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TABLE I
� = 9, � = 3

TABLE II
� = 11, � = 1

mality of a policy�� is provided by the optimality equationvs(��) =
mina2A(s) T� (s; a), s 2 S. Despite the overwhelming empirical ev-
idence of the overall average cost optimality of a hysteretic control rule,
a theoretical proof of this optimality is still lacking.

Remark: Another controlled queueing system to which the embed-
ding technique for handling an infinite state space can be success-
fully applied is the following one. Consider the heterogeneous server
model with multiple slower servers, but without fixed switching costs.
Suppose that there areK slower servers,i = 1; � � � ; K, with expo-
nential service rates�1; � � � ; �K . There is one fast server who is al-
ways activated and provides service at an exponential rate of� with
� > maxi �i. There is an operating cost at a constant rate ofri > 0 per
unit of time the slower serveri is on. Moreover, there are linear holding
costs for the jobs in the system. Numerical investigations lead to the
following interesting conjecture about the structure of an overall av-
erage-cost optimal policy. Assume that the slower servers are numbered
such thatr1=�1 < r2=�2 < � � � < rK=�K . Then the optimal control
rule is characterized by critical numbers1 < m1 < m2 < � � � < mK :
the slower serverss = 1; � � � ; p are used when the number of jobs in
the system is between the levelsmp andmp+1 wheremK+1 =1. It
is still an open problem to prove the theoretical optimality of this con-
trol rule.

V. NUMERICAL RESULTS

We will now give some numerical results of the tailor-made policy-
iteration algorithm. In all our examples we have takenh = 1, � =
1:3875, andE[B] = 8. The load factor� = �E[B]=(�1 + �2) is
kept constant as0:925, and also we keep�1 + �2 = 12. The slower
service rate�2 is varied as 1 and 3. The fixed switching costK and the
operating costr are varied from 0 to 20 with step size 10. We consider
both the case of a constant batch size and the case of a geometrically

distributed batch size. For each of the examples we give the best policy
�� = (m�; M�) and its corresponding average costg� = g(��).
The number of iterations per example varied between 3 and 15 and
the computing time was negligible. It is remarkable that the minimal
average cost is rather insensitive to the values of�1 and�2 when�1+
�2 is kept fixed.
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A Convex Optimization Approach to Fixed-Order
Controller Design for Disturbance Rejection

in SISO Systems

Franco Blanchini and Mario Sznaier

Abstract—The problem of rejection of persistent unknown-but-bounded
disturbances can be solved using the well-known design approach. How-
ever, in spite of its success, this theory suffers from the fact that the resulting
controller may have arbitrarily high order, even in the state-feedback case.
In addition, system performance is optimized under the assumption of zero
initial conditions. In this paper we propose a new approach to the problem
of synthesizing fixed order controllers to optimally reject persistent dis-
turbances. The main result of the paper shows that this approach leads
to a finite-dimensional convex optimization problem that can be efficiently
solved.

Index Terms—Convex optimization, disturbance rejection, control.

I. INTRODUCTION

A large number of control problems can be recast as the problem
of synthesizing a controller capable of stabilizing a given linear time
invariant system while, at the same time, minimizing the worst case
response to some exogenous disturbances. When the signals involved
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are persistent bounded signals, with size measured in terms of peak
time-domain values, it leads tol1 optimal control theory [9], [2], [3],
[5] (see also [1] for earlier related work).

The l1 theory success lies on the fact that it directly incorporates
time-domain specifications. Moreover, it furnishes a complete solution
to the robust performance problem [4]. However, in contrast withH1
andH2 control,l1 optimal controllers can have arbitrarily high order
[6]. Moreover, this theory cannot accommodate nonzero initial condi-
tions.

Motivated by these difficulties, in this paper we propose a new ap-
proach to synthesizing fixed order controllers for persistent disturbance
rejection in SISO systems. Rather than assuming zero initial condi-
tions, we impose a magnitude constraint on the past outputs, implicitly
defininga set of possible initial conditionscompatible with this con-
straint and the disturbance bound. This leads to the basic idea of the
paper, the concept ofequalized performance. In plain words a linear
single-input/single-output (SISO) plant of ordern achieves an equal-
ized performance level� if, whenevern consecutive output values have
magnitude less than�, the same condition is repeated in the future.
Thus having finite equalized performance is a stronger property than
stability (while having finitè 1 induced norm is equivalent to asymp-
totic stability). Nevertheless, as we show in the sequel, finite equal-
ized performance can be achieved by closing the loop with a controller
having at least the same order of the plant.

