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Abstract 

In this paper we consider the problem of assessing 
robust performance of systems under both time vary- 
ing memoryless gains and structured dynamic uncer- 
tainty. Performance is measured in terms of the Zoo 
to loo induced gain and the (constructive) conditions 
are given in terms of the existence of a non-empty 
polyhedral set. Finally, we present an example com- 
paring these conditions with the necessary conditions 
obtained using I1 theory. 

1. Introduction 

A large number of control problems involve design- 
ing a controller capable of stabilizing a given linear 
system while minimizing the worst case response to 
some exogenous disturbances. This problem is rel- 
evant for instance for disturbance rejection, tracking 
and robustness to model uncertainty (see [14] and ref- 
erences therein). When the exogenous disturbances 
are persistent bounded signals, with size measured 
in terms of the peak time-domain values, it leads 
to the l1 optimal control theory [14, 15, 5, 61. De- 
pending on the uncertainty characterization, several 
non-conservative robust performance conditions are 
available (see Table 1 in [7]). In particular, in the 
case of non-linear time varying model uncertainty 
with bounded Zoo gain, the system possesses robust 
performance if and only if p(M) 5 1) where p denote 
the spectral radius and M is a matrix containing the 
I I. I 11 norm of the various transfer matrices comprising 
the nominal system. Finally, in [9], a similar neces- 
sary and sufficient condition (involving the infimum 

for the case where both, the nominal system and the 
structured perturbation are time-varying. 

over time of the spectral radius of a matrix) is given 
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Although these conditions provide computationally 
simple means of testing for robust performance, there 
are cases of practical interest where they can be overly 
conservative. For instance, although it is clear that 
these conditions are sufficient when the uncertainty 
is restricted to memoryless time-varying gains, they 
are not necessary. This situation, is illustrated by the 
following simple example. Consider the system: 

a(k + 1) = Aa(k) = (A,  + w(k)EF)i(k)  
Ao = 0.5*(-1 1 1  l ) ; E = ( y ) ;  (1) 

where w(k) represents dynamic model uncertainty. 
Define 

It can be easily shown that 11G(z)11~- = 1.4095 and 
llG(z)111 = z .  Thus, quadratic stability is guaranteed 
for Wmax 5 = 0.7095. On the other hand, 

ever, if w(k) is a memoryless gain, stability can be 
guaranteed for 1w(k)1 5 wmax < 1. 
The present paper is motivated by this example. In 
here we address the case of systems subject to model 
uncertainty including both memoryless gains and loo 
to loo bounded operators. The main result of the pa- 
per furnishes a computable necessary and sufficient 
condition for robust performance of these systems. 
Additionally, we show that although our systems are 
time-varying, the robust performance problem can 
be reduced to a robust stability problem for an aug- 
mented system. This is an unexpected result, since 
it is known [9] that for general time-varying systems 
these problems are not equivalent. 

n,  
i1 theory yields the bound wmar 5 ' 7 0.6. HOW- 
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2. Preliminaries 

2.1. Notation and Definitions 
Given a set S, we denote by intis} its interior. Given 
a matrix A, we denote by Ai its i-th row. For a E R” 
we define la1 as the vector with components Ia;l. We 

denote the 1-norm as llal)1= la;/ and the infinity 

norm as Ilallao=mq Iql. I1 denotes the space of 
absolutely summable sequences h = {h i }  equipped 

with the norm Ilhlll= [hi1 < 00. 1“O denotes the 

space of bounded sequences h = (hi} equipped with 
the norm /lh/lm & sup /hi( < 00. We denote by lp” the 

space of bounded vector sequences (h(k) E @}. In 
this space we define the norm llhl[o. A sup l l ~ ( k ) l l ~ .  

Assume now that H : l& 4 lP, is a bounded h e a r  
operator defined by the usual convolution relation y = 
H * U,  If we denote by H ( k )  the Markov parameters 
of H, its induced l& -+ lg norm is given by: 

A n  

i = O  
A 

A m  

6=0 

L20 

i 

n m _. 

