal estimator similar to that in [18], switching
afterwards to the recursive �� estimator. Since this estimator is based
on solving a 2—block �� model matching problem its complexity (and
hence that of the overall estimator) cannot be bounded a priori.

Pointwise optimal estimators were obtained in [15], [16], by con-
structing a polyhedral set guaranteed to contain the states of the plant.
However, the resulting algorithm is non-recursive and, again, the com-
plexity of the estimator is not bounded a priori and potentially increases
with time.

Motivated by the high complexity entailed in the approaches above,
our goal is to synthesize fixed order recursive filters for systems subject
to �� bounded disturbances, with guaranteed worst case estimation
error. The main idea underlying the proposed approach is to, rather
than attempting to confine the state of the system to a given set, to
simply confine the estimation error to hyperrectangles. Intuitively,
this amounts to willingly dropping information in return for obtaining
bounded complexity filters. Our main results show that the problem of
synthesizing bounded complexity filters that confine the error to the
tightest possible hyperrectangle, for a set of suitable initial conditions,
can be reduced to a combination linear programming/line search. For
initial conditions outside this set, the estimation error converges, in
finite time, to the design value. Finally, we briefly discuss an extension
to the case of switching plants.

II. PRELIMINARIES

In the sequel, we denote by ���� the �—norm of � � ��:
����

�
� ���� ����. ���� is the � � � induced norm of matrix

� � ����: ����
�
� ���� �

���� �. We denote by ��� and ��� the
extended Banach spaces of vector valued real sequences, ����� � ��,
respectively equipped with the norms ����

�
� �

���
�����, and

����
�
� ���� �����. ��� and ��� are the unit balls in ��,

��. �	�� �� is the �� to �� induced norm of the operator
	 � �� � ��, e.g., �	�� ��

�
� ���� ��� �	��� 
���� . � 	�


denotes the �—transform1 of a sequence ������ :

� 	�

�
�

�

���

���
��

Given a scalar ARMA model of the form

�	
 � 	

�

���

���	 	 �
 �

�

���

���	 	 �
� � 
 � (1)

its �—transform representation is

�	�
 �

�

���

���
�

�

���

����
�	�
� (2)

The notion of equalized performance, introduced in [4] (see also
[12]) will play a key role in obtaining bounded complexity filters.

1this corresponds to setting � � ��� in the usual �-transform representation.
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Fig. 1. Equalized filtering idea: black disks and white circles denote the true
and estimated output trajectory, respectively.

Definition 2.1: Consider a linear time invariant (LTI) plant described
by a model of the form (1). Given � � �, the plant is said to achieve
an equalized �—performance level � if, whenever the input and output
sequences ���� ��� satisfy ������ � � and ������ � � for all � �
�� � � �� � � � � � � � � �, then ���� � ��� � � (thus ���� � 	�� � ��
for 	 
 �). In particular the case � � � will be simply referred to as
equalized performance.

As shown in [4], only superstable plants (in the sense of [12])
achieve (finite) equalized performance. However, any stable plant
achieves equalized �—performance for some large enough �. Further,
if a SISO plant achieves �—performance � for some finite �, then it
achieves ��—performance � for any �� 
 �.

Next, we recall, for ease of reference, some properties concerning
the relationship between equalized performance and the �� induced
norm.

Lemma 2.1 ([4]): Given a stable, LTI SISO plant ���� �
�������, as in (2) with finite r-equalized performance ����� for
some �� � �, the following holds:

1) ��� �� � �����, with the equality holding for finite impulse
response (FIR) plants.

2) ���� � ��� �� , as ��	
.

A. Why Equalized Filtering?

Recursive set-valued observers [14], [17] are based upon the idea of
propagating a set known to contain the (unknown) state of the plant,
which may have high complexity. To avoid this difficulty, in this tech-
nical note, rather than attempting to confine the state, we will work di-
rectly with the estimation error and attempt to design a filter such that,
if at some time instant �� the past � values of the error are “captured”
in an r-hyperrectangle, then this property will hold for all � 
 �� and
all ���� � �� ���� � � (see Fig. 1). Further, we are interested in
synthesizing the tightest hyperrectangle satisfying this property. The
main result of this technical note shows that this can be accomplished
by reducing the problem to an equalized performance one. Moreover,
contrary to the controller design case considered in [4], in the filtering
case the results are easily extended to MIMO systems by simply con-
sidering a collection of component-wise filters.