The main results of the paper can be summarized as follows.

• The problem of finding afixed ordercontroller achieving a given
equalized performance level� leads to a linear programming
problem whose dimension is knowna priori and it does not de-
pend on the problem data.

• The optimal value of� (and the corresponding controller) can be
computed in polynomial time.

• The proposed technique is applicable even in cases where`1

theory breaks down, such as when the plant has zeros on the sta-
bility boundary, and can be easily extended to handle parametric
uncertainty.

II. THE EQUALIZED PERFORMANCEPROBLEM

A. Notation

Given a sequenceh 2 `1, its �-transform is defined asH(�)
def
=

1

i=0 hi�
i.1 Given a polynomialP (�) = n

i=0 ai�
i we denote

its coefficients vector asa
def
= [ao a1 � � � an�1]

T . The vector
a deprived of the leading coefficient will be denoted by~a, i.e.,~a

def
=

[a1 � � � an�1]
T . The projection operatorPN : `1 ! `1 is de-

fined by

PN x
(0)
; x

(1)
; � � � _= x

(0)
; x

(1)
; � � � ; x(N�1); 0; 0; � � � : (1)

B. Definitions and Preliminary Results

Consider a stable SISO plant defined by the following transfer func-
tion:

e(�) =

n

j=0

bj�
j

n

i=0

ai�i

w(�); a0 = 1: (2)

1Note that this is the inverse of the usualz transform. Therefore for causal,
stable systemsH(�) is analytical inj�j < 1.

To this plant we can associate the following ARMA model:

e(k) = �

n

i=1

aie(k � i) +

n

j=0

bjw(k� j) (3)

or equivalently, the set of equations

x1(k + 1) = � a1x1(k) + x2(k) + (b1 � b0a1)w(k)

...

xn(k + 1) = � anx1(k) + (bn � b0an)w(k)

e(k) =x1(k) + b0w(k): (4)

For any positive integerk we have that

e
(k) = O(k)

x(0) +H(k)
w
(k) (5)

where

w
(k) def

= [w(0) w(1) � � � w(k� 1)]T

e
(k) def

= [e(0) e(1) � � � e(k � 1)]T

H(k) def
=

b0 0 0 � � � 0

CB b0 0 � � � 0

CAB CB b0 � � � 0

� � � � � � � � � 0

CAk�2B � � � � � � CB b0

O(k) def
=

C

CA

CA2

...
CAk�1

: (6)

Considering the above relationship in the casek = n establishes
a (well-known) correspondence between any minimal quadruple
(A; B; C; D) and the ARMA model (3), in the following sense:
Given anyw(k) and any initial conditionx(0), the corresponding
output sequencee(k) of the former is an admissible evolution of the
latter. Conversely, any evolution of the ARMA model is an admissible
output sequence for the system having the state space realization (4),
for a suitable choice of the initial statex(0). SinceO(n) is invertible,
determiningx(0) is immediate. Also note thatfor a given sequence
w(k), there is a one to one correspondence between the firstn values
of e(k) and the initial conditionx(0).

Next we recall the usual̀1 performance definition.
Definition 1: The plant (2) has̀1 performance less than�` iff for

xi(0) = 0, i = 1; � � �n, and for all sequencesw(k); k = 0; 1; � � �,
such thatjw(k)j � 1, we haveje(k)j � �` .

Motivated by this definition, we introduce now the concept ofequal-
ized performance.

Definition 2: A stable plant of the form (2) has (finite) equalized
performance less than� iff for je(i)j � �, i = 0; � � � ; n � 1, and for
jw(j)j � 1, j = 0; 1; � � �,

je(k)j � �; k � n: (7)

The termequalizedstems from the fact that the definition above is
strictly equivalent to setting the firstn values ofje(k)j all equal to�
(in all possible ways) and requiring thatje(k)j � � in the future.