IlHlll A m z e C  llhijlll = m t v c  l lhi(~>ll l 
j=1 k=o 

Similarly, if H : P  -+ P is a time varying, lin- 
ear, bounded causal operator with kernel H(B, I ) ,  

i.e.: ( H u ) ( k )  = H(k,I )u(I )  we define llHl{l 2 
L 

k 0  

SUP 5 IH(ks 
k i=0 

Given a positive integer k, Sk: la” + la” and s-k de- 
note the right and left-shift-by-) operators respec- 
tively. Given a time varying, linear, bounded causal 
operator M:P 4 P, we define i ~ ( ~ )  = S-kMSk; 
i.e, it is an operator that acts exactly as M does k 
stages later. 

2.2. Statement of the Problem 
Consider a time-varying uncertain plant M, intercon- 
nected with n causal, linear time-varying perturb& 
tion blocks Ai, with IlAi))lm,lm 5 1 (see figure 1). 
The uncertain plant M is known to belong, at any 
given instant, to a polytope of plants, i.e., it has the 
following state-space realization: 

m 

i=l 
A(k)  E P 4 C C Y ~ ( ~ ) &  

CY; 2 0, CY; = 1 
m 

i=l 

where ai(k) represent memoryless time-varying 
gains. 

Figure 1: The Robust Performance Problem 

Definition 1 &et A denote the set of sequences of 
the f o m  A f (A(O), A(1), . . .}, A(i) E P .  The fam- 
i ty  of sys tem shown in figure 1, wheTe w and z repre- 
sent an I” ezogenozbs disturbance and a performance 
output respectively, achieves robust stability iff, for 
dl M of the fown (2) and all A E 73, ( I  - M A ) - l  is 
a stable operator from I w  4 IOo.  It achieves robust 
performance if, additionally, ( I  - MA)-l  is such that 

(3) 

The problem that we address in this paper is to 
find computable, non-conservative conditions to as- 
sess whether or not the interconnection of figure 1 
possesses robust performance. 

Remark 1 It can be easily shown that the problem 
can be recast into the form of figure 2, where the un- 
certainty has now the form: 

diog(a lI , .  . . ,ad, A I , .  . . , An), llAillr 5 I} (4) 

.I t t 

Figure 2: Robust Performance as an LFT 

3. Robust performance with both operator 
and memoryless uncertainties 

In this section we use the results of [9] on robust per- 
formance of time-varying systems to obtain necessary 
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and sufficient conditions for the robust performance 
of the family (2). 

3.1. Robust Stability 
Lemma 1 The interconnection (2) achieves robust 
stability iff there ezist some integer m > 0 such that: 

sup { s u p p ( A p ) }  < 1 (5) 
A k  

where: 

4 lIM,3kl)lll .. * ll&)(~l)Ill 

llM-yj(k~)lll . . * IIMkj(n)lll 

l=O 

( :  fii" = 

IIMij(.)IIl IMij(rtI)I 
k & (&I ki E Z+ 

(6) 
and where p denotes the spectral radius. 

Proof: The proof follows immediately from applying 
Theorem 3 in [9] to the family (2). 
In the next lemmas we show that if the time-varying 
gains or; are allowed to change arbitrarily fast, then 
condition (5) has a simpler expression. Their proofs, 
omitted for space reasons, follow by exploiting the 
fact that the memoryless time-varying gains can 
change arbitrarily fast to construct suitable sequences 
A = {A(O), . . ., A(m), . . . , A(j), . . .} E A. 

Lemma 2 Consider the following system: 

M ( k )  = (A*) (7) 
A(&) € P' 

Then: 

SUP llM(k)lli = SUP IIS-mM(k)smlll V m E 2' (8) 
A A 

Lemma 3 Consider the family (2). Then: 

A Lemma 4 Let Ma= sup i& . Then: 
k-oo 

Combining the results of Lemmas 1-4 yields the main 
result of this section: 

Theorem 1 The interconnection of figure 1 achieves 
robwt stability if 

SUP "4 {P(fi-)} < 1 (11) 

where is defined in Lemma 4 .  