III. EQUALIZED PERFORMANCE FILTERING

Consider an LTI plant subject to �� bounded disturbances, with state
space realization

���� ���� �����

�� ����

�� ����� ���� (3)

or with �—transform representation

���� �
����

����
���� (4)

Fig. 2. Filtering scheme.

���� �
����

����
���� ������ (5)

where � � �, � � � , � � � and � � � represent the output
to be estimated, the measurements available to the filter, process and
measurement noise, respectively, and where ���� � ���������. Note
that we have assumed that the plant is strictly proper with respect to
the input �. This assumption is made for notational simplicity and can
be removed at the price of a more involved notation in the subsequent
development. For the time being, we will also assume that � is a scalar
�� � ��, but this assumption will be removed later.

Our goal is to design a filter of the form

����� �
����

����
���� (6)

such that the estimation error

���� � ����� ����� (7)

is confined to an hyperrectangle. The complete filtering scheme is il-
lustrated in Fig. 2.

In the sequel, we will limit our attention to filters that belong to the
class of generalized Luenberger observers, defined as follows:

Definition 3.1 ([7]): A system of the form

���� ���� � ��� (8)

��� � �� �!�� (9)

��� ����� (10)

is a generalized Luenberger (state) observer for system (3) if � is a
stable matrix and ������ �	 � as ��	
, when���� � � and ���� �
�.

Next we recall a characterization of the class of the generalized ob-
servers.

Lemma 3.1: The system (8)–(10) is a generalized observer for (3)
if and only if � is stable and there exists a full column rank matrix "
such that

"�� ��� ��"� (11)

 " �!�� � �# (12)

Proof: See [7], [19].
Remark 3.1: The standard �—order Luenberger observers corre-

sponds to the choice " � � and ! � �. Kalman filters fall in this
category. Selecting a “tall” " matrix leads to a higher order observer,
with additional degrees of freedom that can be used to optimize perfor-
mance.

Next we show that restricting the filter to be a generalized observer
imposes a constraint on its structure.

Lemma 3.2: If the filter (6) is a generalized state observer for system
(3), then the polynomial matrices ���� (of dimension �  $), ����
(of dimension % $),���� (of dimension � %) and the polynomials
���� and ���� satisfy the following condition:

����������������� � �������� (13)

for some polynomial matrix ����.
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Proof: From (8)–(12) it follows that:

��� � ����� ����� � ��� � ������ ��	��

� �
���

�� ���� � ��� � �
��� � ��	�

�� � ��� ��� ���� ����� ��	�

������ � �����	�� (14)

Consider now the change of variables � � � and � � ��� � ��. In
term of these variables the state space representation of the combined
plant-filter system is given by

����
����

�
� �

� �

��
��

�

� �

�
� ���

��
	�

�� � � � �� �
��
��

� � � ��� �
��
	�

�

Thus � is unobservable from �. Hence, the modes of � are canceled in
the transfer function from � to �, ���� . From (4)–(7) it follows that:

���� �
����

����
�


���

����

����

����
����

�

���

����
�	���

�
���������
�������

��������
����

�

���

����
�	����

Since ���� � ����� ����, the cancelation of the modes of � in ����
implies that �������� � 
������� has ���� as a factor, precisely
what (13) states.

In the sequel we will limit our attention to polynomial matrices sat-
isfying (13) for some ����, so that the estimation error is governed by

���� �
����

����
���� �


���

����
�	���� (15)

We are now in the position to formally state the equalized-perfor-
mance filtering problem.

Problem 3.1: Given an integer � � � and � � �, find a filter of the
form (6) of order � satisfying the constraint (13) and such that ���� is
stable (i.e., all its poles are outside the unit circle) and

����� � � �� � �� 	� 
� � � � � � � ����

� � �� ��� � �  ��� ��� ��������� �� 	 � �!�� (16)

Note that the problem above does not explicitly make any assump-
tions on the initial conditions of the plant ��. As we will show later, if
the plant achieves an equalized performance level � " �, then there
exist a set of initial conditions 	���� such that if �� � 	���� then
���� � � for all  . For initial conditions outside this set, the property
(16) will be satisfied after a finite number of steps.

