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mingea(sy Tr+ (s, a),s € S. Despite the overwhelming empirical ev- in SISO Systems
idence of the overall average cost optimality of a hysteretic control rule,
a theoretical proof of this optimality is still lacking. Franco Blanchini and Mario Sznaier

Remark: Another controlled queueing system to which the embed-
ding technique for handling an infinite state space can be success-
fully applied is the following one. Consider the heterogeneous serverAbstract—The problem of rejection of persistent unknown-but-bounded
model with multiple slower servers, but without fixed switching costglisturbances can be solved using the well-knowt? design approach. How-
Suppose that there afe slower serversi — 1. ---. Ik with expo- ever, in spite ofltssucce_ss, t_hlst_heorysuffersfrqmthefactthatthe resulting

pP ‘ S" - v p controller may have arbitrarily high order, even in the state-feedback case.
nential service rateg,, - -+, jux . There is one fast server who is al-|n addition, system performance is optimized under the assumption of zero
ways activated and provides service at an exponential ratevaith  initial conditions. In this paper we propose a new approach to the problem
p > max; pi. Thereis an operating costataconstantrate of () per  of synthesizing fixed order controllers to optimally reject persistent dis-

. . . . . _turbances. The main result of the paper shows that this approach leads
unit of time th? slower SEIVEIS on. Moreoyer, Fhere ?’“e I.|near holding 0 a finite-dimensional convex optimization problem that can be efficiently
costs for the jobs in the system. Numerical investigations lead to t§eq.
following interesting conjecture about the structure of an overall av- o . o

. . Iadex Terms—Convex optimization, disturbance rejection,l™ control.
erage-cost optimal policy. Assume that the slower servers are numbere
suchthaty /1 < 72/p2 < -+- < rx /px . Then the optimal control
rule is characterized by critical numbérs< m; < my < --- < mg: |. INTRODUCTION
the slower servers = 1, - - -, p are used when the number of jobs in
the system is between the levels, andm,, wherem i, = co. It
is still an open problem to prove the theoretical optimality of this co
trol rule.

A large number of control problems can be recast as the problem
[gf synthesizing a controller capable of stabilizing a given linear time
Invariant system while, at the same time, minimizing the worst case
response to some exogenous disturbances. When the signals involved
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are persistent bounded signals, with size measured in terms of p&akhis plant we can associate the following ARMA model:
time-domain values, it leads {6 optimal control theory [9], [2], [3],
[5] (see also [1] for earlier related work). = L ,
The!' theory success lies on the fact that it directly incorporates e(k) = - Z aie(k — i) + Z bjw(k = j) ®)
time-domain specifications. Moreover, it furnishes a complete solution = =0
to the robust performgnce problem [4]. However, in_ cor_ltras_t With  of equivalently, the set of equations
andH. control,/* optimal controllers can have arbitrarily high order
Eifghglloreover, this theory cannot accommodate nonzero initial condi- w1(k+1) = — arer (k) + 22(k) + (b1 — boar )w(k)
Motivated by these difficulties, in this paper we propose a new ap- :
proach to synthesizing fixed order controllers for persistent disturbance ;. _ o v
rejection in SISO systems. Rather than assuming zero initial condi- k1) = - ,a‘"‘“(k) + (bn = botn Ju (k)
tions, we impose a magnitude constraint on the past outputs, implicitly e(k) = w1 (k) + bow(k). (4)
defining a set of possible initial conditionsompatible with this con- o
straint and the disturbance bound. This leads to the basic idea of thEO any positive integek we have that
paper, the concept afqualized performancén plain words a linear *) *) (R ()
single-input/single-output (SISO) plant of ordeachieves an equal- e’ =0"z(0)+H " w™ ®)
ized performance level if, whenevem consecutive output values have
magnitude less thap, the same condition is repeated in the futurevhere
Thus having finite equalized performance is a stronger property than o) def .
stability (while having finite/* induced norm is equivalent to asymp- w® Ew(0) w(1) -+ wk-1)
totic stability). Nevertheless, as we show in the sequel, finite equal- o (k) def [€(0) e(1) --- e(k-1)]"
ized performance can be achieved by closing the loop with a controller © b 0 0 --- 0
having at least the same order of the plant. CB bo 0 0
The main results of the paper can be summarized as follows. (k) def CAB CB b 0
 The problem of finding dixed ordercontroller achieving a given o 4 0
equalized performance levgl leads to a linear programming CA*B CB b
problem whose dimension is knovenpriori and it does not de- - 0
pend on the problem data. ?
» The optimal value of: (and the corresponding controller) can be , C4
computed in polynomial time. oW | oA |, (6)
» The proposed technique is applicable even in cases where :
theory breaks down, such as when the plant has zeros on the sta- C AR

bility boundary, and can be easily extended to handle parametric

uncertainty.