Finally, in the next Theorem we show that checking 
condition (11) entails checking the spectral radius of 
the matrix obtained by considering the worst case 1' 
norm of each of its elements. 

Theorem 2 Define: 

where: 

In order to prove this Theorem we need the following 
preliminary result. 

Lemma 5 Assume that the system M is P-stable 
f o p  all sequences in A and consider any two transfer 
mat~ices M;j , M,, . Then, given E > 0 there ezists a 
sequence a E A such that 

Proof of Theorem 2: The proof follows now from 
Lemma 5 by recalling that, for a positive matrix, 
the spectral radius is a continuous, monotonically in- 
creasing function of its elements. 

3.2. Robust Performance 
It is well known that [?I, for Linear Time Invariant 
systems, robust performance is equivalent to robust 
stability of an augmented system, where the perfor- 
mance outputs are connected to the performance in- 
puts via fictitious perturbation blocks. However, this 
equivalence breaks-down for general Time Varying 
systems, although it still holds in the special case of 
periodical systems (see Theorem 5, [9]). In the sequel 
we will show that the equivalence also holds for the 
type of systems considered here. The main idea of the 
proof, omitted for space reasons, follows from notic- 
ing that there exists periodic sequences which achieve 
costs arbitrarily close to the worst case one. 

Theorem 3 Consider the systems shown in Fig. 3, 
where M i s  of the form (2). System I achieves robust 
performance i f f  System 11 achieves robwt stability. 
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System I System II 

Figure 3: Equivalence Between Robust Stability and 
Robust Pedoormance 

4. Computation of the worst case Z1 norm 

From the previous section it follows that in order to 
check robust stability of (2) it is necessary to compute 
the worst-case (over all possible sequences in A) of an 
Il-norm. In this section we furnish a procedure to 
compute this worst-case norm. Following the spirit 
of [l], this procedure is based upon the construction 
of an invariant set as an intersection of a sequence of 
polyhedral sets. In order to guarantee stability of the 
family of systems we need some additional assump 
tions. 

Assumption 1 There ezists A E P such that (A, B )  
is reachable and ( C ,  A) is observable. 

Let p > 0 be a real parameter. Consider the set 

@(,U) = (x E R" : ~ [ C X  - DUI[, 5 7, 
vw s.t. /Iwlloo I p}. (16) 

It is immediate that this polyhedral set can be written 
in the form 

Q(P)  = (x E Rn : lci~/ 5 1 - pllDilli 
i =  l , . . . , p }  

where Ci and Di, i = 1, . . . , p represent the i - th  rows 
and C and D respectively. Starting from this poly- 
hedral set we can generate a proper sequence of sets 
proceeding backwards in time. Consider a polyhedral 
set 

S = (x : [Fiat 5 gi, i = 1,. . ., s}, (17) 
and define its preimage as the set of all state vectors 
x that are mapped into S by Ax + Bw, for all A E P 
and all w, llwll 5 p, i.e.: 

& ( S ) = ( a : A z + D w E S ,  V l l ~ l l 5 ~ , A € P } .  

Since P is a polytope, this preimage set can be written 
in the form 

Therefore the preimage set of a polyhedron is a poly- 
hedron whose representation is furnished by the ex- 
pression above. It is clear that the representation 
above is not minimal. As we will see in the sequel, 
computation of a minimal representation via elimi- 
nation of redundant constraints is highly desirable. 
Define now the following sequence of sets: 

@O(P) = @(CL) 
@ ( p )  = e(ok-'(p)) (18) 

mp) = n (19) 

and, for k = 0,1,. . . , 00 define the set: 
k 

h=O 

Then, the following theorem holds. 
Theorem 4 If llM(.A)ll1 < 
such that 

then there exists k 

n"p) = Q"p) = n y p ) ,  k 2 L. (20) 

nk(p) = 0. (21) 