Theorem 3.1: An ��	 order filter of the form (6), subject to (13),
with

���� � 	 � ���� � � � � �
�




��� �
� �
��� � � � �

�



���� ��� � ���� � � � � �
�



solves Problem 3.1 above if and only if

�
��� �� � � � �
�
� � 
��� �� � � ��
�
�

�

�� � � �

�
� � �� (17)

Proof: From (15) the ARMA model relating the signals �� �� 	 is
given by

�� � �




���

������ �




���

������ �




���


��	���� (18)

Thus, if ������ � � and # � 	� 
� � � � � �, with �� 	 � �!� then
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�
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�
�� 
�� � � �
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� � ��

Therefore the condition is sufficient. To prove necessity, start by
rewriting (18) as

��� �� � � ���� � � ���
 �� � � ��
 
�� � � �

����
�
� ����

where �
�
� � ����$� � � � ���
$� �� � � � ���
	� � � � 	��
 �

� .
From the hypothesis it follows that � is an arbitrary element of �!�.
Hence

���
�� ��

���� � � �� 
�
� � �

or, equivalently

��� �� � ����� � ����� � � � � ���
� � 
��� �� � � ��
�
�

�
�
�� 
�� � � �

��
� � �

which proves necessity. To conclude the proof, we show that condition
(17) implies stability of the filter. This follows immediately from the
fact that it implies:


��� �� � � � �
�
� �




���

���� � % " 	�

We will refer to �—equalized filters, namely satisfying (17) as equal-
ized filters, with performance �. To synthesize one of such filters write

���� � 	 � ���� � � � � ���
�

���� ��� ����� � � � ����
�

���� ��� ���� � � � � ����
�
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and rewrite (13) as the following linear constraints in the variables �� ,
�� and ��:

���� ����� � ����

���� ����� ����� ����� � ���� � ����

���� ����� ����� ����� ����� �����

� ���� � ���� � ����

�

���� ����� � �����

Since for a fixed �, (17) is convex in �� , �� and �� , it follows
that establishing feasibility of (13)–(17) reduces to a convex feasibility
problem, involving the linear constraints above. The optimal filter (and
its associated optimal filtering error ����) can be found via bisection,
by increasing/decreasing � in case of infeasibility/feasibility.

Remark 3.2: In fact, the feasibility problem associated with the
linear constraints and (17) can be reduced to a linear programming
problem. Therefore synthesizing filters of large order to improve per-
formance is not an issue. The order can be taken large compatibly with
the technology available for implementation.

To address the multi-output case, we begin by extending
the definition of equalized filtering performance. Given �

�
�

��� � � ��� �, let �	���� be the scaled unit ball in 	�� : �	����
�
�

�
 � 	�� � 
���� � �	
��.

Definition 3.2: The filter (6) with error 	� � � � 
 � 	 is said to
achieve a vector equalized performance level �

�
� ���� ��� � � ��	 � if

it is stable and


��
 � �	
����� � � 
� � � � � � � 
� � �	

�����

�� ��� ��������� �� � � �	�� (19)

Next, we extend our previous results to the MIMO case.
Theorem 3.2: A filter � � � � 	�� � 	� � 	�	 achieves a vector

equalized performance level � iff each component ��� � � 	�� �
	�� � 	� achieves scalar equalized performance (in the sense of (16))
��, where 	�� denotes the ��� component of 	�.

Proof: Clearly, if each component �� achieves an equalized per-
formance level ��, the overall filter � obtained by stacking each com-
ponent satisfies the conditions in Definition 3.2. Conversely, assume
that the filter � satisfies (19). Note that the multiple-output version of
the filter (18) can be written in terms of its � component as follows:


�� � �

�

���

��� 

�
��� �

�

���

��
� ���� �

�

���

��
� ����� (20)

and that the error terms 
����, � � 
� �� � � � � � can be initialized inde-
pendently in each “partial filter”. Assume now that for a given � the
corresponding mapping �� does not satisfy (16). Then, initializing all
the other variables 

 , � �� �, to 

��� � �, � � 
� �� � � � � � leads to
violation of (19).