Il. THE EQUALIZED PERFORMANCEPROBLEM

A. Notation

Given a sequenck € (', its A-transform is defined a#l (\)
>, hiA't Given a polynomialP(\) = 3", a;A" we denote
its coefficients vector a8 = [a,

a deprived of the leading coefficient will be denoted dyi.e., a
[ --- an.—1]". The projection operatoPy: (> — (> is de-

fined by

Pufa®, 20, ] =

B. Definitions and Preliminary Results

an—1]". The vector

2N o) 0, ] N

Considering the above relationship in the cése= n establishes

a (well-known) correspondence between any minimal quadruple
(A, B, C, D) and the ARMA model (3), in the following sense:
Given anyw(k) and any initial condition:(0), the corresponding
output sequence(k) of the former is an admissible evolution of the
latter. Conversely, any evolution of the ARMA model is an admissible
output sequence for the system having the state space realization (4),
for a suitable choice of the initial state0). Since®™ is invertible,
determiningz(0) is immediate. Also note thdbr a given sequence
w(k), there is a one to one correspondence between thedfiveiues

of e(k) and the initial conditionz(0).

Next we recall the usudl' performance definition.

Definition 1: The plant (2) hag' performance less than: iff for
2;(0) = 0,i =1, ---n, and for all sequences(k), k =0, 1, ---,
such thafw(k)| < 1, we havele(k)| < pyr.

Motivated by this definition, we introduce now the concepeqtial-
ized performance

Definition 2: A stable plant of the form (2) has (finite) equalized

Consider a stable SISO plant defined by the following transfer fungerformance less thaniff for |e(i)| < p, i =0, ---, n — 1, and for

tion:

e(\) =

lw() <1,j=0,1,---,
le(k)] < p, k> mn. (7)

The termequalizedstems from the fact that the definition above is
strictly equivalent to setting the first values of|e(%)| all equal tou
(in all possible ways) and requiring that #)| < w in the future.

So far we have considered the case where the length of the output

INote that this is the inverse of the usualransform. Therefore for causal, String coincides with the McMillan degree of the plant (in the sequel

stable system#/(\) is analytical in|A| < 1.

we will sometimes refer to this case as tiaural performance case).
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However, addressing some technical points such as stable pole/zefbheorem 1: Let . > 0. The plant (2) has equalizedperformance
cancellations requires extending this definition to strings of ledgth  less than iff the following condition holds:
n.

Definition 3: A stable plant of the form (2) has (finite) equalized wllalls + 112]1 < p. (10)
N-performance less than iff for |e(i)] < p,i = 0,--- N — 1,
and all sequences(k), k =0, 1, ---, |w(k)| < 1, compatible with Therefore the equalized-performance level™ of the plant is given
e(i), i =0,---, N — 12 we have that by

n b
le(k)| < p, k> N. 8) :T%%W' (11)

Thus a plant achieves equalizadperformance less thanif when- Proof—Necessity:Assume that (10) does not hold. From (3), we
ever a string ofV consecutive output valueg0), e(1), ---, e(N —1) havethat
is below the magnitude, then the same condition is repeated in the fu- le(n)] = ‘_&Te(n) +Tw™]. (12)
ture, for all possible values of the exogenous disturbanteat could
have generatethe sequence of output values for some appropriaig,ys, there exisfe(k)| < p and|w(k)| < 1,k = 0,1, -+, n — 1,
initial condition. In the special case where = N, the sequences g ch that
le(k)| < pand|lw(k)| <1,k=0,1,---, n—1canbe choseninde-
pendently. On the other hand if > n, then the constraine(i)| < p, le(n)| = llalls ||| + 1ol [|w™
i =0,---, N — 1 imposes an additional constrain the first/V oo oo
values of the sequence(%). = pllally + llolle > g

The set of admissible initial conditions, i.e., the set of initial con- o )
ditions that, together with an appropriately chosen sequence of disturSufficiency: If (10) holds, from (12) we havée(n)| < u. Since

bances, generate a sequencé/obutputs having magnitude less than®(n + 1)| < 1, using (10) again and replacingby n + 1 in (12)
1, is given by yields|e(n + 1)| < p. The proof follows now by induction. O