So far we have considered the case where the length of the output
string coincides with the McMillan degree of the plant (in the sequel
we will sometimes refer to this case as thenatural performance case).
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However, addressing some technical points such as stable pole/zero
cancellations requires extending this definition to strings of lengthN >

n.
Definition 3: A stable plant of the form (2) has (finite) equalized

N -performance less than� iff for je(i)j � �, i = 0; � � �N � 1,
and all sequencesw(k), k = 0; 1; � � � ; jw(k)j � 1, compatible with
e(i); i = 0; � � � ; N � 12 we have that

je(k)j � �; k � N: (8)

Thus a plant achieves equalizedN -performance less than� if when-
ever a string ofN consecutive output valuese(0); e(1); � � � ; e(N�1)
is below the magnitude�, then the same condition is repeated in the fu-
ture, for all possible values of the exogenous disturbancew that could
have generatedthe sequence of output values for some appropriate
initial condition. In the special case wheren = N , the sequences
je(k)j � � andjw(k)j � 1, k = 0; 1; � � � ; n� 1 can be chosen inde-
pendently. On the other hand, ifN > n, then the constraintje(i)j � �,
i = 0; � � � ; N � 1 imposes an additional constrainton the firstN
values of the sequencew(k).

The set of admissible initial conditions, i.e., the set of initial con-
ditions that, together with an appropriately chosen sequence of distur-
bances, generate a sequence ofN outputs having magnitude less than
�, is given by

X (N)(�) = x(0): O(N)
x(0) +H(N)

w
(N)

1

� �;

for some w
(N)

1

� 1 : (9)

Remark 1: The setX (N)(�) always contains the origin, and,
if (A; C) is observable, it is a compact polyhedron. Furthermore,
X (N )(�) � X (N)(�), if N 0 > N .

Remark 2: From Definition 3 and linearity the following properties
can be easily established.

1) If a plant has equalizedN -performance less than�, it also has
equalizedN -performance less than�0 for all �0 � �.

2) If a plant has equalizedN -performance (N � n) less than� then
it has equalizedN 0-performance less than� for all N 0 > N .

3) OnceN consecutive output values are below a given level�0 �
�, thenje(k)j � �0 for all k.

Motivated by these properties we introduce the following definition.
Definition 4: The equalizedN performance level�N of a stable

plant is defined as:�N = inff�: the plant has equalizedN -perfor-
mance less or equal than�g.

Remark 3: It is easy to show that not all stable plants have finite
equalizedN -performance for a givenN . However, as we show in Sec-
tion III, any stable plant achieves equalizedN -performance for some
� > 0 provided thatN is sufficiently large.

Remark 4: Since the setX (N)(�) includes the origin, it follows that
�` � �N . In the special case where�` = �N the plant is said to be
N -equalized.

III. EQUALIZED PERFORMANCECHARACTERIZATION

In this section we present some properties of plants achieving a given
equalizedN -performance level�. For simplicity we assume thatkbk 6=
0 (the casekbk = 0 will be reconsidered later).

Next we address the issue of computing the equalizedN -perfor-
mance level of a given plant.

2In the sense that there exists an initial conditionx(0) such that the output
corresponding to this initial condition and the sequence of inputsw(k); k =
0; � � � ; N � 1 is preciselye(i); i = 0; � � � ; N � 1.

Theorem 1: Let � � 0. The plant (2) has equalizedn-performance
less than� iff the following condition holds:

�k~ak1 + kbk1 � �: (10)

Therefore the equalizedn-performance level�n of the plant is given
by

�
n =

kbk1
1� k~ak1

: (11)

Proof—Necessity:Assume that (10) does not hold. From (3), we
have that

je(n)j = �~aT e(n) + b
T
w
(n)

: (12)

Thus, there existje(k)j � � andjw(k)j � 1, k = 0; 1; � � � ; n � 1,
such that3

je(n)j = k~ak1 e
(n)

1

+ kbk1 w
(n)

1

=�k~ak1 + kbk1 > �:

Sufficiency: If (10) holds, from (12) we haveje(n)j � �. Since
jw(n + 1)j � 1, using (10) again and replacingn by n + 1 in (12)
yieldsje(n+ 1)j � �. The proof follows now by induction.