IfllM(A)II1 > then there ezists L such that 

Proof. The proof, omitted for space reasons, is based 
on the following fact. Denote by x ( t ,  A ( . ) ,  to(.)) the 
solution of s(tS1) = A(t)z(t)+Bw(t) with zero initial 
condition and denote by R(P, p )  the 0-reachable state 
set: 

R ( P ,  p) = (z = z ( t ,  A( . ) ,  w(-)) for some 

t > 0, A(k)  E A and Ilw(t)II 5 p}. (22) 
Then we have that llM(A)l[l < if and only if 

The theorem above suggests a procedure to com- 
pute upper and lower bounds for the I1 norm of 
(A(&), B, C, 0) by checking whether or not the set 
Om(p) is empty. In practice this is accomplished by 
fixing a value of p > 0 and computing the sequence 
Q k ( p )  by intersecting the set Qk-'(p) with O k ( p ) .  If 
the first condition of the theorem is satisfied for some 
&, then we get an upper bound for the l1 norm. Like- 
wise, if it fails we get a lower bound. In the first case 
we have to reduce the valued p (for instance halving 
it); in the second, to increase it (for instance dou- 
bling it). A question that arises naturally is what 
happens when p = ~ ~ M ( A ) ~ ~ ~ .  In this ease, condition 
(20) may still be satisfied (see [2]). There are exam- 
ples in which the set am(,) is not empty but does 
not coincide with any of the sets n k ( p ) .  

R(P, P)  c W @ ( P ) I .  

5. A Simple Example 

Consider the following simple example of a two out- 
put two input system. 
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Assume that the uncertainties have a block diagonal 
structure 

(24) 

If we assume that Ai, i = 1,2 are operators subject 
to I Ail11 5 ( then according to standard Z1 theory, 
we h ave to consider the following spectral radius: 

Therefore the stability limit is ( < 0.25 as long as 
A1 and A2 are both assumed to be operators. Con- 
sider now the case in which A2 is a memoryless time 
varying parameter. To solve the stability problem for 
the interconnection we have to compute the induced 
norm of the system having the following state-space 
realization: 

with llAlll1 5 p and 1A21 5 U. Fixing p = 0.25 
and increasing v until the limit IIIMAIII 5 4 is vio- 
lated yields approximately U M A X  E [0.305,0.306]. In- 
deed for v = 0.306, S236(0.25) was found to be empty 
while for U = 0.305, it turns out that Ql4(O.25) = 
Q13(0.25) = CP(0.25). This means that the induced 
norm IIM(A)lll E [3.268,3.278]. Such a set is de- 
fined (as in (17)) by 13 symmetric inequalities. Fixing 
now U = 0.25, and computing iteratively the maxi- 
mum value of /I such that P ( p )  in not empty yields 
  MAX E [0.291,0.292]. In this case,R3*(0.292) was 
found to be empty, while for U = 0.291 the condition 
SP(0.291) = C2l3(O.291) was satisfied. In this case 
the set is defined by by 14 inequalities. 
Finally, we wish to consider briefly the case where 
only time-varying gains are present in the system. 
This situation can be handled via Lyapunov methods 
[16][ll]. In principle Assumption 1 requires the exis- 
tence of operator uncertainties. Nevertheless, we can 
consider this problem as a “limit case”. For instance 
if we take in this example U small, we recover the ex- 
ample in the introduction. Setting U = 0.0001, we 
proved stability for p < 0.998 (using arguments from 
[l] it can indeed be shown that the actual stability 
condition is p < kor = 1). 

6. Conclusions 

In this paper we address the problem of the analysis of 
robust performance and robust stability for systems 
containing both time-varying uncertain memoryless 
parameters and neglected dynamics. We prove that 
the problem of the robust stability can be reduced to 
the computation of the spectral radius of a certain 
non-negative matrix whose entries are the worst-case 

peak to peak induced norms. This worst-case analy- 
sis norm can be computed by generating sequences of 
sets that provide upper and a lower bounds. Finally, 
we show that the problem of the robust performance 
analysis can be reduced to a robust stability one, in 
a fashion similar to the time-invariant case. This fact 
is remarkable since it is known that this result does 
not hold for general time-varying systems. 
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