Remark 5: From Theorem 1 we have thatliif # 0, a necessary

Ny s ANy (). (M) condition for a plant to have finite equalized performance fjg&||: <
A () = {‘E(O)' HO 2(0) +H T w S 1. It is clear that this condition implies system stabilityblf= 0, a
for some w(N)H < 1}. ©) necessary condition i1 < 1.
o T We consider now the general case wh¥re> n. To this effect define

m = N — n and consider the following set @f + 1 equations:
Remark 1: The setX™)(;) always contains the origin, and,
if (4, C) is observable, it is a compact polyhedron. Furthermore, "
XNy € XN (), if N> N, e(n) =73
Remark 2: From Definition 3 and linearity the following properties
can be easily established. :
1) If a plant has equalized -performance less than, it also has s "
equalizedV -performance less thar for all ' > p. e(N) = aie(N—i)+ > bjw(N —i). (13)
2) Ifaplanthas equalized -performancel > ») less than then =1 7=0
it has equalizedV'-performance less thanfor all N/ > N,

=1

aje(n —1) + Z bjw(n —1i)
=0

n

3) OnceN consecutive output values are below a given lgyeb Bliminatinge(A” = 1), (N = 2), -+, e(n), yields
, thenle(k)| < p' for all k. n N
Motivated by these properties we introduce the following definition. e(N) = Z al™e(n — i)+ Z b(]-m) w(N - j) (14)
Definition 4: The equalizedV performance leveli’™ of a stable = =0
plant is defined asu™ = inf{u: the plant has equalizelf -perfor- ‘
mance less or equal thar}. where thenf'”), i=1,2,---,n,and thebE””, j=0,1,---, N,are

Remark 3: It is easy to show that not all stable plants have finitéunctions of the coefficients; andb; of (3). This expression, combined
equalizedV -performance for a givefy . However, as we show in Sec- with Definition 3, leads to the following result.
tion 1ll, any stable plant achieves equaliz&dperformance for some  Theorem 2: The plant (2) has equalized-performance less than

> 0 provided thatV is sufficiently large. if:
Remark 4: Since the set’™") () includes the origin, it follows that o) ()
et < V. In the special case wherg: = ¥ the plant is said to be S I P Hb L SH (15)
N-equalized.
where
Ill. EQUALIZED PERFORMANCE CHARACTERIZATION A [a(lm)v a(;/{")]Tv B _ [bém), bf{“)r.

In this section we present some properties of plants achieving a given
equalizedV -performance levet. For simplicity we assume thit|| #  Therefore an upper bound for the equalizéeperformance level of an

0 (the casd|b|| = 0 will be reconsidered later). nth-order plant is given by
Next we address the issue of computing the equaliXederfor-
mance level of a given plant. Hb(m)
A = (16)

2In the sense that there exists an initial conditigid) such that the output
corresponding to this initial condition and the sequence of inptts), k =
0,---, N —1ispreciselye(), ¢ =0, ---, N — 1. SRecall that the:(k) and thew(k) may be chosen independently.

ST al
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Proof: Similar to the sufficiency part of Theorem 1 but using (14¥table pole/zero cancellations may appear in the resulting closed loop

instead of (3). system.

We stress the fact that this condition is only sufficient. Note that, Theorem 4: Consider any arbitrary monic polynomial \) and as-
contrary to the case whef€ = n, here necessity fails because nowsume that the ARMA model’(A\) A(A)y(N) = C(N)B(AN)w(X) of
the sequences(k) andw(k) cannot be chosen independently. Not@rder N has equalizedV -performance less than. Then the ARMA
that stability of the plant implies that as — oo then the coefficients modelA(z)y(z) = B(z)w(z) also has equalizelf -performance less
a'™ = 0. This leads to the following important facts. than.