Remark 5: From Theorem 1 we have that ifb 6= 0, a necessary
condition for a plant to have finiten equalized performance isk~ak1 <
1. It is clear that this condition implies system stability. Ifb = 0, a
necessary condition isk~ak1 � 1.

We consider now the general case whereN � n. To this effect define
m = N � n and consider the following set ofm+ 1 equations:

e(n) =

n

i=1

aie(n� i) +

n

j=0

bjw(n� i)

...

e(N) =

n

i=1

aie(N � i) +

n

j=0

bjw(N � i): (13)

Eliminatinge(N � 1); e(N � 2); � � � ; e(n), yields

e(N) =

n

i=1

a
(m)
i

e(n� i) +

N

j=0

b
(m)
j w(N � j) (14)

where thea(m)
i ; i = 1; 2; � � � ; n, and theb(m)

j ; j = 0; 1; � � � ; N , are
functions of the coefficientsai andbj of (3). This expression, combined
with Definition 3, leads to the following result.

Theorem 2: The plant (2) has equalizedN -performance less than�
if:

� ~a(m)

1
+ b

(m)

1
� � (15)

where

~a(m) = a
(m)
1 ; � � � ; a(m)

n

T

; b
(m) = b

(m)
0 ; � � � ; b(m)

n

T

:

Therefore an upper bound for the equalizedN -performance level of an
nth-order plant is given by

�
N =

b(m)

1

1� k~a(m)k1
: (16)

3Recall that thee(k) and thew(k) may be chosen independently.
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Proof: Similar to the sufficiency part of Theorem 1 but using (14)
instead of (3).

We stress the fact that this condition is only sufficient. Note that,
contrary to the case whereN = n, here necessity fails because now
the sequencese(k) andw(k) cannot be chosen independently. Note
that stability of the plant implies that asm!1 then the coefficients
a
(m)
i ! 0. This leads to the following important facts.
Corollary 1: If the plant (2) is stable, it has finite equalizedN -per-

formance less than� for someN = n+m, withm sufficiently large.
Corollary 2: If the plant (2) has a finite impulse response then it is

N -equalized for allN � n.
Next we establish that asN increases the equalizedN -performance

level�N approaches from above the`1 performance level.
Theorem 3: Let �1 _= limN!1 �N = limm!1 �n+m. If

the plant (2) is stable, then itsN -equalized performance�N level
approaches its̀1 performance level�` asN ! 1, i.e.,

�
1 = lim

m!1

n+m

j=0

b
(m)
j = �l : (17)

Proof: The first equality follows from the fact that the
coefficients a

(m)
i are (finite) linear combinations of the ele-

ments of the matrixAm and therefore, since the plant is stable,
a
(m)
i ! 0; i = 1; � � � ; n asm ! 0. To complete the proof we need

to show that

lim
m!1

n+m

j=0

b
(m)
j = �l : (18)

Given any sequencew(t), with jw(t)j � 1, t � 0, there exists an
initial condition vector~x such thate(j) = 0; j = 0; 1; � � � ; n � 1.
From (14) the trajectory corresponding to this initial condition and the
sequencew(t) is given by

e(N) =

N

j=0

b
(m)
j w(N � j):

Denote now bŷe(N) the trajectory corresponding to the initial condi-
tion xi(0) = 0; i = 1; � � � ; n. This trajectory is given by

ê(N) =

N

j=0

hjw(N � j)

where,hj ; j = 0; 1; � � � ; are the Markov parameters of the plant. The
functionê(k)� e(k) can be interpreted as a free system response (i.e.,
the trajectory corresponding to a zero input and initial state~x). Recall
that the set of all admissible initial statesX (N) is bounded uniformly
for all N [sinceX (N) � X (n)]. Therefore, givenN , we have ana
priori bound of the formjê(N)�e(N)j � K�N , where�(A) < � <

1, �(A) denotes the spectral radius ofA andK is some finite constant.
Then for every sequencejw(t)j � 1 we have

jê(N)� e(N)j =

N

j=0

hj � b
(m)
j w(N � j) � K�

N
: (19)

This fact implies thatjkPN [h]kl � kPN [b(N)]kl j ! 0 (we skip the
details for brevity), which, together with stability of the plant estab-
lishes the desired result.