IV. FILTER INITIALIZATION, OPTIMALITY AND ROBUSTNESS

The main result of this section shows that, given an initial set of
� measurements, �

�
� � ��� ��� � � � � ���� � there exists a finite perfor-

mance level � and a filter initial condition �� such that the estimation
error satisfies 
� � �	���� for all �. Let	�, �� and � 


 denote the ���

order Kalman observability matrix of the system (3) and the Toeplitz

operators mapping � to � and the ��� component of �, respectively, e.g.

	� �

�

��
...

�����

�� �

� � � � � � �

�� � � � � � �

��� �� � � � � �
...

...
. . .

. . .
...

������ ������ � � � �� �

� 


�
�

� � � � � � �

���� ��� � � � � � �

���� ���� ���� ��� � � � � �
...

...
. . .

. . .
...

���� ������� ���� ������� � � � ���� ��� �

where���� �� denotes the ��� row of the matrix� , then the filter can
be initialized (after � measurements) as follows.

1) For � � �� � � � � � � 
 and � � 
� � � � � � compute

�
���

�
� ���

�����
���� ������

� � � 

 ��� ���

�
���
�
� ���

�����
���� ������

� � � �
 ��� ���

������� �� � � � �
�

� ���� ���� ��� � �	� (21)

where�
�
�  ��!��� � and where �
� is a set known to contain the

initial condition (if no information is available then �
� � 
�).

2) Define

�
���

�
�
�
��� � �
���

�
�

�
�
�
�



�
��
��� � �
��� � (22)

3) Let ������
 � ���
�������

��
�� and choose a filter initial condition

such that the first � filter estimates are 	�� � �

��
� � � � �� � � � � ��
.

This is always feasible, since the order of the filter is precisely �.
Note that if 
� is convex, then the optimization problem (21) is

convex. Further, if 
� is a polytope, this problems reduces to LP. Thus
��� �� , and �� above can be found efficiently2.

Since  � �� � � � �� � � � 
 by construction, it turns out that, if (17)
holds for some ��, then it also holds for all � � ��, and so does (16). It
follows that if ������
 � �
��� the optimal equalized performance level
in (17), then the filter (6), with the initialization above, achieves optimal
equalized performance level �
��� for all � � �. On the other hand, as
we show next, if ������
  �
���, then the worst case 	� estimation
error is bounded above by ������
 and converges, in a finite number of
steps, to �
���.

Theorem 4.1: Consider a filter of the form (6), with the initializa-
tion above. Then, for all �� �
�� � �����. Moreover, given � � ����
satisfying (17), for any plant and filter initial condition pairs �!�� ���
there exists a finite time � �!�� ��� �� such that for all �  �� �
�� � �.

Proof: Consider the “Lyapunov like” function

"�
�
� ���

���������
�
�����

2The estimate � can be thought off as a smoothing problem equivalent of
the central estimator introduced in [14] or, equivalently, the pointwise optimal
estimators proposed in [18].
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From (18) we have that:

���� �

�

���

������ � ���� � � ������ � ���� � � �������

�

�

���

����� � ���� � � ������ � ���� � � �������

�

�

���

������� � ��

��� ��� � ��

�

���

���� � �� ��� � ��	

with 	 � �. Thus

���� � 	�� � ��� 	�� � 	
���
 ����

Hence the sequence �� is non increasing as long as �� � �. Since by
construction ���� � �����
 � �  � � � �, it follows that ���� � �����

for all . Further, due to the strict inequality, the subsequence ��� (� is
the parameter in Definition 2.1) is strictly decreasing (since each value
generated after ���� is strictly smaller than ��). Indeed

������� � 	
��	��� � ��� 	��
 ���

This equation implies that the subsequence ��� and (thus ��) con-
verges to � from above, and it can be easily seen that this conver-
gence occurs in finite time, e.g., �� � � for t � some � . The fact
that ���� � �
  � � follows immediately follows from the definition
of �� .

The described initialization procedure is similar to that proposed in
[21], with the difference that the initialization horizon is not problem-
dependent.

Since the proposed filter is equalized-optimal among all linear fil-
ters, a natural question is whether it is optimal with respect to the class
of worst-case filters. It can be shown, using concepts from information
based-complexity [8], [20], that at least under special conditions, ����
is indeed the radius of information (see [8] for a definition) and thus
the lowest possible worst-case error attainable by any filter. This issue
is not investigated further here due to space constraints.