Corollary 1: If the plant (2) is stable, it has finite equalizéd-per- Proof: The proof follows from the fact thaf'(A\) A(\)y(\) =
formance less thapm for someN = n 4 m, with m sufficiently large. C(\)B(X\)w(\) corresponds to the ARMA model obtained by com-

Corollary 2: If the plant (2) has a finite impulse response then it ibining the equations in (13) using the coefficient€gf\ ). This model

N-equalized for allV > n. contains among its trajectories those of the reduced one. Therefore,
Next we establish that d§ increases the equalizéd-performance whenever property (8) holds for the original model, it also holds for

level 2 approaches from above tii& performance level. the reduced one. O
Theorem 3:Let &*° = Imn—oe 7 = liMm_oco g" 7. If

the plant (2) is stable, then it -equalized performance™ level IV. OPTIMIZATION OF THE EQUALIZED PERFORMANCE

approaches it§' performance lev asN ,i.e., . . . R
P P & - In this section, we consider the problem of synthesizing fixed order

n4m controllers such that the resulting closed-loop optimally rejects (in the
7™ = lim Z bgm) = 1. (17) equalized performance sense) persistent disturbances. Consider a plant
s of the form

Proof: The first equality follows from the fact that the {S(A)} _ 1 ni(A) | ni(d) {w(/\)} (20)
coefficients «{™ are (finite) linear combinations of the ele- y(A) d(\) n21(\) n22() u()
ments of the matrixA™ and therefore, since the plant is stable,

(Lgm) —0,i=1,---,nasm — 0. To complete the proof we needWhere the scalar signals «, y ande represent the control input, ex-
to show that ogenous disturbances, measurements available to the controller and
performance output, respectively. Then the optimal equalized perfor-
nm mance problem can be precisely stated as follows.

lim ) Z bg-m)

j=0

‘ = K- (18) Problem 1: Given the linear time-invariant plant (20) with
McMillan degreer, find a linear time-invariant compensator of a given

Given any sequence (), with [w(t)| < 1,¢ > 0, there exists an orders > r such that the equalized performance of the resulting

initial condition vectori such that(j) = 0, j = 0,1, ---, n — 1. closed-loop system is minimized, where= s + r. o

From (14) the trajectory corresponding to this initial condition and the In the sequel vye ,ShO,W that this proble.m reduces tq a finite-dimen-

sequences(#) is given by sional convex optimization problem. To this effect consider a controller

‘ of the form

N )\)

N o (m), AT s (A :fj( A 21

e(N) = 3 6 w(N = ). w() = TS5 ) (21)

j=0

where p is a monic polynomial of degree. The corresponding
Denote now by( V) the trajectory corresponding to the initial condi-closed-loop system is
tionx;(0) =0, i =1, ---, n. This trajectory is given by
n11(A) n 1 n12(AN)g(A)n21(A)
d(x)  d(A) [d(M)p(X) — n2a(X)g(M)]

where d(s) is the characteristic polynomial oi. The polynomial
[n11n22 — n12n21] hasd as a factor, i.e.,

whereh;, j =0, 1, .-+, are the Markov parameters of the plant. The

functioné(k) — e(k) can be interpreted as a free system response (i.e., n11(A)n22(A) — ni2(Mna () = d(A)m(N)

the trajectory corresponding to a zero input and initial statdRecall

that the set of all admissible initial stat&¥ V') is bounded uniformly thus
fo_r a_II N [since X(N) CA ’Xv(n)]. Trlerefor?, giverN, we have ara [A(N)p(A) = naa(Mg(A)]e(N)

priori bound of the formjé(N) — e(N)| < Ko, wherep(A) < o < A o

1, p(A) denotes the spectral radiusfand K is some finite constant. = [p(N)n1(A) = ¢(VEN)]w(A). (@3)
Then for every sequende (t)| < 1 we have

e(\) = w(A)  (22)

N

EN)=>" hjw(N =)
J=0

This last expression can be rewritten as

N

> (hy =6 ) w(N = j)

71=0

<KoV, (19) der(p, ) (N)e(X) = na(p, O (MNw(X). (24)

Without loss of generality (by using an appropriate scaling if neces-

. o . . sary),p(\) andg(\) can always be selected such tta polynomial

D — 1P B o .

This fact implies thafl| P [h][ln — [[Px[b" ][l | — 0 (we skipthe ;@7 )\ has its independent term equal to one, that is

details for brevity), which, together with stability of the plant estab-

lishes the desired result. | da(p, Q) =1+ da N+ da, 2N+ - (25)
Finally, we address the issue of equalized performance in the case

where the plant realization is nonminimal. This is important in the coffhis additional equality constraint guarantees both that the resulting

text of synthesis because even if we start from a minimal realizatidopp is well-posed and that it has McMillan degree= s + r.