Finally, we address the issue of equalized performance in the case
where the plant realization is nonminimal. This is important in the con-
text of synthesis because even if we start from a minimal realization,

stable pole/zero cancellations may appear in the resulting closed loop
system.

Theorem 4: Consider any arbitrary monic polynomialC(�) and as-
sume that the ARMA modelC(�)A(�)y(�) = C(�)B(�)w(�) of
orderN has equalizedN -performance less than�. Then the ARMA
modelA(z)y(z) = B(z)w(z) also has equalizedN -performance less
than�.

Proof: The proof follows from the fact thatC(�)A(�)y(�) =
C(�)B(�)w(�) corresponds to the ARMA model obtained by com-
bining the equations in (13) using the coefficients ofC(�). This model
contains among its trajectories those of the reduced one. Therefore,
whenever property (8) holds for the original model, it also holds for
the reduced one.

IV. OPTIMIZATION OF THE EQUALIZED PERFORMANCE

In this section, we consider the problem of synthesizing fixed order
controllers such that the resulting closed-loop optimally rejects (in the
equalized performance sense) persistent disturbances. Consider a plant
of the form

e(�)

y(�)
=

1

d(�)

n11(�) n12(�)

n21(�) n22(�)

w(�)

u(�)
(20)

where the scalar signalsu; w; y ande represent the control input, ex-
ogenous disturbances, measurements available to the controller and
performance output, respectively. Then the optimal equalized perfor-
mance problem can be precisely stated as follows.

Problem 1: Given the linear time-invariant plant (20) with
McMillan degreer, find a linear time-invariant compensator of a given
orders � r such that the equalizedn performance of the resulting
closed-loop system is minimized, wheren = s+ r.

In the sequel we show that this problem reduces to a finite-dimen-
sional convex optimization problem. To this effect consider a controller
of the form

u(�) =
q(�)

p(�)
y(�) (21)

where p is a monic polynomial of degrees. The corresponding
closed-loop system is

e(�) =
n11(�)

d(�)
+

1

d(�)

n12(�)q(�)n21(�)

[d(�)p(�)� n22(�)q(�)]
w(�) (22)

whered(s) is the characteristic polynomial ofA. The polynomial
[n11n22 � n12n21] hasd as a factor, i.e.,

n11(�)n22(�)� n12(�)n21(�) = d(�)n(�)

thus

[d(�)p(�)� n22(�)q(�)]e(�)

= [p(�)n11(�)� q(�)n(�)]w(�): (23)

This last expression can be rewritten as

dcl(p; q)(�)e(�) = ncl(p; q)(�)w(�): (24)

Without loss of generality (by using an appropriate scaling if neces-
sary),p(�) andq(�) can always be selected such thatthe polynomial
dcl(p; q)(�) has its independent term equal to one, that is

dcl(p; q)(�) = 1 + dcl; 1�+ dcl; 2�
2 + � � � : (25)

This additional equality constraint guarantees both that the resulting
loop is well-posed and that it has McMillan degreen = s+ r.
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From Theorem 2 it follows that the closed-loop system (24) achieves
equalized performance��, if and only if

�k ~dcl(p; q)k1 + kncl(p; q)k1 � �: (26)

Sincencl(p; q)(�) and ~dcl(p; q)(�) are affine functions of the coef-
ficients of the polynomialsp(�) and q(�), and since the additional
constraint (25) is equivalent to a linear constraint involving only the
leading coefficients ofq andp, it follows that synthesizing a controller
achieving a fixed, given performance level� > 0 is equivalent to
finding an interior point in a convex set in the combinedp; q space.
Moreover, denoting by�T _=[pT qT ]T , (26) above can be written as
follows:

�k��k1 + k	�k1 � � (27)

where� and	 are suitable matrices whose entries are functions of the
plant coefficients. Thus for each candidate�, the problem of synthe-
sizing a controller that achieves equalized performance less than� (or
establishing that none exists) reduces to solving a feasibility problem
that can be recast into a linear programming (LP) form.