Next, we briefly consider the case of a system that switches
among � plants with state space realizations given by:
����
 �

���
� 
 ����
 �

���
	 
 ����. In this situation it is plausible to

associate with each plant an equalized filter ��������
 �������� and
switch these filters using the same switching rule as the plant.

Proposition 4.1: A family of equalized switching filters of order �

implemented as

���� � �

�

���

�
���
� ��� � �� �




���

�
���
� ��� � ��� � � � (23)

is switching stable.
Proof: We have seen that the equalized filters of order � satisfies

�

��� ��
���
� � � 	� � � (then is superstable [12]). Therefore, for � � �

we have

������ �

�

���

��
���
� ������ ��� � 	
�

�
	� 	
������ ����

�	 	
�
�����

����� ����

where 	 � 	
� 	� hence stability.
Note that although the result above guarantees stability of the

switched filter, at the present time no bounds are available concerning
its worst-case performance under arbitrary switching sequences. This
issue is currently under investigation.

Fig. 3. The equalized filter (plain) versus the� filter (dashed) frequency re-
sponse.

Fig. 4. Equalized versus� filters: Top figure: the output (thick), the� filter
output (dashed), the equalized output (plain); Bottom figure: the� filter error
(dashed), the equalized filter error (plain).

V. ILLUSTRATIVE EXAMPLES

Example 1: Consider the following second order plant:

����

����
�

��

�

����

����
�

��� �������� ���

�

and assume � � � and that the process and measurement noise satisfy
���� � � and ���� � �, respectively. For � � � � � the optimal
equalized estimate is � � �, (e.g., zero filter), with ���� � �.

For � � � seems to yield, independently of �, the following filter:

����

����
�
�������� �������� �������� � ��������

������� ��������

with poles at 0.4895 and�������� ������. The corresponding equal-
ized cost is given by the following piecewise affine function of �:

������� �
� for � � � � �

� � !�� � �� for � � �

with ! 	 ����.
We see that the optimal filter coefficients are not continuous with

respect to the noise bounds and the system parameters. However, the
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optimal value is continuous. Moreover, if switching to a new filter due
to parameter changes is necessary, robustness is assured by Proposi-
tion 4.1.

For comparison we considered the ��—optimal filter whose state-
space realization is

�� �
������ ������

������� ������
�� �

�������

������

�� � 	 
�
��� ������� � �� � 	���
���� �

We report in Fig. 3 the frequency response of the equalized and the
��—optimal filters and in Fig. 4 the simulations in the presence of
random piecewise-constant noise. We see that the equalized filter has
a slightly sharper cut-off effect. The noise is randomly generated by
taking � � �� and � � �	 and randomly changing sign with proba-
bility 
 � 
�
� at each instant. We took � � 
�. It is apparent that the
error produced by the equalized is always smaller than the �� filter.
Several experiments with randomly generated sequences show that for
this example we have roughly a 30% improvement on the worst case
error.

Example 2: Next, we consider the case of a plant with poles on the
stability boundary3

��

��
�

�


� �
��

��
�

�
� ����
� �


� �
�

In this case, the optimal equalized filter corresponding to 	 � 
, � � �
and � � � is given by

��

��
�
�������� ���
�
� �����
� � ��
����


� ��
����

and achieves an equalized performance level ���� � ��

An intriguing fact borne out of these examples is that while in the

context of control design the optimal equalized closed loop was almost
always “near dead-beat” (e.g., “almost zero” closed-loop poles) the op-
timal equalized filter does not exhibit this feature.
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Cascade High Gain Predictors for
a Class of Nonlinear Systems

Tarek Ahmed-Ali, Estelle Cherrier, and
Françoise Lamnabhi-Lagarrigue

Abstract—This work presents a set of cascade high gain predictors to
reconstruct the vector state of triangular nonlinear systems with delayed
output. By using a Lyapunov-Krasvoskii approach, simple sufficient con-
ditions ensuring the exponential convergence of the observation error to-
wards zero are given. All predictors used in the cascade have the same struc-
ture. This feature will greatly improve the easiness of their implementation.
This result is illustrated by some simulations.

Index Terms—Cascade systems, high gain observer, time-delay systems.

I. INTRODUCTION

In this technical note, the design of nonlinear observers for non-
linear systems with delayed output measurements is investigated. This
problem appears in many control systems areas, such as networked con-
trol systems, where the data are transmitted through a communication
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