(V) = e(N)] =
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From Theorem 2 it follows that the closed-loop system (24) achieves V. ROBUSTNESSCONSIDERATIONS

equalized performance, if and only if An additional advantage of the proposed approach is that it works

5 in the physical parameter space (rather than in the Markov parameter
pllded(ps @)llv + fimeep @)llv < g (26) space). This fact renders the method less sensitive to variations in the
Sincen(p. ¢)(A) andd.(p. ¢)()) are affine functions of the coef- location of poles and zeros of the plant, a problem recently brought up
ficients of the polynomialg(\) and¢()), and since the additional in the context of fragility of some control design methods [7]. In our
constraint (25) is equivalent to a linear constraint involving only the°Ntext, model uncertainty leads to the parametric problem

leading coefficients of andp, it follows that synthesizing a controller

achiev?ng a fixed, g%en p]:erformance IeVeI)/> 0is eguivalent to IOl + 1 ()bl < p (28)
finding an interior point in a convex set in the combinged; space.

8 . ! whereg € () is an uncertain parameter. Assuming a polytopic structure
Moreover, denoting by” =[p” ¢”]7, (26) above can be written as 1€ 0 P gapolytop

for the problem

follows:
pl| @6l + [196]1 < e (27) B(g) = aid:
=1
where® and¥ are suitable matrices whose entries are functions of the v v )
plant coefficients. Thus for each candidatethe problem of synthe- ¥(q) = Z 4%, Z gi=14¢20, =1 --,v

=1 =1

sizing a controller that achieves equalized performance lesgitian
establishing that none exists) reduces to solving a feasibility probleAe optimization problem preserves its convex nature. Indeed (28) is

that can be recast into a linear programming (LP) form. equivalent to
Remark 6: If s, the order of the controller, is chosen to be at least as
large asr, the order of the plant, this LP problem is always feasible for pl| @bl + (|01 < py i=1, -, v (29)

somey: large enough. This follows from the fact that in this casendg
can be chosen so that the Corresponding C|osed-|00p isaFIR, and ﬂ-'@gurther illustrate this point, worth of further investigation, consider
(Corollary 2) has finite equalized performance. Moreover, singe>  the problem of minimizing equalized performance of the sensitivity
101 with the equality holding for FIR plants it follows that our approachunction corresponding to a plafi(X, e, e2), using a fixed structure

is guaranteed to yield better performance (both ir/thend equalized controllerC'(a, b, A), where
senses) than thed-hocapproach of forcing the closed-loop system to

be an FIR and optimizing th& norm of its Markov parameters. Cla, b, \) = T and P\, e, e) = w
These results are summarized in the next theorem, stating the main + Aa = Al =e)
result of the paper. where|e;|, |e1] < € < 1. For arbitrarily smalle; > 0 the plant is

Theorem 5: Consider a system of the form (20) with McMillan de‘open-loop stable, minimum phase. Henieé, ||S||,» = 0 and perfor-
greer. Then for eachs > r there exists a compensator of the formmance arbitrarily close to optimal can be achieved by using a static gain
(21) such that the resulting closed-loop system has finite equalizgd_, . On the other hand, a simple root locus argument shows that,
(r+s)-performance. Furthermore, giverthe problem of synthesizing ¢y, 1 < 0, with ¢; arbitrarily small, whenk’ — o the closed-loop
a controller of ordes that minimizes the equalized performance |9V%ystem becomes unstable. It follows that the optifiatontroller is
can be solved by a globally converging procedure, entailing only thgygile in the sense that arbitrarily small plant perturbations render the
solution of a sequence of LP problems, each one haling 7 vari-  ¢|osed-loop system unstable. On the other hand, the equalized perfor-
ables4n + 5 inequality, andin + 5 equality constraints. mance minimization problem can be solved via convex optimization by

Remark 7: Since both the number of constraints and variablegnsidering all the possible combinations-of e, € {—#, ¢}, leading
are affine functions ofn, it follows that synthesizing a controller ;5 g the four conditions

that achieves a given equalized performance level can be solved in
polynomial time. Thus, computing the optimal equalized level (within plla+b— (14 )|+ b(1+e) —a(l +e)|}
a given tolerance) can also be accomplished in polynomial time. +1l+la+ (1+e)|+|a <p.
Note that the synthesis algorithm proposed in Theorem 5 works even -
if the order of the controller is selected to be smaller thathe order  Fore sufficiently small this problem has a feasible solution which pro-
of the plant. However, in this case there isa@riori guarantee that yjides the robust optimal equalized performance.
the problem will be feasible, even for a sufficiently large valug:of
From a practical point of view, the initial value of the controller order VI. EXAMPLE
s, should be selected equal to their order of the plant. This guarantees
that the parametric problem will have a solution for sgim®©nce the Example 1: Consider the following third-order system, taken from

optimal value of the equalized performance is established for this cald:

we can proceed, if necessary, to decrease the order of the controller as 97 _935 46 11
needed. This leads to a nonincreasing sequefige> 0. As we show
. . 1 0 0 0 0
next, this sequence converges to the optifatost. A B 0 1 0
Theorem 6: Consider an increasing sequence> r and lety; C D =