Remark 6: If s, the order of the controller, is chosen to be at least as
large asr, the order of the plant, this LP problem is always feasible for
some� large enough. This follows from the fact that in this casep andq
can be chosen so that the corresponding closed-loop is a FIR, and thus
(Corollary 2) has finite equalized performance. Moreover, since�eq �
�` with the equality holding for FIR plants it follows that our approach
is guaranteed to yield better performance (both in the`1 and equalized
senses) than thead-hocapproach of forcing the closed-loop system to
be an FIR and optimizing thè1 norm of its Markov parameters.

These results are summarized in the next theorem, stating the main
result of the paper.

Theorem 5: Consider a system of the form (20) with McMillan de-
greer. Then for eachs � r there exists a compensator of the form
(21) such that the resulting closed-loop system has finite equalized
(r+s)-performance. Furthermore, givens, the problem of synthesizing
a controller of orders that minimizes the equalized performance level
can be solved by a globally converging procedure, entailing only the
solution of a sequence of LP problems, each one having6n + 7 vari-
ables,4n+ 5 inequality, and4n+ 5 equality constraints.

Remark 7: Since both the number of constraints and variables
are affine functions ofn, it follows that synthesizing a controller
that achieves a given equalized performance level can be solved in
polynomial time. Thus, computing the optimal equalized level (within
a given tolerance) can also be accomplished in polynomial time.

Note that the synthesis algorithm proposed in Theorem 5 works even
if the order of the controller is selected to be smaller thanr, the order
of the plant. However, in this case there is noa priori guarantee that
the problem will be feasible, even for a sufficiently large value of�.
From a practical point of view, the initial value of the controller order
so should be selected equal to their order of the plant. This guarantees
that the parametric problem will have a solution for some~�. Once the
optimal value of the equalized performance is established for this case,
we can proceed, if necessary, to decrease the order of the controller as
needed. This leads to a nonincreasing sequence�

s
opt > 0. As we show

next, this sequence converges to the optimal`1 cost.
Theorem 6: Consider an increasing sequencesi � r and let�i

denote the optimal equalized performance level achievable with a con-
troller of ordersi. Assume that the plant satisfies the standard assump-
tions of `1 theory and let�` denote the optimal achievablè1 per-
formance level. Then�i ! �` . Moreover, there exists~s such that
�i = �` for all si � ~s.

Proof: Follows from Corollary 2 and properties of SISO optimal
`1 systems.

V. ROBUSTNESSCONSIDERATIONS

An additional advantage of the proposed approach is that it works
in the physical parameter space (rather than in the Markov parameter
space). This fact renders the method less sensitive to variations in the
location of poles and zeros of the plant, a problem recently brought up
in the context of fragility of some control design methods [7]. In our
context, model uncertainty leads to the parametric problem

�k�(q)�k1 + k	(q)�k1 � � (28)

whereq 2 Q is an uncertain parameter. Assuming a polytopic structure
for the problem

�(q) =

v

i=1

qi�i

	(q) =

v

i=1

qi	i;

v

i=1

qi = 1; qi � 0; i = 1; � � � ; v

the optimization problem preserves its convex nature. Indeed (28) is
equivalent to

�k�i�k1 + k	i�k1 � �; i = 1; � � � ; v: (29)

To further illustrate this point, worth of further investigation, consider
the problem of minimizing equalized performance of the sensitivity
function corresponding to a plantP (�; �1; �2), using a fixed structure
controllerC(a; b; �), where

C(a; b; �) =
b

1 + �a
; and P (�; �1; �2) =

1 + �(1� �1)

1� �(1� �2)

wherej�1j; j�1j � � < 1. For arbitrarily small�i > 0 the plant is
open-loop stable, minimum phase. Hence,inf kSk` = 0 and perfor-
mance arbitrarily close to optimal can be achieved by using a static gain
K !1. On the other hand, a simple root locus argument shows that,
for �1 < 0, with �1 arbitrarily small, whenK ! 1 the closed-loop
system becomes unstable. It follows that the optimal`1 controller is
fragile in the sense that arbitrarily small plant perturbations render the
closed-loop system unstable. On the other hand, the equalized perfor-
mance minimization problem can be solved via convex optimization by
considering all the possible combinations of�1; �2 2 f��; �g, leading
us to the four conditions

�fja+ b� (1 + �2)j+ jb(1 + �1)� a(1 + �2)jg

+ 1+ ja+ (1 + �2)j+ jaj � �:

For� sufficiently small this problem has a feasible solution which pro-
vides the robust optimal equalized performance.

VI. EXAMPLE

Example 1: Consider the following third-order system, taken from
[6]:

A B

C D
=

2:7 �23:5 4:6 1 1

1 0 0 0 0

0 1 0 0 0

1 �2:5 1:501 0 0

1 0 0 0 0

:

The optimal̀ 1 controller has order 16. The corresponding closed-loop
is an 18th order FIR, with̀1 norm�` = 3:01. Table I shows a com-
parison of this optimal̀1 controller versus the optimal equalized con-
trollers obtained by selecting different values for the controller order. In
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TABLE I
CLOSED-LOOP ` NORM FOR DIFFERENT

EQUALIZED DESIGNS

this particular example in all cases the resulting equalized controllers
rendered the closed-loop system an FIR, and thus�eq = �` . Notice
that by the time the order of the controller is selected to be 8, the corre-
sponding performance is 3.07. Thus, when compared with the optimal
`1 controller we have a significant order reduction (50%) at the price
of about 2% increase in cost.

Note that in this case the optimal equalized closed-loop system has
a finite impulse response. Numerical experiment show that in practice
this is often the case, but there are some counterexamples available
where this property does not hold.

VII. D ISCUSSION OF THEMETHOD AND CONCLUSIONS

In this section we comment on some of the features of the proposed
method. In particular, we have the following.

1) Recall that in Section III we assumed thatb 6= 0. Through The-
orem 1 this guarantees thatk~ak < 1 which implies asymp-
totic stability. If b = 0, the inequality�k~ak � � requires that
k~ak � 1, and this property implies only marginal stability. Thus
there might be trajectories that do not converge (but that do not
diverge as well). Clearly, the feasible solutionsp; q of (26) might
renderncl(p; q) = 0. This difficulty can be solved by replacing
condition (26) by

�k ~dcl(p; q)k1 + kncl(p; q)k1 � �� � (30)

where� is arbitrarily small. Thus ifkncl(p; q)k1 = 0 we still
havek ~dcl(p; q)k1 � 1 � �, andasymptotic stability is guaran-
teed.

2) Since the proposed method forces the closed-loop characteristic
polynomial to satisfyk ~dclk1 < 1, it follows that the resulting
controller internally stabilizes the loop. Note this does not pre-
vent stable pole/zero cancellations. This leads to the following
question: Suppose that ans-order controller has been found such
that the closed-loop system achieves(s + r)-equalized perfor-
mance�s+r . Assume that some zero pole cancellations occur so
that the resulting closed loop has a minimal realization of order
n0 < n = s + r. Does this reduced plant achieve the same
equalizedn0-performance level? The answer is not necessarily.
This should not be surprising, since the equalized performance
framework does not assume zero initial condition. However, The-
orem 4 guarantees that the reduced plant (of ordern0 < n) still
achieves ann-equalized performance level less or equal to�s+r .

3) An important open question is the extension of the method to the
MIMO case. In principle this could be accomplished by means of
a vector ARMA model. Clearly, the definitions in the paper could
be easily rephrased in a vector sense by requiring that for any
output stringe(0); e(1); � � � ; e(n � 1) whose element norms
are all below�, the norm ofe(n) is also below�. However,
the extension loses the physical meaning of the SISO equalized
performance in the following sense: the first-order multivariable
system

A = [a]; B = [1 1]; C =
1

1
; D = 0

could be associated to the equation

e1(k + 1)

e2(k + 1)
= a

e1(k)

e2(k)
+

w1(k+ 1)

w2(k+ 1)
:

However, it is immediately apparent that a true correspondence
between this ARMA model and the original state space system
does not exist, since in the former the output components are
related bye1 = e2. Thus the extension of the method to the
MIMO case does not appear to be trivial.

4) Additional features of our method are that it can be used even in
cases where the plant has zeros on the stability boundary, where
the traditional̀ 1 methodology breaks down [8] and can be ex-
tended to handle parametric uncertainty.
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