—_

0 0

denote the optimal equalized performance level achievable with a con- —2.5 1501 0 0

troller of orders;. Assume that the plant satisfies the standard assump- 1 0 0 0 0

tions of ¢* theory and lefu,» denote the optimal achievabié per-

formance level. Them; — pu,1. Moreover, there exist$ such that The optimalé' controller has order 16. The corresponding closed-loop

wi = pe forall s; > 5. is an 18th order FIR, witli" normu,1 = 3.01. Table | shows a com-
Proof: Follows from Corollary 2 and properties of SISO optimaparison of this optimat® controller versus the optimal equalized con-

(' systems. 0 trollers obtained by selecting different values for the controller order. In
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TABLE |
CLOSED-LOOP ¢* NORM FOR DIFFERENT
EQUALIZED DESIGNS

controller order

16 (optimal £1) | 38 4 6 8

(K37

3.01 3.856| 3.42| 3.16 | 3.07

this particular example in all cases the resulting equalized controllers
rendered the closed-loop system an FIR, and thys= 1. Notice
that by the time the order of the controller is selected to be 8, the corre-4)
sponding performance is 3.07. Thus, when compared with the optimal
£' controller we have a significant order reduction (50%) at the price
of about 2% increase in cost.

Note that in this case the optimal equalized closed-loop system has
a finite impulse response. Numerical experiment show that in practice
this is often the case, but there are some counterexamples availablﬁ]
where this property does not hold.

[2]
VII. DiIscussIiON OF THEMETHOD AND CONCLUSIONS

In this section we comment on some of the features of the proposed3]

method. In particular, we have the following.

1)

2)

3)

(4]
(5]

Recall that in Section Il we assumed thag 0. Through The-
orem 1 this guarantees thii|| < 1 which implies asymp-
totic stability. If b = 0, the inequalityu||a|| < p requires that
[la]] < 1, and this property implies only marginal stability. Thus [g]
there might be trajectories that do not converge (but that do not
diverge as well). Clearly, the feasible solutigns; of (26) might
rendem.i(p, ¢) = 0. This difficulty can be solved by replacing
condition (26) by

(71
(8]

plldec(p, )lls + lnee(p, @)y < i —e (30)

[0l
wheree is arbitrarily small. Thus if|n.(p, ¢)|[1 = 0 we still
have||d.:(p. ¢)|l: < 1 — ¢, andasymptotic stability is guaran-
teed

Since the proposed method forces the closed-loop characteristic
polynomial to satisfyl|d./||; < 1, it follows that the resulting
controller internally stabilizes the loop. Note this does not pre-
vent stable pole/zero cancellations. This leads to the following
question: Suppose that arorder controller has been found such
that the closed-loop system achievest r)-equalized perfor-
mance.*T". Assume that some zero pole cancellations occur so
that the resulting closed loop has a minimal realization of order
n' < n = s+ r. Does this reduced plant achieve the same
equalizedn’-performance level? The answer is not necessarily.
This should not be surprising, since the equalized performance
framework does not assume zero initial condition. However, The-
orem 4 guarantees that the reduced plant (of onfet ») still
achieves an-equalized performance level less or equalto”.

An important open question is the extension of the method to the
MIMO case. In principle this could be accomplished by means of
avector ARMA model. Clearly, the definitions in the paper could
be easily rephrased in a vector sense by requiring that for any
output stringe(0), e(1), ---, e(n — 1) whose element norms
are all belowp, the norm ofe(n) is also belowu. However,

the extension loses the physical meaning of the SISO equalized
performance in the following sense: the first-order multivariable
system

1

A=[a, B=[ 1] C:L

}, D=0

789

could be associated to the equation

[ties] Rl bl R brasi]|

However, it is immediately apparent that a true correspondence
between this ARMA model and the original state space system
does not exist, since in the former the output components are
related bye, e>. Thus the extension of the method to the
MIMO case does not appear to be trivial.

Additional features of our method are that it can be used even in
cases where the plant has zeros on the stability boundary, where
the traditionall! methodology breaks down [8] and can be ex-
tended to handle parametric uncertainty.
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